Revisiting the obesity paradox in heart failure

Aimo, Alberto; Januzzi, James L.; Vergaro, Giuseppe; Clerico, Aldo; Latini, Roberto; Meessen, Jennifer; Anand, Inder S.; Cohn, Jay N.; Gravning, Jorgen; Ueland, Thor

Published in:
European journal of preventive cardiology

DOI:
10.1177/2047487319852809

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Revisiting the obesity paradox in heart failure: Per cent body fat as predictor of biomarkers and outcome

Alberto Aimo¹, James L Januzzi Jr², Giuseppe Vergaro³,⁴, Aldo Clerico³,⁴ Roberta Latini⁵, Jennifer Messeen⁵, Inder S Anand⁶,⁷ Jay N Cohn⁶, Jørgen Gravning⁸,⁹ Thor Ueland¹⁰,¹¹,¹², Ståle H Nymo¹⁰, Hans-Peter Brunner-La Rocca¹³, Antoni Bayes-Genis¹⁴, Josep Lupon¹⁴, Rudolf A de Boer¹⁵, Akiomi Yoshihisa¹⁶, Yasuchika Takeishi¹⁶, Kai M Eggers¹⁸, Kurt Huber¹⁹, Ioannis Tentzeris¹⁹, Andrea Ripoli¹⁴, Claudio Passino³,⁴ and Michele Emdin³,⁴

Abstract
Aims: Obesity defined by body mass index (BMI) is characterized by better prognosis and lower plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) in heart failure. We assessed whether another anthropometric measure, per cent body fat (PBF), reveals different associations with outcome and heart failure biomarkers (NT-proBNP, high-sensitivity troponin T (hs-TnT), soluble suppression of tumorigenesis-2 (sST2)).

Methods: In an individual patient dataset, BMI was calculated as weight (kg)/height (m)², and PBF through the Jackson–Pollock and Gallagher equations.

Results: Out of 6468 patients (median 68 years, 78% men, 76% ischaemic heart failure, 90% reduced ejection fraction), 24% died over 2.2 years (1.5–2.9), 17% from cardiovascular death. Median PBF was 26.9% (22.4–33.0%) with the Jackson–Pollock equation, and 28.0% (23.8–33.5%) with the Gallagher equation, with an extremely strong correlation (r = 0.996, p < 0.001). Patients in the first PBF tertile had the worst prognosis, while patients in the second and third tertile had similar survival. The risks of all-cause and cardiovascular death decreased by up to 36% and 27%, respectively, per each doubling of PBF. Furthermore, prognosis was better in the second or third PBF tertiles than in the first tertile regardless of model variables. Both BMI and PBF were inverse predictors of NT-proBNP, but not hs-TnT. In obese patients (BMI ≥ 30 kg/m², third PBF tertile), hs-TnT and sST2, but not NT-proBNP, independently predicted outcome.

¹Cardiology Division, University Hospital of Pisa, Italy
²Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, USA
³Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
⁴Fondazione Toscana G. Monasterio, Pisa, Italy
⁵Department of Cardiovascular Research IRCCS – Istituto di Ricerche Farmacologiche – “Mario Negri”, Milan, Italy
⁶Division of Cardiovascular Medicine, University of Minnesota, Minneapolis, USA
⁷Department of Cardiology, VA Medical Centre, Minneapolis, USA
⁸Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
⁹Centre for Heart Failure Research, University of Oslo, Norway
¹⁰Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway
¹¹Faculty of Medicine, University of Oslo, Norway
¹²K. G. Jebsen Thrombosis Research and Expertise Centre, University of Tromsø, Norway
¹³Department of Cardiology, Maastricht University Medical Centre, The Netherlands
¹⁴Hospital Universitari Germans Trias i Pujol, Badalona (Barcelona), Spain
¹⁵University Medicine Groningen, The Netherlands
¹⁶Department of Cardiovascular Medicine, Fukushima Medical University, Japan
¹⁷Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Denmark
¹⁸Department of Medical Sciences, Cardiology, Uppsala University, Sweden
¹⁹Faculty of Internal Medicine, Wilhelminenspital and Sigmund Freud University Medical School, Vienna, Austria

Corresponding author:
Michele Emdin, Scuola Superiore Sant’Anna and Fondazione Toscana Gabriele Monasterio, Via G. Moruzzi 1 – 56124 Pisa, Italy.
Email: emdin@ftgm.it, m.emdin@santannapisa.it
Twitter: @MicheleEmdin
Conclusion: In parallel with increasing BMI or PBF there is an improvement in patient prognosis and a decrease in NT-proBNP, but not hs-TnT or sST2. hs-TnT or sST2 are stronger predictors of outcome than NT-proBNP among obese patients.

Keywords
Obesity, heart failure, natriuretic peptides, troponin, sST2, prognosis

Received 17 January 2019; accepted 4 May 2019

Introduction

Obesity is a growing public health problem and significantly increases the risk of several disorders, including coronary artery disease and heart failure. However, once a patient develops heart failure, overweight and mild-to-moderate obesity are associated with better survival compared with patients with normal weight.

Several explanations have been proposed for this ‘obesity paradox’, which has also been described in other chronic disorders. For example, obese patients tend to be younger, and have greater energy reserves and less muscle depletion. They also display an attenuated response to sympathetic and renin–angiotensin–system activation, and tolerate better drugs for neurohormonal antagonism because they are often hypertensive at treatment initiation. Higher insulin concentrations may also exert positive effects on the autonomic nervous system and the pituitary–adrenal axis, manifesting as reduced peripheral vascular resistances.

Despite these facts, existence of an obesity paradox has been questioned by considering that all evidence derives from studies using body mass index (BMI), a simple measure that is not informative on the amount and distribution of body fat. Most notably, a recent study on 1738 heart failure patients showed that a higher waist-to-hip ratio (WHR), an indicator of abdominal obesity, predicts a higher risk of death among women. The authors thus challenged the obesity paradox, postulating that ‘fat deposition is pathophysiological harmful and may be a target for therapy in female patients with heart failure’.

In the field of heart failure biomarkers, another paradox described is that of the decrease in circulating natriuretic peptides among overweight and obese patients. Mechanisms underlying this inverse association between BMI and natriuretic peptides have not been clarified so far, although some possible explanations have been proposed, largely focused on reduced production of B-type natriuretic peptide (BNP) or the N-terminal fraction of pro-BNP (NT-proBNP), rather than their clearance. Importantly, the influence of BMI or body composition on high-sensitivity troponin T (hs-TnT) or soluble suppression of tumorigenesis-2 (sST2), two biomarkers useful for risk stratification in heart failure, has not been established so far.

To clarify these points, in a large individual heart failure patient dataset designed to assess the prognostic value of heart failure biomarkers we evaluated: a) the relationship between BMI and per cent body fat (PBF), as a measure of body composition, and patient prognosis; b) the relationship between BMI and PBF with NT-proBNP, hs-TnT and sST2.

Methods

Search strategy, study selection

In April 2017, studies evaluating hs-TnT and prognosis in chronic heart failure were searched in four databases (Medline, EMBASE, Cochrane Library and Scopus) to perform an individual patient data meta-analysis on hs-TnT and prognosis. For the present analysis, patients with BMI data available were considered (6468 out of 9289, 70%). All patients had data on all-cause death, while information on cardiovascular death was available for 6262 (97%).

Anthropometric measures

BMI was calculated as weight (kg)/height^2 (m^2). Patients were stratified into the following categories, according to the World Health Organization: underweight (BMI < 18.5 kg/m^2), normal weight (18.5–24.9 kg/m^2), overweight (25–29.9 kg/m^2), obesity class I (30–34.9 kg/m^2), obesity class II (35–39.9 kg/m^2), obesity class III (>40 kg/m^2). PBF was estimated from BMI, gender and age through the Jackson–Pollock and Gallagher equations (Supplemental Material Table 1 online).

Biohumoral evaluation

In all studies NT-proBNP was measured through the ECLIJA monoclonal method (Roche Diagnostics), sST2 with the Presage® assay, and TnT through a hs-assay (Roche Diagnostics®). The analytical
Statistical analysis

IBM SPSS Statistics (version 22, 2013) and R statistical software (http://www.r-project.org/, version 3.4.4) were used. Normal distribution was assessed through the Kolmogorov–Smirnov test; variables with normal distribution were presented as mean ± standard deviation, while those with non-normal distribution as median and interquartile interval. NT-proBNP, hs-TnT and sST2 were log2-transformed. Mean differences among groups were evaluated through the unpaired Student t test. Categorical variables were compared by the Chi-square test with Yates correction. Pearson’s product moment correlation coefficient (r) was calculated as a measure of linear association between variables. The log-rank test (Mantel–Cox) was used to compare survival times on Kaplan–Meier curves. Cubic spline interpolation was carried out to represent the changes in risk according to biomarker values; five knots were considered. The BMI value for which hazard ratio ¼ 1 was chosen as the value corresponding to the inflection point of the curve, above which the slope of the curve becomes steeper. Except for NT-proBNP, hs-TnT and sST2, all univariate predictors of all-cause death with a p value <0.10 were included in the multivariate analysis: age, gender, ischaemic aetiology, estimated glomerular filtration rate (eGFR), left ventricular ejection fraction (LVEF), New York Heart Association (NYHA) class I–II vs. III–IV, hypertension, chronic obstructive pulmonary disease (COPD), diabetes, atrial fibrillation, high-sensitivity C-reactive protein (hs-CRP), therapy with angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers (ACEis/ARBs), beta-blockers, mineralocorticoid receptor antagonists (MRAs). Multicollinearity was searched by calculating the Variance Inflation Factor. The Schoenfeld Residuals Test was used to test the proportional hazard assumption in Cox model; time-dependent variables were used when this assumption was not met. The ‘one-in-10’ rule was followed to avoid model overfitting. In Cox regression analysis, the Fine–Gray model was used to account for mutually exclusive endpoints; non-cardiovascular death was considered as competing risk for cardiovascular death. The net reclassification improvement (with risk categories set at <10%, 10–30% and >30%) and the integrated discrimination improvement were calculated to assess reclassification. Two-tailed p values <0.05 were considered significant.

Results

Population characteristics across categories of body mass index

The main characteristics of patients evaluated (N = 6468) are summarized in Table 1. Median age was 68 years (interquartile interval 58–76), and the majority of patients (n = 5071, 78%) were men, and had heart failure with ischaemic aetiology (n = 3650, 76%). The overall median LVEF was 27% (21–34%), and the vast majority of patients (n = 5848, 90%) had heart failure with reduced ejection fraction. Renal function was moderately impaired, with a median eGFR of 57 mL/min per 1.73 m 2 (44–68). Median circulating NT-proBNP, hs-TnT and sST2 were 1359 ng/L (513–3229), 18 ng/L (9–33) and 27 ng/mL (20–39), respectively.

Patients in the different BMI categories were heterogeneous in many respects. Most notably, age decreased with increasing BMI, the prevalence of hypertension and diabetes became progressively higher, glomerular filtration rate and LVEF increased, and NT-proBNP decreased (Table 1).

BMI and prognosis

Over a median 2.2-year follow-up (1.5–2.9), 1546 patients (24%) died, and cardiovascular death occurred in 1088 patients, out of 6262 with available data (17%). The shortest survival free from these endpoints was recorded for patients with BMI <18.5 kg/m 2; survival increased progressively from underweight to normal weight and overweight patients, and was not significantly different from overweight to grade III obesity (Supplemental Figure 1). When stratifying the population according to the 25 and 30 BMI cut-offs, patients with BMI <25 had a worse prognosis than those with BMI 25–30 or ≥30, whose survival was similar (Supplemental Figure 2). The same conclusion was reached for both male (all-cause death: log-rank 53.1, p <0.001; cardiovascular death: log-rank 29.1, p <0.001) and female patients (all-cause death: log-rank 14.2, p =0.001; cardiovascular death: log-rank 7.2, p =0.027). Additionally, the spline curves in the whole population as well as in men and women showed a progressive improvement in prognosis up to 25 kg/m 2 BMI (Supplemental Figures 3 and 4).

In the prognostic model including age, gender, ischaemic aetiology, eGFR, LVEF, NYHA I–II vs.
Table 1. Population characteristics.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>N = 6468</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BMI categories</td>
<td></td>
</tr>
<tr>
<td></td>
<td><18.5</td>
<td>18.5–24.9</td>
</tr>
<tr>
<td></td>
<td>N = 6468</td>
<td>N = 2221</td>
</tr>
<tr>
<td>Age, years</td>
<td>68 (58–76)</td>
<td>74 (67–82)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td>5071 (78)</td>
<td>38 (42)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>26.6 (23.8–29.9)</td>
<td>17.4 (16.6–18.0)</td>
</tr>
<tr>
<td>Ischaemic aetiology, n (%)</td>
<td>3650 (76)</td>
<td>45 (50)</td>
</tr>
<tr>
<td>NYHA I/II/III-IV, n (%)</td>
<td>3715/2381 (57/37)</td>
<td>36/45 (50/50)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>2905 (45)</td>
<td>35 (39)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>1721 (27)</td>
<td>10 (11)</td>
</tr>
<tr>
<td>AF, n (%)</td>
<td>1056 (16)</td>
<td>11 (12)</td>
</tr>
<tr>
<td>COPD, n (%)</td>
<td>864 (13)</td>
<td>24 (27)</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>27 (21–34)</td>
<td>26 (21–32)</td>
</tr>
<tr>
<td>LVEF ≤40%, 40–49%, ≥50%, n (%)</td>
<td>5848, 411, 172</td>
<td>78, 6, 5</td>
</tr>
<tr>
<td>eGFR, mL/min per 1.73 m²</td>
<td>57 (44–68)</td>
<td>78 (87, 6)</td>
</tr>
<tr>
<td>NT-proBNP, ng/L</td>
<td>4.6 (1.8–9.8)</td>
<td>2.5 (1.1–8.3)</td>
</tr>
<tr>
<td>hs-CRP, mg/L</td>
<td>3861 (1254–8368)</td>
<td>2336 (956–4956)</td>
</tr>
<tr>
<td>hs-TnT, ng/L</td>
<td>18 (9–33)</td>
<td>18 (13–34)</td>
</tr>
<tr>
<td>sST2, ng/mL</td>
<td>27 (20–39)</td>
<td>31 (22–36)</td>
</tr>
<tr>
<td>ACEi/ARB, n (%)</td>
<td>5722 (89)</td>
<td>53 (81)</td>
</tr>
<tr>
<td>BB, n (%)</td>
<td>3128 (48)</td>
<td>37 (41)</td>
</tr>
<tr>
<td>MRA, n (%)</td>
<td>1113 (17)</td>
<td>23 (26)</td>
</tr>
</tbody>
</table>

Significant p values are reported in bold.

ACEi/ARB: angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; AF: atrial fibrillation; BB: beta-blocker; BMI: body mass index; COPD: chronic obstructive pulmonary disease; eGFR: estimated glomerular filtration rate; hs-CRP: high-sensitivity C-reactive protein; hs-TnT: high-sensitivity troponin T; LVEF: left ventricular ejection fraction; MRA: mineralocorticoid receptor antagonists; NT-proBNP: N-terminal fraction of pro-B-type natriuretic peptide; NYHA: New York Heart Association; sST2: soluble suppression of tumorigenesis-2.
III–IV, hypertension, COPD, diabetes, atrial fibrillation, hs-CRP, ACEi/ARB, beta blockers and MRA therapy, patients with BMI ≥ 25 kg/m² cut-off had a better prognosis for all-cause death (hazard ratio 0.74, 95% confidence interval (CI) 0.66–0.84; \(p < 0.001 \)) and cardiovascular death (hazard ratio 0.80, 95% CI 0.70–0.91; \(p = 0.001 \)).

Figure 1. Per cent body fat and patient survival.
Per cent body fat is estimated based on the Jackson–Pollock formula. Patients (Pts) are stratified according to tertiles of per cent body fat. When using the Gallagher formula, the log-rank values for all-cause death and cardiovascular (CV) death were 13.3 (\(p = 0.001 \)), and 8.1 (\(p = 0.017 \)).

Figure 2. Per cent body fat and prognosis: spline curve analysis.
Spline curve analysis. Per cent body fat is calculated using the Jackson–Pollock equation. The inflection points of the curves are: 27.9% (all-cause death) and 27.6% (cardiovascular (CV) death). When using the Gallagher equation, the inflection points of the curves for all-cause death are 26.2 and 26.6%, respectively.

HR: hazard ratio

PBF: estimates and prognostic value
Median PBF was 26.9% (22.4–33.0%) with the Jackson–Pollock equation, and 28.0% (23.8–33.5%) with the Gallagher equation, with an extremely strong correlation (\(r = 0.996, p < 0.001 \)). Patient characteristics across PBF tertiles are provided in Supplemental...
Table 2. Percent body fat (PBF) as predictor of outcome.

<table>
<thead>
<tr>
<th></th>
<th>All-cause death</th>
<th></th>
<th>Cardiovascular death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Doubling of PBF</td>
<td>1<sup>st</sup> vs. 2<sup>nd</sup>+3<sup>rd</sup> tertiles</td>
<td>Doubling of PBF</td>
</tr>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>p</td>
</tr>
<tr>
<td>Jackson-Pollock</td>
<td>0.68</td>
<td>0.58–0.80</td>
<td><0.001</td>
</tr>
<tr>
<td>Gallagher</td>
<td>0.64</td>
<td>0.53–0.77</td>
<td><0.001</td>
</tr>
</tbody>
</table>

The risk is calculated per each doubling of PBF (by considering log₂-transformed variables) or the first vs. the second and third tertiles (Jackson-Pollock equation: <23.9% vs. >23.9%. Gallagher equation: <25.1% vs. >25.1%).

In the search for measures more closely correlated to BMI and PBF categories, we estimated the percentage of body compositions. 17–19,26,27 These estimates of weight composed of fat tissue. We used two equations introduced and validated against direct measurements of body compositions. 17–19,26,27 These estimates of

Table 2. Patients in the first PBF tertile had the worst prognosis, while patients in the second and third tertiles had similar survival (Figure 1). The improvement in patient prognosis with increasing PBF, in the whole population and in both genders, was visually represented by spline curves (Figure 2 and Supplemental Figure 5).

In the prognostic model above, PBF independently predicted all-cause and cardiovascular mortality. In detail, the risks of all-cause and cardiovascular death decreased by up to 36% and 27%, respectively, per each doubling of PBF (Table 2). Furthermore, prognosis was better in the second or third tertiles than in the first tertile regardless of model variables (Table 2). In both cases (i.e. considering absolute PBF values or first tertile vs. second or third tertile) metrics of risk reclassification were improved (Supplemental Table 3).

Plasma NT-proBNP, hs-TnT and sST2 according to BMI and PBF

As stated above, the decrease in NT-proBNP with increasing BMI category was much more prominent than variations observed in either hs-TnT or sST2, despite significant differences for all three biomarkers (Figure 3). Accordingly, though weak, the correlation between BMI and NT-proBNP was stronger ($r = -0.257$) than the correlation with either hs-TnT ($r = 0.057$) or sST2 ($r = 0.107; all p < 0.001$). In multivariate linear regression analysis, when considering the same model used for prognostic assessment, BMI independently predicted both NT-proBNP and sST2, but not hs-TnT (Supplemental Table 4). Similar results were found for PBF (Supplemental Tables 2 and 4).

The three biomarkers were then added to the prognostic model above. In the obese subgroup ($BMI \geq 30 \text{ kg/m}^2$) and in the third PBF tertile, NT-proBNP was not an independent predictor of outcome, in contrast to both hs-TnT and sST2. This pattern was not observed across the other BMI or PBF categories (Table 3 and Supplemental Table 5).

Discussion

This analysis, performed in a large individual heart failure patient dataset designed to assess the prognostic value of biomarkers, confirms that overweight and obese heart failure patients have longer survival, and provides the first demonstration of a direct relationship between body fat content and better outcome. We also report that obesity influences NT-proBNP considerably more than hs-TnT and sST2, and NT-proBNP appeared less prognostic in a model including hs-TnT or sST2 among obese patients.

The better prognosis of obese heart failure patients is so counterintuitive that it has been attributed to limitations of BMI as a synthetic anthropometric measure. 9 To verify this hypothesis, sophisticated evaluations of body composition such as bioelectrical impedance analysis should be performed. Unfortunately, large datasets of heart failure patients with these measures are not available, and even a very simple index such as the WHR has been assessed only in a single cohort of limited size ($n = 1479$), including patients with either acute or chronic heart failure. 10 One may also consider the WHR to be a measure reflecting both subcutaneous and visceral abdominal fat, also influenced by hip size (so that WHR should preferably be measured together with waist circumference). 25 In the search for measures more closely correlated to body composition than BMI, more accurate than WHR, and potentially available from large population datasets, we estimated the percentage of body weight composed of fat tissue. We used two equations introduced and validated against direct measurements of body compositions. 17–19,26,27 These estimates of
PBF displayed a very strong correlation ($r = 0.996$). A higher PBF was consistently associated with lower all-cause and cardiovascular mortality. Accordingly, spline curves showed a progressive improvement in prognosis up to a PBF around 27%, beyond which patient prognosis remained basically stable. Both PBF (modelled continuously) and the first versus second or third PBF tertiles were independent

\[\text{BMI} < 18.5 \text{ kg/m}^2 \]
\[\text{BMI} 18.5-24.9 \text{ kg/m}^2 \]
\[\text{BMI} 25-29.9 \text{ kg/m}^2 \]
\[\text{BMI} 30+ \text{ kg/m}^2 \]

hs-TnT: high-sensitivity troponin T; NT-proBNP: N-terminal fraction of pro-B-type natriuretic peptide; sST2: soluble suppression of tumorigenesis-2.

\[\text{BMI} > 30 \text{ kg/m}^2 \]
\[\text{BMI} 25-29.9 \text{ kg/m}^2 \]
\[\text{BMI} 18.5-24.9 \text{ kg/m}^2 \]

hs-TnT: high-sensitivity troponin T; NT-proBNP: N-terminal fraction of pro-B-type natriuretic peptide; sST2: soluble suppression of tumorigenesis-2.

Table 3. Biomarkers and prognosis across body mass index (BMI) categories.

<table>
<thead>
<tr>
<th>BMI</th>
<th>All-cause death</th>
<th>Cardiovascular death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>1.01</td>
<td>0.84–1.22</td>
</tr>
<tr>
<td>hs-TnT</td>
<td>1.47</td>
<td>1.19–1.82</td>
</tr>
<tr>
<td>sST2</td>
<td>1.71</td>
<td>1.19–1.82</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>1.21</td>
<td>1.07–1.37</td>
</tr>
<tr>
<td>hs-TnT</td>
<td>1.19</td>
<td>1.04–1.35</td>
</tr>
<tr>
<td>sST2</td>
<td>1.02</td>
<td>0.80–1.30</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>1.17</td>
<td>1.03–1.32</td>
</tr>
<tr>
<td>hs-TnT</td>
<td>1.22</td>
<td>1.09–1.36</td>
</tr>
<tr>
<td>sST2</td>
<td>1.28</td>
<td>1.08–1.53</td>
</tr>
</tbody>
</table>

PBF displayed a very strong correlation ($r = 0.996$). A higher PBF was consistently associated with lower all-cause and cardiovascular mortality. Accordingly, spline curves showed a progressive improvement in prognosis up to a PBF around 27%, beyond which patient prognosis remained basically stable. Both PBF (modelled continuously) and the first versus second or third PBF tertiles were independent
studies. Second, the number of underweight individuals was low, possibly because underweight heart failure patients often have cardiac cachexia or advanced, life-limiting disorders, and such patients were not enrolled in clinical trials; because of the poor prognosis of these underweight patients, their inclusion in the analysis would have further strengthened the proposed relationship between BMI or PBF and outcome. Third, our dataset did not allow to assess the nutritional status of these patients, which might hold prognostic significance, and did not include many variables related to metabolic disturbances and cardiovascular risk (such as lipid profile, liver steatosis, alcohol intake or exercise) or echocardiographic parameters (for example, indices of diastolic function or hypertrophy patterns). Fourth, no information was available regarding the changes in weight, BMI or PBF over time, although the temporal trends of these parameters might hold prognostic significance. Future studies exploring these aspects are warranted.

Conclusions

In parallel with increasing BMI or PBF there is an improvement in patient prognosis and a decrease in NT-proBNP, but not hs-TnT or sST2. hs-TnT or sST2 are stronger predictors of outcome than NT-proBNP among obese patients.

Author contribution

Study design: AA, MEm, CP. Data analysis: AA, AR. Critical revision: AA, JLJ, AC, RL, JM, ISA, JNC, IG, TU, SHN, HPBLR, ABG, JL, RADB, AY, YT, MEm, IG, HKG, KME, KH, JT.

Declaration of conflicting interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: JLJ has received grant support from Siemens, Singulex, and Prevencio; consulting income from Roche Diagnostics, Critical Diagnostics, Sphingotec, Phillips, and Novartis; and participates in clinical end point committees for Novartis, Amgen, Janssen, and Boehringer Ingelheim. RL has received grant support and travel reimbursements from Roche Diagnostics. JG reports lecture fees from AstraZeneca, Siemens and Abbott Laboratories, outside the submitted work. HPBLR reports unrestricted research grants and consulting fees from Roche Diagnostics, as well as unrestricted research grants from Novartis and GlaxoSmithKline outside this work. ABG has received grant support from Roche Diagnosis, lecture honoraria from Roche Diagnostics and Critical Diagnostics, and consulting income from Roche Diagnostics, Critical Diagnostics, and Novartis. JL has received lecture honoraria from Roche Diagnostics. Dr. de Boer reports that Roche, Novartis, and AstraZeneca offered consultancy to UMCG; he also reports grants from AstraZeneca, grants from Bristol Myers Squibb, and grants from Trevena, outside the submitted work. HKG has received grant support from Roche and Portola; consulting income from Roche Diagnostics, Amgen and Ortho Clinical; research payments for clinical endpoint committees for EchoSense and Radiometer. All other authors have nothing to disclose.

Study limitations and perspectives for future studies

Some limitations of this hypothesis-generating study must be acknowledged. First, although our results provide a quite compelling demonstration of the link between higher PBF and longer survival in heart failure, it is important to notice that PBF was estimated through equations developed and validated in healthy subjects. These results should then be verified in prospective studies using direct measurements of body composition or anthropometric measures, as in prior studies. Second, the number of underweight individuals was low, possibly because underweight heart failure patients often have cardiac cachexia or advanced, life-limiting disorders, and such patients were not enrolled in clinical trials; because of the poor prognosis of these underweight patients, their inclusion in the analysis would have further strengthened the proposed relationship between BMI or PBF and outcome. Third, our dataset did not allow to assess the nutritional status of these patients, which might hold prognostic significance, and did not include many variables related to metabolic disturbances and cardiovascular risk (such as lipid profile, liver steatosis, alcohol intake or exercise) or echocardiographic parameters (for example, indices of diastolic function or hypertrophy patterns). Fourth, no information was available regarding the changes in weight, BMI or PBF over time, although the temporal trends of these parameters might hold prognostic significance. Future studies exploring these aspects are warranted.
Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References