Automated Deep Learning Models for the Analysis of Biological Microscopy Images

Haja, Asmaa

DOI:
10.33612/diss.886191331

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2024

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-07-2024

This thesis addresses problems that are encountered when analyzing microscopic images with current methods from artificial intelligence, in particular detecting, segmenting and classifying objects in microscopic images. Regardless of the number of microscopic images created in big or small labs, analyzing objects within images is still problematic. Existing successes of deep learning will not provide usable solutions, yet. This is because microscopic objects in biology are very different from objects and patterns found in other image domains, such as natural images and photographs. Microscopic objects are tiny, found in big amounts and overlap with each other. With the aim to utilize deep learning techniques to speed up the analysis stage, it would be necessary to label or annotate data extensively. This entails asking biologists or experts to first provide a label or class to each image, or even worst, to draw a boundary for each object in each image, using a mouse. This is unacceptable in view of the fact that each image might contain hundreds of small objects. The hurdle might increase when the image contains multiple overlapping tiny objects. Here, the boundary of each (partly hidden) object needs to be correctly estimated. Moreover, one of the major requests from the microscopic field researchers is the have an open-source system that uses deep learning techniques, in which researchers aim to benefit from accelerating their research using deep learning without the need to be fully knowledgeable in the field.

To address these challenges, this thesis performs extensive studies on adopting various techniques from traditional and non-traditional deep learning to the microscopic dataset. It exploits the self-supervised learning concept and employs it in an organoid dataset. This form of training uses artificial (pretext) tasks in training. It was studied how the type and complexity of pretext tasks will affect the performance of the main task. Furthermore, the unavoidable problem of overlapping objects in the organoid image was addressed. Finally, an end-to-end system was developed that non-deep learning experts can use to analyze multiple microscopic datasets. This dissertation can be summarized into eight chapters, as follows:

Chapter 1 provides an insight into the importance of studying microscopic images, the challenges encountered by biologists, their requirements, and the limitation of artificial intelligence methods. Furthermore, the research questions to tackle these challenges are defined.
Chapter 2 presents a general review of the related works, demonstrates microscopic datasets and explains the hierarchical object levels, defines the computing tasks in artificial intelligence, as well as it introduces the different deep learning models and methods that will be used in the following chapters.

Chapter 3 intends to deal with the lack-of-annotations issue present in microscopy images, where annotating the present tiny objects is considered to be a tedious task. It compares the outcome to segment organoid objects of the traditional supervised learning technique versus the self-supervised learning (SSL) technique. It was shown that SSL surprisingly outperforms the traditional supervised learning technique with a smaller labelled dataset. When trained on images from the labelled dataset, the SSL framework was able to achieve an F1-score of 0.85, while the supervised framework scored at most 0.78. Furthermore, various loss functions for the pretext task as well as the main tasks were evaluated and compared. Moreover, different augmentation techniques for the pretext tasks are compared. The results show that de-blurring the whole image paired with SSIM-L1 and IoU losses achieved the best results across all defined ranges of the training dataset on the pretext task dataset. It appeared that the proper choice of a loss function for the pretext task and one for the main task is essential to obtain optimal performance. Lastly, when comparing the use of frozen versus non-frozen encoders, there appears to be little difference in scores which is in agreement with other findings in literature. All these results open the door to further investigate the core role of the pretext task to contribute to the main task.

Chapter 4 delves into the contribution of the pretext tasks on the main task. For this, various new pretext tasks (via different augmentation techniques) were developed, and their performance on the SSL main task was investigated. Results indicate that on the basis of the mean performances, the choice for a simple pretext task has the advantage, especially when it is applied to parts of the image as opposed to a global perturbation. It was shown that most of the models (288 out of 324) obtained an F1-score higher than 0.83, after being trained on the main task (segmentation of organoid images). An interesting finding is that models trained on the pretext task and a smaller amount of labelled images are able to foresee and segment image elements such as organoids that appeared missing when using traditional supervised training.

Chapter 5 investigates an unavoidable problem that is faced in the organoid dataset, which is the presence of overlapping objects. Since the precise computation of the organoids’ size is essential, it is important to investigate this topic further. For this purpose, two U-Net models were developed. Additionally, the class imbalance problem (more background than object pixels) is addressed. Also from this part of the research, it became clear that generally used loss functions
are not optimal: A combination of Focal loss and Focal Tversky loss was used in order to down-weight the most frequent class. One clear outcome demonstrates that the simple U-Net achieves the highest score with complex losses, while the double U-Net performs best with simple losses. The novelty of the current work is by exploring and investigating ways to segment overlapping objects, especially in biomedical images. This problem did not attract a lot of attention in the literature, thus far. There is still, however, room for improvement concerning the accurate and faithful estimation of the detailed shape of overlapping organoid regions: Detecting the occurrence of the overlap is easier than the estimation of its exact shape.

Chapter 6 demonstrates the usefulness of developing an end-to-end system that is able to automatically analyze microscopic images in a short time. In this study, organoid image dataset were utilized, in which the growth and expansion rate of the organoid culture in time is determined by biologists. In the traditional approach, there is a strong dependence on manual activities in image preparation and annotation. This can lead to low reproducibility between measurements. In order to facilitate the analyses and promote the replicability of results, the OrganelX\(^1\) website was developed, in which deep-learning methods for detecting, segmenting and analyzing are used within a computational processing pipeline on a high-performance server. The system was tested on two actual, different conditions of growing organoids: one where all necessary amino acids were present (Control group), and another where they were absent (Starvation group). The organoids were imaged at five different time points using a specialized microscope, with 24-hour intervals. The system was able to automatically detect and analyze most of the tiny organoids for both growth conditions in a very short time. The data and the results are provided to the public for this use case. The code is open-source that can be used for academic research.

Chapter 7 extends on the possible applications by adding a module to the OrganelX website which is capable of segmenting, detecting and classifying fluorescence-microscopy images. For the evaluation, we used publicly available fluorescence microscopy data from a library of yeast strains each expressing one protein under the control of a constitutive promoter (NOP1) and fused to a Green Fluorescent Protein (GFP) at the N terminus (NOP1pr-GFP-SWAT library). The system is built on a process pipeline that uses Mask-RCNN to automatically segment and label images from the input data, using YOLO\(^4\) to automatically detect and classify individual yeast cell compartments from these images. It was shown that in terms of accuracy and speed, it is recommended to partition the large original image into four quadrants, which is optimally suited for the native resolution of the microscope and currently available GPU memory sizes. An

\(^1\) https://organelx.hpc.rug.nl/
F1-score of 98% was achieved for the detection and classification of cell compartments [ER, Mitochondria, Cytosol and Nucleus].

Chapter 8 summarizes the main contribution of this thesis and provides answers to the research questions defined in chapter 1. Additionally, it discusses several possible research directions that are associated with this thesis.
NEDERLANDSE SAMENVATTING

Dit proefschrift behandelt problemen die zich voordoen bij het analyseren microscopische beelden met de huidige AI methoden, in het bijzonder het detecteren, segmenteren en classificeren van objecten in microscopisch beeldmateriaal. Ongeacht het aantal microscopische beelden dat wordt gemaakt in grote of kleine laboratoria, blijft het analyseren van objecten in beelden problematisch. Bestaande successen op het gebied van deep learning bieden nog geen bruikbare oplossingen. Dit komt doordat microscopische objecten in de biologie heel anders zijn dan objecten en patronen in andere afbeeldingsdomeinen, zoals foto’s van natuurlijke scenes. Microscopische objecten zijn piepklein, eenvoudig van vorm en meestal met een achtergrond eenvoudiger is dan de meeste foto’s. Tegelijkertijd komen deze microscopische objecten in grote hoeveelheden op een afbeelding voor en overlappen ze met elkaar. Om moderne deep learning-technieken te gebruiken ten einde de analysefase te versnellen, zou het nodig zijn om gegevens uitgebreid te ‘labelen’ of annoteren. Dit houdt in dat aan biologen of experts wordt gevraagd om eerst een label of klasse toe te kennen aan elk beeld, of in het ergste geval, om een contour te tekenen rond elk object, in elke afbeelding, bijvoorbeeld met behulp van een computermuis. Dit is onaanvaardbaar, aangezien elk beeld honderden kleine objecten kan bevatten. De hindernis kan nog groter worden als de afbeelding veel overlappende kleine objecten bevat. In dat geval moet de grens van elk (deels verborgen) object correct worden geschat. Bij onderzoekers die digitale microscopie gebruiken is er een grote behoefte aan een ‘open-source’ systeem dat deep learning technieken gebruikt, waarbij onderzoekers willen profiteren van het versnellen van hun onderzoek met behulp van de nieuwste methodes uit deep learning zonder de noodzaak om volledig op de hoogte te zijn van all technische details in dat vakgebied.

Om deze uitdagingen aan te gaan, voert dit proefschrift uitgebreide studies uit naar het toepassen van verschillende technieken uit traditionele en moderne deep learning op microscopische datacollecties. Er wordt gebruik gemaakt van het concept van zelf-ondersteund leren (‘self-supervised learning’, SSL) en past dit toe op een dataset met afbeeldingen van organoïdes. Deze trainingsvorm maakt gebruik van kunstmatige taken (‘pretext tasks’) gedurende de training. Dit zijn taken waarbij de gewenste output van een model bekend is, terwijl dit laatste bij de hoofdtaak door gebrek aan ‘labels’ niet het geval is. Er is onderzocht hoe het type en de complexiteit van de synthetische pretexttaken de prestaties op de eigenlijke hoofdtaak beïnvloeden. Verder werd het onvermijdelijke probleem van overlappende objecten in de organoïde afbeeldingen aangepakt. Tot slot werd een
‘end-to-end’ systeem ontwikkeld dat niet-deep learning experts kunnen gebruiken om meerdere microscopische datasets te analyseren. Dit proefschrift kan als volgt worden samengevat in acht hoofdstukken:

Hoofdstuk 1 gaat in op de uitdagingen waar biologen tegenaan lopen bij de analyse van microscopische afbeeldingen, hun eisen en de beperkingen van huidige kunstmatige intelligentiemethoden. Verder worden de onderzoeksvragen om deze uitdagingen aan te pakken in dit project geformuleerd.

Hoofdstuk 2 geeft een algemeen overzicht van gerelateerde literatuur, demonstreert microscopische datasets en legt de hiërarchische objectniveaus in microscopie uit, definieert de rekentaken voor kunstmatige intelligentie en introduceert de verschillende deep learning modellen alsmede de methoden die in de volgende hoofdstukken gebruikt zullen worden.

Hoofdstuk 3 doel van dit hoofdstuk is om het gebrek aan annotaties in microscopiebeelden aan te pakken, waarbij het annoteren van de aanwezige kleine objecten als een moeizame, kostbare taak wordt beschouwd. Het vergelijkt de resultaten van het segmenteren van organoïde objecten van de traditionele supervised learning-techniek met de self-supervised learning-techniek (SSL). Er werd aangetoond dat SSL verrassend genoeg beter presteert dan de traditionele supervised learning-techniek, terwijl de gelabelde dataset voor training zelfs kleiner mocht zijn. Bij het trainen op afbeeldingen uit de gelabelde dataset kon het SSL raamwerk een F1-score van 0,85 behalen, terwijl het gesuperviseerde model hooguit 0,78 scoorde. Verder werden verschillende verliesfuncties (‘loss’) voor zowel de pretexttaak als de hoofdtaak geëvalueerd en vergeleken. Bovendien zijn verschillende augmentatietechnieken voor de pretexttaken vergeleken. De resultaten laten zien dat het onscherp maken van het hele beeld in combinatie met de verliesfuncties SSIM-L1 en IoU de beste resultaten opleverde in alle gedefinieerde bereiken van de trainingsdataset voor de pretexttaakdataset. Het bleek dat de juiste keuze van een verliesfunctie voor de pretexttaak en een voor de hoofdtaak essentieel is voor het verkrijgen van optimale prestaties. Ten slotte blijkt er bij het vergelijken van het gebruik van bevroren encoders met niet-bevroren encoders weinig verschil in scores te zijn, wat overeenkomt met andere bevindingen in de literatuur. Al deze resultaten openen de deur naar verder onderzoek aangaande de kernrol van de pretexttaak bij het faciliteren van de feitelijke hoofdtaak.

Hoofdstuk 4 wordt de bijdrage van pretexttaken aan de hoofdtaak onderzocht. Hiervoor werden verschillende nieuwe pretexttaken en augmentatietechnieken ontwikkeld en werd hun prestatie op de hoofdtaak onderzocht. De resultaten geven aan dat op basis van de gemiddelde prestaties, de keuze voor een eenvoudige pretexttaak in het voordeel is, vooral wanneer de artificiële verstoringen worden toegepast op delen van het beeld in tegenstelling tot een globale verstoring. Het
bleek dat de meeste modellen (288 van de 324) een F1-score hoger dan 0,83 behaalden, nadat ze getraind waren op de hoofdtaak (segmentatie van organoïde afbeeldingen). Een interessante bevinding is dat modellen die met een kleinere hoeveelheid gelabelde afbeeldingen getraind zijn op de hoofdtaak, dankzij de pretexttaak in staat zijn om beeldelementen correct te segmenteren die zelfs bij volledig gebruik van alleen labels van menselijke oorsprong foutief verwerkt werden.

Hoofdstuk 5 onderzoekt een onvermijdelijk probleem dat zich voordoet in de organoïde dataset, namelijk de aanwezigheid van overlappende objecten. Aangezien de precieze berekening van de grootte van objecten in de organoiden essentieel is, is het belangrijk om dit onderwerp verder te onderzoeken. Daarnaast wordt het probleem aangepakt van onbalans tussen de twee klassen pixels (meer achtergrondpixels dan objectpixels). Uit dit deel van het onderzoek werd ook duidelijk dat de algemeen gebruikte verliesfuncties niet optimaal zijn: Een combinatie van 'Focal loss' en 'Focal Tversky' loss werd gebruikt om de meest frequente klasse minder sterk te wegen. Het bleek dat het eenvoudige U-Net de hoogste score behaalde, bij gebruik van een geavanceerde verliesfunctie, terwijl het dubbele U-Net het beste presteert met eenvoudige verliesfuncties. Het nieuwe van het huidige werk kreeg tot nu toe niet veel aandacht in de literatuur. Er is echter nog ruimte voor verbetering in een nauwkeurige en natuurgetrouwe schatting van de gedetailleerde vorm van overlappende organoïde gebieden: Het detecteren van overlap is eenvoudiger dan het schatten van de exacte contourvorm.

Hoofdstuk 6 toont het nut aan van de ontwikkeling van een 'end-to-end' systeem dat in staat is om microscopische beelden automatisch en in korte tijd te analyseren. In dit onderzoek werden organoïde beeldgegevens gebruikt, waarin de groei- en expansiesnelheid van de organoïdecultuur in de tijd wordt gemeten door biologen. In de traditionele aanpak is er een sterke afhankelijkheid van handmatige activiteiten in beeldvoorbereiding en annotatie. Dit kan leiden tot een lage reproduceerbaarheid tussen metingen. Om de analyses te vergemakkelijken en de reproduceerbaarheid van resultaten te bevorderen, werd de OrganelX¹ website ontwikkeld, waarin deep-learning methoden voor het detecteren, segmenteren en analyseren worden gebruikt binnen een computationele verwerkingspijplijn op een krachtige server. Het systeem werd getest op twee actuele, verschillende condities van groeiende organoïden: één waar alle benodigde aminozuren aanwezig waren (controlegroep), en een andere waar ze afwezig waren (uithongergroep). De organoïden werden op vijf verschillende tijdstippen in beeld gebracht met een gespecialiseerde microscoop, met intervallen van 24 uur. Het

¹ https://organelx.hpc.rug.nl/
systeem was in staat om automatisch de meeste kleine organoïden voor beide
groeicondities in zeer korte tijd te detecteren en te analyseren. De gegevens en
resultaten worden voor deze use case openbaar gemaakt. De code is open-source
en kan worden gebruikt voor academisch onderzoek.

Hoofdstuk 7 breidt de mogelijke toepassingen uit door een module toe te voegen
aan de OrganelX website die fluorescentiemicroscopiebeelden kan segmenteren,
detecteren en classificeren. Voor de evaluatie gebruikten we openbaar beschikbare
fluorescentiemicroscopiegegevens van een bibliotheek van giststammen die elk
een eiwit tot expressie brengen onder de controle van een constitutieve promoter
(NOPl) en gefuseerd met een Green Fluorescent Protein (GFP) aan de N-terminus
(NOPlpr-GFP-SWAT-bibliotheek). Het systeem is gebouwd op een verwerkings-
lijn die Mask-RCNN gebruikt om beelden van de invoergegevens automatisch
te segmenteren en te labelen, en die YOLOv4 gebruikt om automatisch individu-
ele gistcelcompartimenten uit deze beelden te detecteren en te classificeren. Er
werd aangetoond dat het qua nauwkeurigheid en snelheid aan te raden is om
het grote originele beeld in vier kwadranten te verdelen, wat optimaal geschikt
is voor de native resolutie van de microscoop en de momenteel beschikbare
GPU-geheugengrootte. Een F1-score van 98% werd behaald voor de detectie en
classificatie van celcompartimenten [ER, Mitochondria, Cytosol en Nucleus].

Hoofdstuk 8 geeft een samenvatting van de belangrijkste bijdrage van dit proefschrift en geeft antwoorden op de onderzoeksvragen die in hoofdstuk 1 zijn
gedefinieerd. Daarnaast worden verschillende mogelijke onderzoeksrichtingen
besproken die verband houden met dit proefschrift.
LIST OF PUBLICATIONS BY THE AUTHOR

PUBLICATIONS RELATED TO THE DISSERTATION

OTHER PUBLICATIONS

ACKNOWLEDGMENTS

This thesis is proof of my four-year PhD research. Although every PhD experience is unique, I believe mine was one of the unconventional experiences: Starting my career in the Netherlands, doing my PhD in a company, changing the topic, being confused about my future, and some more. It was a journey of many experiences including learning, discovering, and even growing up.

I would like to thank prof. Lambert Schomaker for his support throughout the whole journey. All the conservations were fruitful and opened my horizons to how AI can be used and developed in the biological domain. I would also like to give my express gratitude to prof. Ida van der Klei for her support and help. I would like to show my appreciation for the followings, who played a big part in my PhD journey: All Bernoulli secretaries - especially Elina Sietsema and Jan van Hoogen, Martin Sanders and Tanja van der Woude, Remco Wouts and Ger Strikwerda, my friends (Azza, Heba, Nowar, Fatma, Andisa, and Prapti), housemate Pragya, my future man, and all my family member especially my aunt Wafaa and her husband Abu Al-Ayman.

Asmaa Haja
Groningen, the Netherlands
03 January, 2024