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Chapter 7

Coprime factorization

In this chapter and the following two chapters we consider the following set
of holomorphic functions.

Definition 7.1. Let U and Y be Hilbert spaces. The set H0(U ,Y ) consists
of functions G : D(G) ⊂ C→ L(U ,Y ) that are holomorphic with 0 ∈ D(G).

Remark 7.2. Note the transfer function of a discrete-time system is always in
our set of holomorphic functions. Moreover, it follows from Proposition 2.12
that any function in this set is the transfer function of some discrete-time
system.

In this chapter we study coprime factorization over H∞. We study both a
strong and a weak form of coprimeness. Since we are dealing with operator-
valued functions, we have to distinguish between right coprimeness and left
coprimeness.

Definition 7.3. Let M ∈ H∞(D;L(H1,H2)) and N ∈ H∞(D;L(H1,H3)).
The functions M and N are called weakly right-coprime if for every

Z-transformable sequence h : Z+ → H1 with [Mĥ; Nĥ] ∈ H2(D,H2 ×H3)
we have h ∈ l2(Z+,H1).

The functions M and N are called strongly right-coprime if [M; N]
has a left-inverse in H∞(D;L(H2 × H3,H1)), meaning if there exist X̃ ∈
H∞(D;L(H2,H1)) and Ỹ ∈ H∞(D;L(H3,H1)) such that

X̃(z)M(z)− Ỹ(z)N(z) = IH1 ∀z ∈ D. (7.1)

The functions X̃ and Ỹ are called right Bezout factors for the pair (M,N).
Let M̃ ∈ H∞(D;L(H1,H2)) and Ñ ∈ H∞(D;L(H3,H2)).
The functions M̃ and Ñ are called strongly left-coprime if [M̃, Ñ] has

a right-inverse in H∞(D;L(H2,H1 ×H3)), that is to say, if there exist X ∈
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62 CHAPTER 7. COPRIME FACTORIZATION

H∞(D;L(H2,H1)) and Y ∈ H∞(D;L(H2,H3)) such that

M̃(z)X(z)− Ñ(z)Y(z) = IH2 ∀z ∈ D. (7.2)

The functions X and Y are called left Bezout factors for the pair (M̃, Ñ).

Definition 7.4. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G).

G has a right factorization if there exist M ∈ H∞(D;L(U )) and N ∈
H∞(D;L(U ,Y )) such that M(z) is invertible for z in a neighbourhood of zero
and G(z) = N(z)M(z)−1 for z in a neighbourhood of zero. The factor [M; N]
provides a weakly right-coprime factorization if M and N are weakly
right-coprime and a strongly right-coprime factorization if M and N are
strongly right-coprime. The right factor [M; N] is called normalized when
multiplication with [M; N] is an isometry from H2(D,U ) into H2(D,U ×Y ).

G has a left factorization if there exist M̃ ∈ H∞(D;L(Y )) and Ñ ∈
H∞(D;L(U ,Y )) such that M̃(z) is invertible for z in a neighbourhood of
zero and G(z) = M̃(z)−1Ñ(z) for z in a neighbourhood of zero. [M̃, Ñ] is a
strongly left-coprime factor if M̃ and Ñ are strongly left-coprime. The
left factor [M̃, Ñ] is called normalized when multiplication with [M̃, Ñ] is a
co-isometry from H2(D,Y ×U ) into H2(D,Y ).

G has a doubly coprime factorization if it has a left factorization and a
right factorization and there exist X̃ ∈ H∞(D;L(U )), Ỹ ∈ H∞(D;L(Y ,U )),
X ∈ H∞(D;L(Y )) and Y ∈ H∞(D;L(Y ,U )) such that[

X̃ −Ỹ

−Ñ M̃

] [
M Y
N X

]
= I =

[
M Y
N X

] [
X̃ −Ỹ

−Ñ M̃

]
. (7.3)

The doubly coprime factorization is called normalized when both the right
factor [M; N] and the left factor [M̃, Ñ] are normalized.

Remark 7.5. In this chapter we will prove results for right factorizations.
However, all results translate to left factorizations by considering G†.

The next proposition is a first step towards relating state space closed-
loop systems (see Definition 4.1) and factorizations.

Proposition 7.6. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G). Let Σ be a realization of G and let [F,G] be an admissible feedback pair
for Σ. Denote the transfer function of the closed-loop system by [M; N]. Then
M(z) is invertible for z in a neighbourhood of zero and G(z) = N(z)M(z)−1

in a neighbourhood of zero.

Proof. This follows from Proposition 2.23.
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The following proposition provides a fundamental property of weakly
right-coprime functions.

Proposition 7.7. Assume that the functions M ∈ H∞(D;L(H1,H2)) and
N ∈ H∞(D;L(H1,H3)) are weakly right-coprime. If for a holomorphic R :
D(R)→ L(H4,H1) with 0 ∈ D(R) we have [MR; NR] ∈ H∞(D,L(H4,H2 ×
H3)), then R ∈ H∞(D,L(H4,H1)).

Proof. Let h ∈ H2(D,H4). Then since [MR; NR] ∈ H∞(D,L(H4,H2 ×H3))
we have [MRh; NRh] ∈ H2(D,H2×H3). Since [M; N] is weakly right-coprime
it follows that Rh ∈ H2(D,H1). So multiplication by R maps H2(D,H4) into
H2(D,H1). It is easily shown that a multiplication operator is closed from
H2 to H2. By the closed graph theorem it follows that multiplication with
R is a continuous operator from H2(D,H4) to H2(D,H1). By Lemma A.4 it
follows that R ∈ H∞(D,L(H4,H1)).

The following lemma gives additional conditions under which a weakly
right-coprime factor is strongly right coprime (see Corollary 7.9). This will
be useful in Chapter 8.

Lemma 7.8. Let G : D(G) ⊂ C→ L(U ) be holomorphic with 0 ∈ D(G). If
[M; N] is a weakly right-coprime factor of G, I − G(0) has a bounded inverse
and (I −G)−1 ∈ H∞(D,L(U )), then M(0)−N(0) has a bounded inverse and
(M− N)−1 ∈ H∞(D,L(U )).

Proof. We have M − N = (I − G)M, which shows that M(0) − N(0) has a
bounded inverse. We have M(M − N)−1 = (I − G)−1 and N(M − N)−1 =
G(I − G)−1 = (I − G)−1 − I. Proposition 7.7 now shows that (M − N)−1 ∈
H∞(D,L(U )).

Corollary 7.9. Under the assumptions of Lemma 7.8 we have that [M; N] is
strongly right-coprime.

Proof. We can choose the Bezout factors X̃ = Ỹ = (M− N)−1.

Weak right-coprimeness is connected to the linear quadratic optimal con-
trol problem as the following proposition shows. The set V̂ (x0) is defined as
the set of Z-transforms of sequences in V (x0), which was defined in (6.2).

Proposition 7.10. Let D be the transfer function of the discrete-time system
Σ and let [M; N] be a right factor. Then multiplication by [M; N] is an injection

from H2(D,U ) into V̂ (0). The factorization is weakly right-coprime if and

only if multiplication by [M; N] is a bijection from H2(D,U ) onto V̂ (0).
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Proof. That multiplication with [M; N] maps H2(D,U ) into H2(D,U × Y )
follows from the fact that [M; N] ∈ H∞(D,L(U ,U ×Y )). Let r ∈ l2(Z+,U ),

we show that [M; N]r̂ ∈ V̂ (0). Define û := Mr̂. We have to show that
Nr̂ = DMr̂. This follows since DMr̂ = NM−1Mr̂ = Nr̂. It follows that
multiplication by [M; N] maps H2(D,U ) into V̂ (0).

We show that multiplication with [M; N] is injective. Suppose that there
are two Z-transformable sequences ri : Z+ → U (i = 1, 2) with [M; N]r̂1 =
[M; N]r̂2. Then M(z)r̂1(z) = M(z)r̂2(z) in a neighbourhood of zero and since
M(z) is invertible for z in a neighbourhood of zero we have r̂1(z) = r̂2(z) in a
neighbourhood of zero. This shows that r1 = r2. Hence multiplication with
[M; N] is injective.

Multiplication with [M; N] is onto if and only if for every [u; y] ∈ V (0)
there exists an r ∈ l2(Z+,U ) such that [û; ŷ] = [M; N]r̂. Suppose that mul-
tiplication with [M; N] is onto, and let h : Z+ → U be a Z-transformable

sequence with [M; N]ĥ ∈ H2(D,U × Y ). Then [M; N]ĥ ∈ V̂ (0) and since

multiplication by [M; N] maps H2(D,U ) onto V̂ (0) there exists an r ∈
l2(Z+,U ) such that [M; N]ĥ = [M; N]r̂. Since multiplication by [M; N] is
injective as proven above it follows that h = r. Hence h ∈ l2(Z+,U )
and so [M; N] is weakly right-coprime. Suppose that [M; N] is weakly right-
coprime. Let [u; y] ∈ V (0). Define r : Z+ → U through its Z-transform:
r̂(z) := M(z)−1û(z) for z in a neighbourhood of zero. We then have [M; N]r̂ =
[û; ŷ]. So [M; N]r̂ ∈ H2(D,U × Y ). By weak right-coprimeness we have
r ∈ l2(Z+,U ). This shows that muliplication by [M; N] maps H2(D,U ) onto

V̂ (0).

The following result connects the existence of normalized weakly right-
coprime factorizations to the linear quadratic optimal control problem.

Proposition 7.11. Let Σ be an output stabilizable discrete-time system.
Then the transfer function of its optimal closed-loop system provides a nor-
malized weakly right-coprime factorization of the transfer function of Σ.

Proof. That the transfer function [M; N] of the optimal closed-loop system
satisfies D(z) = N(z)M(z)−1 in a neighbourhood of zero follows from Propo-
sition 7.6. Combining Propositions 6.34 and 6.35 we see that optimal closed-
loop system is energy-preserving with as storage operator the observability
gramian. By Proposition 5.2 the optimal closed-loop system is input-output
stable, so [M; N] ∈ H∞(D,L(U ,U ×Y )). Proposition 5.4, and the fact that
l2(Z+,U ) and H2(D,U ) are isometrically isomorphic under the Z-transform,
shows that the factorization is normalized. We show that it is weakly right-
coprime. Let [u; y] ∈ V (0). Let x be the corresponding state for initial state
zero and define rk := −(Smin)1/2Fminxk + (Smin)1/2uk. Then by Proposition
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6.30 we have r ∈ l2(Z+,U ). The sequence r is the output for input u of the
system Σ− defined by its system operator [A,B;−(Smin)1/2Fmin, (Smin)1/2].
Using Proposition 2.22 we see that the inverse of the transfer function of
Σ− has a realization [A + BFmin, B(Smin)−1/2;F, (Smin)−1/2]. But this is a
realization of M and so we conclude that Σ− has M−1 as its transfer function.
So r̂(z) = M(z)−1û(z). It follows that [û(z); ŷ(z)] = [M(z); N(z)]r̂(z). Hence
each element of V (0) is in the range of the operator of multiplication by
[M; N]. By Proposition 7.10 the pair (M,N) is weakly right-coprime.

The existence of a right factorization and of an output stabilizable real-
ization are equivalent as the following proposition shows.

Proposition 7.12. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Then the following are equivalent:

1. G has a right factorization.

2. G has an output stabilizable realization.

Proof. If G has an output stabilizable realization, then by Proposition 7.11 it
has a right factorization. Assume that G has a right factor [M; N]. This right
factor has a realization Σ̌ that is output stable (for example the backward
shift realization from Remark 2.13 which is output stable by Example 3.3).
Since M(0) has a bounded inverse, we can use Proposition 2.23 to obtain a
realization Σ of G. It follows from Corollary 4.15 that Σ is output stabilizable.

The following proposition shows that existence of a right factorization
implies the existence of a normalized weakly right-coprime factorization.

Proposition 7.13. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). If G has a right factorization, then it has a normalized weakly
right-coprime factorization.

Proof. From Proposition 7.12 we see that G has an output stabilizable real-
ization Σ. Proposition 7.10 shows that the optimal closed-loop system of Σ
provides a normalized weakly right-coprime factorization of G.

The following proposition gives a parametrization of all right factoriza-
tions.

Proposition 7.14. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈
D(G) and assume that G has a right factorization. Let [M0,N0] be a weakly
right-coprime factor. Then all right factors are parametrized as follows:

M = M0V, N = N0V,
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where V runs through the set of H∞(D,L(U )) functions that have a bounded
inverse in zero. The weakly right-coprime factors are exactly those for which
V−1 is in H∞(D,L(U )) as well.

Proof. The above M and N obviously provide a factorization. Assume that
[M1; N1] is a right factor. Define V := M−1

0 M1. Then M1 = M0V and N1 =
GM1 = GM0V = N0V. By Proposition 7.7 we have that V ∈ H∞(D,L(U )).

If V has an inverse in H∞(D,L(U )), then from [M; N]h = [M0; N0]Vh ∈
H2(D,U × Y ) we obtain h = V−1Vh ∈ H2(D,U ). This shows that in
this case [M; N] is weakly right-coprime. If [M; N] is weakly right-coprime,
then it follows from symmetry considerations that V must have an inverse in
H∞(D,L(U )).

Proposition 7.15. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G) and assume that G has a right factorization. Let [M0,N0] be a
normalized weakly right-coprime factor. Then all normalized weakly right-
coprime factors are parametrized as follows:

M = M0V, N = N0V,

where V ∈ L(U ) is unitary.

Proof. That the above M and N provide a normalized weakly right-coprime
factorization is obvious. Assume that the pair [M; N] is a normalized weakly
right-coprime factor. From Proposition 7.14 we obtain that a normalized
weakly right-coprime factor must be of the indicated form, but we only know
that V and its inverse are in H∞(D,L(U )). So we still need to show that this
function is constant and that this constant is a unitary operator. Since the
factorizations are normalized we have M∗M + N∗N = I and M∗

0M0 + N∗
0N0 =

I almost everywhere on the unit circle by Lemmas A.18 and A.20. Since
M = M0V (on the open unit disc, but this extends to almost everywhere on
the unit circle) it follows that V∗V = I almost everywhere on the unit circle.
Since V has an inverse in H∞(D,L(U )) its boundary function has an inverse
in L∞(T,L(U )) and since V∗V = I, this inverse must equal V∗. Hence V∗ is
the boundary function of a function in H∞(D,L(U )), namely of V−1. Define
V− : D+ → L(U ) by V−(z) = V(1/z̄)∗. Then V− ∈ H∞(D+,L(U )) since it
is obviously holomorphic and

sup
z∈D+

‖V−(z)‖ = sup
z∈D+

‖V(1/z̄)∗‖ = sup
z∈D+

‖V(1/z̄)‖ = sup
s∈D
‖V(s)‖ = ‖V‖∞.

The boundary function of V− equals V∗. Hence V∗ is the boundary function of
a function in H∞(D+,L(U )), namely of V−. So V∗ is the boundary function
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of both a H∞(D,L(U )) function and a H∞(D+,L(U )) function. It follows
from Corollary A.14 that V∗ is constant. Hence V is constant. It follows from
the earlier established V∗V = I almost everywhere on the unit circle and the
fact that V has an inverse that V is unitary.

Proposition 7.16. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). If G has a strongly right-coprime factorization, then all weakly
right-coprime factorizations are strongly right-coprime.

Proof. Assume that [M0; N0] is a strongly right-coprime factor. Let X̃ and
Ỹ be right Bezout factors. According to Proposition 7.14 all weakly right-
coprime factors are of the form [M0; N0]V with both V and its inverse in
H∞(D,L(U )). It is easily seen that V−1X̃ and V−1Ỹ are right Bezout factors
for [M0; N0]V. It follows that M0V and N0V are strongly right-coprime.

In the following proposition we need the Hankel operator which is
defined in Definition A.24. We further note that a H∞ function is called
inner if the corresponding multiplication operator is an isometry (Definition
A.19, see also Lemma A.20).

Proposition 7.17. Let G ∈ H∞(D,L(H1,H2)). Assume that G is inner
and that it has a left inverse in H∞(D,L(H2,H1)). Then the norm of the
associated Hankel operator is strictly less than one.

Proof. We have that the Hankel operator has norm less than or equal to one,
since it is the composition of an isometric operator with two projections, each
of which have norm smaller than or equal to one.

We show that the norm of the Hankel operator cannot be one. Suppose
it is. Then there exists a sequence hn ∈ L2(T,H1) with norm one such
that ‖P+LGP−hn‖ → 1. Here P− is the projection from L2(T,H1) onto
the subspace of functions whose nonnegative Fourier coefficients are zero,
P+ is the projection from L2(T,H2) onto the subspace of functions whose
negative Fourier coefficients are zero and LG is the operator multiplication
with G (see Definition A.15). We can assume without loss of generality that
the hn have zero nonnegative Fourier coefficients. Define fn := LGP−hn,
fn

+ := P+f
n, fn

− := P−f
n. Then since G is inner we have ‖fn‖ = 1 and we

have ‖fn‖2 = ‖fn
+‖2 + ‖fn

−‖2. Since by assumption ‖fn
+‖ → 1 it follows that

‖fn
−‖ → 0. By assumption there exists a H ∈ H∞(D,L(H2,H1)) such that

HG = I. We then have hn = LHLGh
n = LHf

n = LHf
n
+ + LHf

n
−. Since LHf

n
+

has zero negative Fourier coefficients and hn has zero nonnegative Fourier
coefficients we have 〈hn, LHf

n
+〉 = 0. So

0 = 〈hn, LHf
n
+〉 = 〈hn, hn〉 − 〈hn, LHf

n
−〉 → 1.
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This contradiction shows that the Hankel operator must have norm strictly
smaller than one.

The following proposition complements the previous one.

Proposition 7.18. Let G ∈ H∞(D,L(H1,H2)). Assume that G is inner
and that the norm of the associated Hankel operator is strictly less than one.
Then G has a left inverse in H∞(D,L(H2,H1)).

Proof. We apply Proposition A.27 (the Nehari theorem) to G∗. Since ‖HG‖ <
1, this gives the existence of a K ∈ H∞(D,L(H2,H1)) such that

‖G∗ + K‖L∞(T,L(H2,H1)) < 1.

Since G is inner we have G∗G = I almost everywhere on the unit circle from
Proposition A.18. From this we obtain I + KG = G∗G + KG = (G∗ + K)G
almost everywhere on the unit circle, which gives

‖I + KG‖L∞(T,L(H1)) ≤ ‖G∗ + K‖L∞(T,L(H2,H1)) ‖G‖L∞(T,L(H1,H2)) < 1.

Since KG ∈ H∞(D,L(H1)), which is a Banach algebra, we obtain that KG
has an inverse R in H∞(D,L(H1)) from the geometric series theorem. In
particular RKG = I, which implies that RK is a left inverse of G.

Combining Propositions 7.17 and 7.18 we obtain the following.

Corollary 7.19. Assume G ∈ H∞(D,L(H1,H2)) is inner. Then G has
a left inverse in H∞(D,L(H2,H1)) if and only if the norm of the Hankel
operator of G is strictly less than one.

The following result connects the existence of normalized strongly right-
coprime factorizations to the linear quadratic optimal control problem.

Proposition 7.20. Let Σ be an input and output stabilizable discrete-time
system. Then the transfer function of the optimal closed-loop system of Σ is
a normalized strongly right-coprime factor of the transfer function of Σ.

Proof. From Proposition 7.11 we obtain that the transfer function of the
optimal closed-loop system of Σ is a normalized right factor. Corollary 6.41
shows that the Hankel map of this system has norm strictly smaller than
one. Since the Hankel map and the Hankel operator have the same norm by
Lemma A.26, Proposition 7.18 then gives the result.

The following proposition shows that not only the optimal closed-loop
system provides a strongly right-coprime factorization, but that every Ric-
cati closed-loop system does. Note that we may not obtain a normalized
factorization in this case.
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Proposition 7.21. Let Σ be an input and output stabilizable discrete-time
system. Then the transfer function of any Riccati closed-loop system of Σ is
a strongly right-coprime factor of the transfer function of Σ.

Proof. That we obtain a factorization follows from Propositions 6.34 and
7.6. Application of Propositions 6.47, 6.49 and 6.50 shows that the transfer
function of an arbitrary Riccati closed-loop system of Σ can be obtained by
multiplying the transfer function of the optimal closed-loop system from the
right with a function that is in H∞ and whose inverse is H∞. Using that by
Proposition 7.20 the transfer function of the optimal closed-loop system is
strongly right-coprime it then easily follows that the transfer function of any
Riccati closed-loop system of Σ is a strongly right-coprime.

The following proposition shows that existence of a strongly right-coprime
factorization and the existence of an input and output stabilizable realization
are equivalent.

Proposition 7.22. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Then the following are equivalent:

1. G has an input and output stabilizable realization.

2. G has a normalized strongly right-coprime factorization.

3. G has a strongly right-coprime factorization.

Proof. If G has an input and output stabilizable realization, then by Propo-
sition 7.20 it has a normalized strongly right-coprime factorization. Assume
that G has a strongly right-coprime factorization. It follows from Proposi-
tions 7.13 and 7.16 that G has a normalized strongly right-coprime factor
[M; N]. By Proposition 7.17 the norm of the Hankel operator associated to
[M; N] is strictly smaller than one. The function [M; N] has an approximately
controllable input and output stable realization Σ̌ (for example the restricted
backward shift realization from Remark 2.13 which is output stable by Ex-
ample 3.3 and input stable by Example 3.25). From Proposition 5.7 we
obtain that Σ̌ is energy preserving with the observability gramian as storage
operator (note that the condition on the equality of the norm of the input
and output in Proposition 5.7 is satisfied since the factorization is normal-
ized). We use Proposition 2.23 to obtain the corresponding realization Σ of
G. It follows from Corollary 4.15 that Σ is output stabilizable. It follows
from Lemma 3.18 combined with Lemma A.26 that the spectral radius of
LBLC , the product of the controllability and the observability gramian of Σ̌,
is strictly smaller than one. This implies that the operator I − LBLC has a
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bounded inverse. Proposition 6.46 now shows that P := (I − LBLC)−1LB

provides a solution of the filter algebraic Riccati equation of Σ. The dual
version of Proposition 6.36 now shows that Σ is input stabilizable.

The following lemma shows that we can always pick right Bezout factors
with a nice property.

Lemma 7.23. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈ D(G)
and assume that G has a strongly right-coprime factorization. For every
strongly right-coprime factor [M; N] there exists a pair of right Bezout factors
with Ỹ(0) = 0 and X̃(0) = M(0)−1.

Proof. Let [X̃1, Ỹ1] be an arbitrary pair of Bezout factors. Define Ỹ(z) :=
(I −M(0)−1M(z))Ỹ1(z) and X̃(z) = M(0)−1 + (I −M(0)−1M(z))X̃1(z). Then
obviously Ỹ(0) = 0 and X̃(0) = M(0)−1 and it is not hard to see that X̃, Ỹ is
a right Bezout pair.

The following proposition shows that the existence of a doubly coprime
factorization follows from the existence of a strongly right-coprime factoriza-
tion.

Proposition 7.24. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). The following are equivalent:

1. G has a normalized strongly right-coprime factorization.

2. G has a normalized strongly left-coprime factorization.

3. G has a normalized doubly coprime factorization.

Moreover, any given normalized strongly right-coprime factorization and nor-
malized strongly left-coprime factorization can be embedded in a normalized
doubly coprime factorization.

Proof. That (1) and (2) are equivalent follows from Proposition 7.22 noting
that the second condition in that proposition holds for G if and only if it holds
for G†. It is clear that (3) implies (1) and (2). We show that (1) implies (3).

Now assume that G has the normalized strongly right-coprime factor
[M; N] with corresponding right Bezout factors [X̃, Ỹ] and the normalized
strongly left-coprime factor [M̃, Ñ] with the corresponding left Bezout fac-
tors [X1; Y1]. By Propostition 7.23 we can assume that Ỹ(0) = 0 and
X̃(0) = M(0)−1. Define ∆ := X̃Y1−ỸX1 and Y := −M∆+Y1, X := −N∆+X1.
It is now easily verified that with this X and Y we have[

X̃ −Ỹ

−Ñ M̃

] [
M Y
N X

]
= I. (7.4)
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Next we show that[
M Y
N X

] [
X̃ −Ỹ

−Ñ M̃

]
= I.

Since Ỹ(0) = 0 and X̃(0) = M(0)−1 we have that[
X̃(0) −Ỹ(0)

−Ñ(0) M̃(0)

]
has the bounded inverse[

M̃(0) 0

M̃(0)−1Ñ(0)M̃(0) M̃(0)−1

]
.

The function [X̃,−Ỹ;−Ñ, M̃] is holomorphic at zero which implies that it has
a realization Σ. Since the function value at zero has a bounded inverse op-
erator, it follows from Proposition 2.22 that [X̃,−Ỹ;−Ñ, M̃] is invertible in
a neighbourhood of zero. It follows from (7.4) that [M,Y; N,X] equals this
inverse. By the identity theorem for holomorphic functions we have that
(7.3) holds on D. Hence G has a doubly coprime factorization. This dou-
bly coprime factorization is obviously normalized. By construction both the
given normalized strongly right-coprime factor [M; N] and the given normal-
ized strongly left-coprime factor [M̃, Ñ] are embedded in the doubly coprime
factor.

The following result gives a parametrization of all right Bezout factors.

Proposition 7.25. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a strongly right-coprime factor [M; N]. Then it
has a strongly left-coprime factor [M̃, Ñ]. Let X̃0, Ỹ0 be right Bezout factors
for [M; N] and let V ∈ H∞(D,L(Y ,U )). Then X̃ := X̃0 + VÑ, Ỹ := Ỹ0 + VM̃
are right Bezout factors for [M; N]. Moreover, all right Bezout factors for
[M; N] are of this form.

Proof. That G has a strongly left-coprime factorization follows from (the
proof of) Proposition 7.24. That the indicated functions are right Bezout
factors is easily checked. We show that all right Bezout factors are of this
form. Let X̃0, Ỹ0 be arbitrarty right Bezout factors for [M; N]. Define V in a
neighbourhood of zero by V = (Ỹ− Ỹ0)M̃

−1. It follows that Ỹ = Ỹ0 +VM̃ in a
neighbourhood of zero. Using the Bezout equation (7.1) we have (X̃−X̃0)M =
(Ỹ − Ỹ0)N. Using the above equation for Ỹ we see that this equals VM̃N in
a neighbourhood of zero. Since M̃N = ÑM we obtain (X̃ − X̃0)M = VÑM in
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a neighbourhood of zero. It follows that X̃ = X̃0 + VÑ in a neighbourhood of
zero. The only thing left to show is that V ∈ H∞(D,L(Y ,U )). This follows
since

V = V(M̃X− ÑY) = (Ỹ − Ỹ0)X− (X̃0 − X̃)Y,

where X, Y are left Bezout factors for [M̃, Ñ].

The set of all strongly right-coprime pairs is open as the following propo-
sition shows.

Proposition 7.26. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a strongly right-coprime factor [M; N]. Then
there exists a ε > 0 such that for all ∆ = [∆M; ∆N] ∈ H∞(D,L(U ,U ×Y ))
with ‖∆‖∞ < ε the functions M+∆M and N+∆N are strongly right-coprime.

Proof. From Proposition 7.24 we obtain the existence of X ∈ H∞(D,L(Y ))
and Y ∈ H∞(D,L(Y ,U )) such that [M,Y; N,X] is invertible inH∞(D,L(U ×
Y )). The result follows using that the invertible elements in H∞(D,L(U ×
Y )) form an open set.

In Proposition 7.32 we give an explicit ε under which the result of Propo-
sition 7.26 holds under the assumption that U is finite-dimensional. The
following results (Lemma 7.27 up to Proposition 7.31) are used in the proof
of Proposition 7.32.

Lemma 7.27. Let H1,H2 be Hilbert spaces, T ∈ L(H1,H2) and S ∈
L(H2,H1). Assume that TS = IH2 and ST = IH1. Then

inf
h∈H2:‖h‖=1

‖Sh‖ =
1

‖T‖
.

Proof. We have for each h ∈ H2 that ‖h‖ = ‖TSh‖ ≤ ‖T‖ ‖Sh‖. This
implies

inf
h∈H2:‖h‖=1

‖Sh‖ ≥ 1

‖T‖
.

There exist fn ∈ H1 with norm one such that ‖Tfn‖ → ‖T‖. Define hn :=
Tfn/‖Tfn‖. Then ‖hn‖ = 1 and Shn = fn/‖Tfn‖. So ‖Shn‖ = 1/‖Tfn‖.
For n→∞ we have ‖Shn‖ → 1/‖T‖. This implies that 1/‖T‖ is not only a
lower bound, but the largest lower bound, i.e. it is the desired infimum.
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Lemma 7.28. Let H1 and H2 be Hilbert spaces and T ∈ L(H1,H2). Then

inf
‖x‖=1

‖Tx‖ = inf
‖y‖=1

‖T ∗y‖,

provided that both are positive.

Proof. We have

inf
‖x‖=1

‖Tx‖2 = inf
‖x‖=1

〈T ∗Tx, x〉.

It is well-known (see for example Kreyzsig [47, p467]) that the number
on the right-hand side is the smallest spectral value of T ∗T . Similarly,
inf‖y‖=1 ‖T ∗y‖2 is the smallest spectral value of TT ∗. It follows from Lemma
3.16 that the spectra of T ∗T and TT ∗ are equal, with the possible exception
of zero. The result follows.

Lemma 7.29. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈ D(G).
Assume that G that has a normalized doubly coprime factorization. Denote
the normalized strongly left-coprime factor by [M̃, Ñ], the normalized strongly
right-coprime factor by [M; N] and the left Bezout factor by [X; Y]. Denote
the Hankel operator of [M̃, Ñ] by H[M̃,Ñ]. Then

inf
V∈H∞(D,L(Y ,U ))

∥∥∥∥[
Y
X

]
−

[
M
N

]
V

∥∥∥∥ =
1√

1− ‖H[M̃,Ñ]‖2
. (7.5)

Proof. Let T[M;N] : H2(D,U )→ H2(D,U × Y ) be the operator of multipli-
cation by [M; N]. Since T[M;N] is an isometry its range is closed and we have
the orthogonal decomposition

H2(D,U × Y ) = Im(T[M;N])⊕ Im(T[M;N])
⊥. (7.6)

Denote by PIm(T[M;N])
⊥ the orthogonal projection onto the second component in

this decomposition. Define T[Y;X] similarly to T[M;N]. Define T : H2(D,Y )→
H2(D,U × Y ) by

T := PIm(T[M;N])
⊥T[Y;X]. (7.7)

We obtain from Corollary A.23 that the infimum on the left-hand side of
(7.5) equals ‖T‖. Define S : Im(T[M;N])

⊥ ⊂ H2(D,U × Y ) → H2(D,Y ) as

the restriction to Im(T[M;N])
⊥ of multiplication by [−Ñ, M̃], i.e.

S = T[−Ñ,M̃]|Im(T[M;N])
⊥ .
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We show that S is the inverse of T . First note that for any y ∈ H2(Y ) there
exists a u ∈ H2(U ) such that

Ty =

[
Y
X

]
y +

[
M
N

]
u.

It follows using (7.3) that STy = y for all y ∈ H2(Y ). From (7.3) we also
obtain[

Y
X

]
[−Ñ, M̃] +

[
M
N

]
[X̃,−Ỹ] = I.

Restricting to Im(T[M;N])
⊥ and projecting onto Im(T[M;N])

⊥ shows that TS
equals the identity operator on Im(T[M;N])

⊥.
Using Lemma 7.27 we obtain

inf
w∈Im(T[M;N])

⊥:‖w‖=1
‖Sw‖H2(D,Y ) =

1

‖T‖
.

Let T[−Ñ,M̃] : H2(D,U × Y ) → H2(D,Y ) be the Toeplitz operator of

[−Ñ, M̃]. From (7.3) we obtain that T[−Ñ,M̃]T[M;N] = 0. So T[−Ñ,M̃] is zero on
Im(T[M;N]). It follows that T[−Ñ,M̃] splits with respect to the decomposition
(7.6) as

T[−Ñ,M̃] = [0, S].

Since T ∗
[−Ñ,M̃]

= T[−Ñ∗;M̃∗] we have, with respect to the decomposition (7.6),

T[−Ñ∗;M̃∗] =

[
0
S∗

]
.

It follows that

inf
y∈H2(D,Y ):‖y‖=1

‖T[−Ñ∗;M̃∗]y‖H2(D,U ×Y ) = inf
y∈H2(D,Y ):‖y‖=1

‖S∗y‖H2(D,U ×Y ). (7.8)

Let y ∈ H2(Y ). Since [−Ñ∗; M̃∗] is inner we have

‖y‖2H2(D,U ) =

∥∥∥∥[
−Ñ∗

M̃∗

]
y

∥∥∥∥2

L2(T,U ×Y )

=

∥∥∥∥PH2(U ×Y )

[
−Ñ∗

M̃∗

]
y

∥∥∥∥2

L2(T,U ×Y )

+

∥∥∥∥PH2(U ×Y )⊥

[
−Ñ∗

M̃∗

]
y

∥∥∥∥2

L2(T,U ×Y )

= ‖T[−Ñ∗;M̃∗]y‖
2 + ‖H∗

[−Ñ,M̃]
y‖2,
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where

H[−Ñ,M̃] := PH2(D,Y )L[−Ñ,M̃]PH2(D,U ×Y )⊥ : L2(T,U × Y )→ L2(T,Y )

is the Hankel operator of [−Ñ, M̃]. It follows that

inf
y∈H2(D,Y ):‖y‖=1

‖T[−Ñ∗;M̃∗]y‖
2
H2(D,U ×Y ) = 1− ‖H[−Ñ,M̃]‖

2. (7.9)

Combining (7.8) and (7.9) we obtain

inf
y∈H2(D,Y ):‖y‖=1

‖S∗y‖2H2(D,U ×Y ) = 1− ‖H[−Ñ,M̃]‖
2. (7.10)

Using the dual version of Proposition 7.17 we conclude from the fact that Ñ
and M̃ are strongly left-coprime that ‖H[−Ñ,M̃]‖ < 1, so that the number in
(7.10) is positive. We use Lemma 7.28 to conclude that

inf
w∈Im(T[M;N])

⊥:‖w‖=1
‖Sw‖H2(D,Y ) = inf

y∈H2(D,Y ):‖y‖=1
‖S∗y‖H2(D,U ×Y ) (7.11)

Note that we have already established that both sides of (7.11) are positive
so that Lemma 7.28 is indeed applicable. We earlier established that the left-
hand side of (7.11) equals 1/‖T‖ and that this equals one over the infimum
in the statement of the lemma. The right-hand side of (7.11) we have shown

to be equal to
√

1− ‖H[−Ñ,M̃]‖2. Noting that ‖H[−Ñ,M̃]‖ = ‖H[M̃,Ñ]‖ gives the

desired result.

Applying Lemma 7.29 to G† we obtain the following.

Corollary 7.30. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G). Assume that G has a normalized doubly coprime factorization. Denote
the normalized strongly left-coprime factor by [M̃, Ñ], the normalized strongly
right-coprime factor by [M; N] and the right Bezout factor by [X̃; Ỹ]. Denote
the Hankel operator of [M,N] by H[M,N]. Then

inf
V∈H∞(D,L(Y ,U ))

∥∥∥∥[
Ỹ

X̃

]
− V

[
M̃

Ñ

]∥∥∥∥
H∞(D,L(Y ×U ,U ))

=
1√

1− ‖H[M,N]‖2
.

Proof. This follows from applying Lemma 7.29 to G†.

Proposition 7.31. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a normalized doubly coprime factorization.
Denote the Hankel operator of a normalized strongly right-coprime factor
[M; N] by H[M;N]. Then for all z ∈ D and u ∈ U∥∥∥∥[

M(z)
N(z)

]
u

∥∥∥∥2

≥ (1− ‖H[M;N]‖2) ‖u‖2.
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Proof. Denote η :=
√

1− ‖H[M;N]‖2. We have η ∈ (0, 1] by Proposition 7.17.
Let δ ∈ (0, η2). Define

ε :=
1√
η2 − δ

− 1

η
.

It easily follows that ε > 0.
Denote a Bezout factor of [M; N] by [X̃1, Ỹ1]. We have for z ∈ D and

u ∈ U

‖u‖ = ‖[X̃1(z), Ỹ1(z)][M(z); N(z)]u‖ ≤ ‖[X̃1, Ỹ1]‖∞ ‖[M(z); N(z)]u‖.

From this we obtain∥∥∥∥[
M(z)
N(z)

]
u

∥∥∥∥2

≥ 1

‖[X̃1, Ỹ1]‖2∞
‖u‖2. (7.12)

It is easily computed that if [X̃, Ỹ] is a Bezout factor, then so is [X̃−VÑ, Ỹ−
VM̃] for any V ∈ H∞. Using this we obtain from Corollary 7.30 that for each
ε̃ > 0 there exists a right Bezout factor [X̃1, Ỹ1] with

‖X̃1, Ỹ1]‖∞ ≤
1

η
+ ε̃. (7.13)

In particular we can choose ε̃ = ε, where ε is as above. With that choice the
right-hand side of (7.13) equals 1/

√
η2 − δ. It follows that

1

‖[X̃1, Ỹ1]‖2∞
≥ η2 − δ. (7.14)

Combining (7.12) and (7.14) we obtain∥∥∥∥[
M(z)
N(z)

]
u

∥∥∥∥2

≥
(
1− ‖H[M;N]‖2 − δ

)
‖u‖2.

Since this holds for every δ ∈ (0, η2) we obtain the desired result.

The following proposition provides an explicit ball around a strongly
right-coprime factor that only contains strongly right-coprime pairs.

Proposition 7.32. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈
D(G). Assume that G has a strongly right-coprime factor [M; N] and that U is
finite-dimensional. Denote the Hankel operator of [M; N] by H[M;N]. If ∆ =

[∆M; ∆N] ∈ H∞(D,L(U ,U × Y )) is such that ‖∆‖∞ <
√

1− ‖H[M;N]‖2,
then the functions M + ∆M and N + ∆N are strongly right-coprime.
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Proof. Define ε :=
√

1− ‖H[M;N]‖2 − ‖∆‖∞ > 0. Using that∥∥∥∥[
M(z)
N(z)

]
u

∥∥∥∥ ≤
∥∥∥∥[

M(z) + ∆M(z)
N(z) + ∆N(z)

]
u

∥∥∥∥ + ‖∆(z)u‖

≤
∥∥∥∥[

M(z) + ∆M(z)
N(z) + ∆N(z)

]
u

∥∥∥∥ + ‖∆‖∞‖u‖,

we have∥∥∥∥[
M(z) + ∆M(z)
N(z) + ∆N(z)

]
u

∥∥∥∥ ≥ ∥∥∥∥[
M(z)
N(z)

]
u

∥∥∥∥− ‖∆‖∞ ‖u‖ ≥ ε ‖u‖,

where we have also used Proposition 7.31. The Corona Theorem (Proposition
A.29) then shows that M + ∆M and N + ∆N are strongly right-coprime.

The following proposition will be useful in the next two chapters.

Proposition 7.33. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a normalized doubly coprime factorization.
Define W : T→ L(U × Y ) (almost everywhere) by

W(z) =

[
M(z) −Ñ(z)∗

N(z) M̃(z)∗

]
.

Then W(z) is unitary for almost all z ∈ T.

Proof. We first show that W(z) is an isometry, i.e. that W(z)∗W(z) = I for
almost all z ∈ T. We have

W(z)∗W(z) =

[
M(z)∗ N(z)∗

−Ñ(z) M̃(z)

] [
M(z) −Ñ(z)∗

N(z) M̃(z)∗

]
=

[
M(z)∗M(z) + N(z)∗N(z) Ñ(z)∗M̃(z)∗ −M(z)∗Ñ(z)∗

M̃(z)N(z)− Ñ(z)M(z) M̃(z)M̃(z)∗ + Ñ(z)Ñ(z)∗

]
.

The diagonal entries equal the identity since both the right and the left
factorization is normalized. The off-diagonal entries are zero by (7.3). We
show that W(z) is surjective. Since a surjective isometry is unitary this
proves the proposition. We use that W(z) is surjective if and only if its range
is closed and W(z)∗ is injective. We first show that the range of any isometry
T is closed. Let yn ∈ Im(T ) and assume that yn converges to y. Let xn be
such that yn = Txn and define x = T ∗y. Then

y ← Txn = TT ∗Txn → TT ∗y = Tx.
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So y ∈ Im(T ) from which it follows that the range of T is closed. We now
show that W(z)∗ is injective. We use (7.3) and the normalization property
to obtain

[M∗,N∗] = [M∗,N∗]

[
M Y
N X

] [
X̃ −Ỹ

−Ñ M̃

]
= [X̃−M∗YÑ− N∗XÑ, −Ỹ + M∗YM̃ + N∗XM̃],

on the unit circle. Assume [u; y] ∈ ker W(z)∗. Then M∗u + N∗y = 0 and
−Ñu + M̃y = 0. We obtain from the above 0 = X̃u − Ỹy. Using (7.3) we
obtain from −Ñu+ M̃y = 0 and X̃u− Ỹy = 0 that [u; y] = 0. It follows that
W(z)∗ is injective. This completes the proof.

Notes

An excellent account of the use of coprime factorizations in systems and
control theory is Vidyasagar [94]. The relation with state space systems was
made by Khargonekar and Sontag [43] and Nett, Jacobson and Balas [58]
in the case of rational functions. The relation between state space systems
and normalized coprime factorizations of rational functions was established
in Meyer and Franklin [55].

The concept of weak coprimeness as used here is due to Mikkola [56].
The results presented here on weakly coprime factorizations are also due to
Mikkola [56]. Our proofs differ only slightly from his. Proposition 7.17 is due
to Glover and McFarlane [36] in the rational case. Earlier generalizations to
the general, not necessarily rational, case can be found in Curtain and Zwart
[18, Lemma 9.4.7] and Oostveen [64, Lemma 7.2.4].

Propositions 7.18 to 7.22 were first given by Curtain and Opmeer [16] for
continuous-time systems. This sequence of propositions constitutes our main
original contribution on coprime factorizations. The sequence of propositions
establishes a long sought after necessary and sufficient state space condition
for existence of strongly coprime factorizations over H∞. Partial result in this
direction were obtained in, among others, Curtain and Zwart [19], Curtain,
Weiss and Weiss [10], Curtain and Oostveen [12] and Staffans [90]. We note
that in [16] also state space formulas for the Bezout factors are given for
the continuous-time case. These are based on state space formulas for the
continuous-time suboptimal Nehari problem obtained in Curtain and Opmeer
[15]. Similar state space formulas can be obtained in discrete-time using the
same approach.

Lemma 7.29 is due to Glover and McFarlane [36] for rational functions.
The nonrational case was proven by Georgiou and Smith [34] for U and Y
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finite-dimensional. Our proof, also valid for U and Y infinite-dimensional,
does not significantly differ from the one given by Georgiou and Smith.

Proposition 7.33 is due to Glover and McFarlane [36] for the rational case
and to Curtain [11] for the general case considered here.

For a different viewpoint on coprime factorizations for not necessarily
rational functions we refer to Quadrat [78], [79], [80], [81], [82], [83].
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