APPENDICES

English summary
Nederlandse samenvatting
Acknowledgment
List of publications
English summary

Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung disease, that causes severe respiratory symptoms, airflow limitation and a poor quality of life. According to the World Health Organization, COPD became the 3rd leading cause of global deaths in 2019 contributing to 3.23 million deaths. There are no effective pharmacological treatments available to slow the progression of COPD. COPD is characterized by airflow obstruction, an abnormal inflammatory response in the lungs and alterations in the extracellular matrix (ECM) in both the airways and parenchyma. Excessive ECM deposition in the airways contributes to airway wall fibrosis, whereas ECM degradation in the lung parenchyma contributes to the development of emphysema. Fibroblasts and airway smooth muscle cells (ASM), as key ECM producers, play a crucial role in maintaining normal ECM homeostasis. However, as the composition and biomechanical properties of ECM are altered in COPD, the behavior of fibroblasts and ASM residing in the ECM is also changed, leading to an alteration in matrix production. This indicates that changes in lung ECM can result in aberrant cellular behavior and vice versa, aberrant cellular behavior can contribute to an altered ECM environment. This thesis aimed to investigate the underlying mechanisms and implications of the disrupted fibroblast/ASM-ECM crosstalk in COPD lung tissue, with a specific focus on the small airways.

Chapter 2 provides a comprehensive overview of the current understanding regarding the roles played by mechanosensitive channels, transient receptor potential cation channel subfamily V member 4 (TRPV4) and Piezo, in the physiology of both healthy and diseased lungs. Special attention is given to exploring the interactions between these mechanosensitive channels located on cell surfaces and various local environmental factors, including immune cells, the ECM, and the cellular cytoskeleton. Additionally, this chapter discusses potential areas for future research. Building on this knowledge, Chapter 3 explores expression and functional patterns of the little-explored mechanosensitive channel Piezo in healthy and COPD small airways, with a particular focus on ASM. Immunohistochemical analysis revealed the presence and localization of both Piezo 1 and 2 channels within ASM bundles and in the small airway epithelial layer of lung tissue. There was higher Piezo expression in both of these compartments in patients with COPD IV compared to those without COPD. Activation of Piezo 1 channel in ASM provided information about the functional role of Piezo 1 in COPD. ASM derived from COPD stage II patients exhibited a lower response to Piezo 1 activation in terms of intracellular Ca2+ influx when compared to the COPD IV and non-COPD ASM cells. Furthermore, the activation of Piezo 1 led to the downregulation of ECM related genes. These findings indicate that there is altered expression and response to Piezo activation in COPD, influencing how these airways respond to mechanical stimuli such as stretching.
While Chapters 2 and 3 are dedicated to elucidating the mechanisms by which cells perceive their environment, Chapter 4 highlights alterations in ECM in COPD through an investigation of changes in the lysyl oxidase (LO) enzyme family. LOs play a pivotal role in orchestrating the formation of collagen cross-links, thereby modulating ECM organization and biomechanical properties. Smoking and the severity of COPD influenced the gene and protein expression of various members of the LO enzyme family in small airways. These findings underscore the potential distinct functions of LO enzymes within the lung and emphasize the necessity of examining the role of each protein individually. Inhibition of LOs results in loss of collagen cross-linking. Non-selective inhibition of LOs led to reduced tissue stiffness and greater contraction of airways. Therefore, COPD-associated changes in LOs, may be related to smoking and contribute to impaired airway function, providing potential novel targets for preventing or treating small airway changes in COPD. Chapter 5 builds on the foundation of Chapter 4 which demonstrated an increase in both gene and protein expression of lysyl oxidase like-1 (LOXL1) in COPD small airways. As ECM remodeling affects ECM-fibroblast crosstalk, the study examined how alterations driven by LOs/LOXL1 in the ECM affect fibroblast behavior, thereby contributing to further ECM remodeling in COPD. To investigate this, fibroblasts obtained from healthy donors were treated with inhibitors of LOs and LOXL1. The ECM produced by these cells was collected for the purpose of studying how healthy fibroblasts respond when seeded on these ECM matrices, serving as a model for examining fibroblast-ECM crosstalk. No differences in cell behavior were observed across these different matrices. Therefore, LOs and LOXL1 inhibition has no effect on healthy fibroblast-ECM crosstalk in this in vitro model but whether this differs in COPD fibroblasts has yet to be examined.

To investigate cell-ECM crosstalk in the context of COPD and/or other pulmonary diseases, various in vitro experimental models have been widely used. Numerous models have been used to elucidate cell behavior which are now evolving towards complex three-dimensional (3D) models incorporating ECM, aiming to replicate the cells' native environment. Little is known about the cellular changes that occur when moving from two-dimensional (2D) to 3D cell culture. Chapter 6 briefly outlines the composition of the lung ECM and the changes associated with chronic lung diseases. It also provides an overview of the progress and state-of-the-art research conducted using 3D ECM models, discusses the advantages and challenges related to these models and summarizes the properties of an ideal 3D model.

Multiple investigations have used 3D models to culture fibroblasts, examining the interplay between ECM and fibroblasts in various organ systems. Chapter 7 demonstrates the difference in gene expression profiles in primary human lung
fibroblasts cultured on 2D stiff collagen I-coated cell culture plastic with those cultured in 3D soft collagen I hydrogels to gain a better understanding of changes in cellular behavior between these two model systems and the potential consequences for fibroblast-ECM crosstalk. The transcriptional response of fibroblasts cultured in 3D indicated inhibition of proliferation, and alterations in Hippo and ECM pathways indicating a switch from proliferation to ECM remodeling.

Overall, this thesis provides evidence and insights into the disrupted crosstalk between fibroblasts/ASM and the ECM in the context of COPD, resulting in the remodeling of lung tissue. It also underscores the importance of considering the impact of 3D models on cell-ECM interactions, as these models better represent in vivo conditions. This thesis opens new avenues for further research into the cellular and molecular mechanisms underlying COPD pathophysiology, offering valuable insights for developing future therapeutic strategies.
Nederlandse samenvatting

Chronische obstructieve longziekte (COPD) is een progressieve inflammatoire longziekte die ernstige ademhalingsproblemen en een slechte levenskwaliteit veroorzaakt. Volgens de Wereldgezondheidsorganisatie was COPD in 2019 wereldwijd de op twee na belangrijkste doodsoorzaak en verantwoordelijk voor 3,23 miljoen sterfgevallen. Er zijn geen effectieve farmacologische behandelingen beschikbaar om de progressie van COPD te vertragen. COPD wordt gekenmerkt door een abnormale ontstekingsreactie in de longen die zorgt voor vernauwing en obstructie van de luchtwegen, schade aan de longblaasjes met emfyseem tot gevolg en veranderingen in de extracellulaire matrix (ECM) in zowel de luchtwegen als in de longblaasjes. Overmatige productie van ECM eiwitten in de luchtwegen draagt bij aan verdikking van de luchtwegwand met fibrose en vernauwing van de luchtwegen, terwijl er bij emfyseem juist sprake is van afbraak en verlies van de ECM. Fibroblasten en gladde spiercellen in de luchtwegen spelen als belangrijke ECM-producerende cellen een cruciale rol in het handhaven van een normale ECM-homeostase. Echter, als de samenstelling en biomechanische eigenschappen van de ECM veranderen bij COPD, verandert ook het gedrag van fibroblasten en gladde spiercellen die zich in de ECM bevinden, wat leidt tot een verandering in de ECM eiwit productie. Dit geeft aan dat er een belangrijke interactie plaatsvindt tussen de cellen en de ECM waarbij veranderingen in de ECM van de long kunnen leiden tot afwijkend celgedrag en vice versa, afwijkend celgedrag kan bijdragen aan een veranderde ECM omgeving. Het doel van dit proefschrift was om de onderliggende mechanismen en implicaties van de verstoorde interactie tussen fibroblasten en gladde spiercellen en de ECM in COPD longweefsel te onderzoeken, met een specifieke focus op de kleine luchtwegen.

Hoofdstuk 2 gaat over de invloed van biomechanische veranderingen op de cellen en de ECM en geeft een uitgebreid overzicht van de huidige kennis over de rol van 3 specifieke mechanosensitieve kanalen, te weten ‘transient receptor potential cation channel subfamily V member 4 (TRPV4)’ en Piezo 1 en Piezo 2, in de fysiologie van zowel gezonde als zieke longen. Speciale aandacht wordt besteed aan het onderzoeken van de interacties tussen deze mechanosensitieve kanalen op het celoppervlak en immuuncellen, de ECM en het cellulaire cytoskelet. Daarnaast bespreekt dit hoofdstuk potentiële gebieden voor toekomstig onderzoek. Voortbouwend op deze kennis, hebben we in hoofdstuk 3 onderzoek gedaan naar de rol en aanwezigheid van Piezo 1 en Piezo 2 in de kleine luchtwegen van COPD patiënten in vergelijking met controle patiënten, met speciale aandacht voor de gladde spiercellen. Immunohistochemische analyse onthulde de aanwezigheid en lokalisatie van zowel Piezo 1 als 2 kanalen in de gladde spierbundels en in het bekledende luchtwegepitheel van de kleine luchtwegen.
Er was een hogere Piezo expressie in beide compartimenten bij patiënten met stadium IV COPD vergeleken met patiënten zonder COPD. Activering van het Piezo 1 kanaal in gladde spiercellen geeft informatie over de functionele verschillen van Piezo 1 in COPD. Gladde spiercellen afkomstig van COPD stadium II patiënten vertoonden een lagere respons op Piezo 1 activering in termen van intracellulaire Ca2+ influx in vergelijking met de COPD IV en niet-COPD spiercellen. Bovendien leidde de activering van Piezo 1 tot een verlaging van ECM-gerelateerde genen. Deze bevindingen geven aan dat er een veranderde aanwezigheid en respons is op Piezo activering bij COPD, en dit kan invloed hebben op hoe deze luchtwegen reageren op mechanische prikkels zoals bijvoorbeeld uittrekkende invloed van de ademhaling.

Terwijl de hoofdstukken 2 en 3 gewijd zijn aan het ophelderen van de mechanismen waarmee cellen hun omgeving waarnemen, belicht hoofdstuk 4 veranderingen in de ECM bij COPD door de familie van de lysyloxidase (LO) enzymen te onderzoeken. LO's spelen een centrale rol bij de vorming van collageen bundels en de interactie tussen de losse collageen strengten. Op deze manier beïnvloeden LO's de ECM-organisatie en de biomechanische eigenschappen daarvan. Onze resultaten laten zien dat roken en de ernst van COPD invloed heeft op de gen- en eiwitexpressie van verschillende leden van de LO-enzymfamilie in kleine luchtwegen. Deze bevindingen onderstrepen de mogelijk verschillende functies van LO-enzymen in de long en benadrukken de noodzaak om de rol van elk eiwit afzonderlijk verder te onderzoeken. Daarnaast laten onze resultaten zien dat het remmen van LO's resulteert in minder interacties tussen de collageen strengten, verminderde stijfheid van longweefsel en een sterkere samentrekking van de luchtwegen. Op basis hiervan concluderen wij dat de COPD-geassocieerde veranderingen in LO's gerelateerd zijn aan roken en bijdragen aan een verminderde functie van de luchtwegen. Deze bevindingen dragen bij aan potentiële nieuwe behandeldoelen gericht op de kleine luchtwegveranderingen bij COPD. Hoofdstuk 5 bouwt voort op de basis van hoofdstuk 4, waarin een toename werd aangetoond van zowel gen- als eiwitexpressie van lysyloxidase like-1 (LOXL1) in de kleine luchtwegen in COPD. Aangezien veranderingen in de ECM, de interactie tussen fibroblasten en de ECM kan beïnvloeden, hebben we in dit hoofdstuk onderzocht hoe veranderingen aangedreven door LO's/LOXL1 in de ECM het gedrag van fibroblasten beïnvloedt en zo bijdraagt aan verdere ECM remodulering in COPD. Om dit te onderzoeken werden fibroblasten van gezonde donoren behandeld met remmers van LO's en LOXL1. De ECM die door deze cellen werd geproduceerd, werd verzameld om te bestuderen hoe gezonde fibroblasten reageren als ze op deze ECM-matrices moesten groeien. Er werden geen verschillen in celgedrag waargenomen tussen de verschillende matrices. Remming van LO's en LOXL1 heeft dus geen effect op de interactie tussen gezonde
fibroblasten en de ECM in dit celkweek model. Of dit anders is bij COPD-fibroblasten moet nog worden onderzocht.

Om de cel-ECM interactie in de context van COPD en/of andere longziekten te onderzoeken, zijn verschillende in vitro experimentele modellen op grote schaal gebruikt. Er zijn talloze tweedimensionale (2D) modellen gebruikt om het gedrag van cellen op te helderen, die nu evolueren naar complexe driedimensionale (3D) modellen met ECM, met als doel de natuurlijke omgeving van de cellen zo goed mogelijk na te bootsen. Er is echter weinig bekend over de cellulaire veranderingen die optreden bij de overgang van een 2D naar een 3D-celkweek. **Hoofdstuk 6** geeft een kort overzicht van de samenstelling van de ECM van de long en de veranderingen die geassocieerd zijn met chronische longziekten. Het geeft ook een overzicht van de vooruitgang en het state-of-the-art onderzoek met 3D ECM modellen, bespreekt de voordelen en uitdagingen van deze modellen en vat de eigenschappen van een ideaal 3D model samen.

Verschillende onderzoeken hebben 3D-modellen gebruikt om fibroblasten te kweken, waarbij de wisselwerking tussen ECM en fibroblasten in verschillende orgaansystemen is onderzocht. **Hoofdstuk 7** laat het verschil zien in genexpressieprofielen in primaire menselijke longfibroblasten gekweekt op 2D stijf collageen I-gecoat celkweekplastic met die gekweekt in 3D zachte collageen I-hydrogels om een beter begrip te krijgen van veranderingen in cellulair gedrag tussen deze twee modellen en de mogelijke gevolgen voor de interactie tussen fibroblasten en ECM. De veranderingen in gen expressie patronen van fibroblasten gekweekt in 3D wees op remming van de celgroei en veranderingen in ECM genen en genen betrokken by signalering via Hippo. Tezamen suggereren deze bevindingen dat er een omschakeling plaatsvindt van proliferatie naar actieve remodulering van de ECM.

Samenvattend levert dit proefschrift bewijs en inzicht in de verstoorde interactie tussen fibroblasten en gladde spiercellen en de ECM in de context van COPD, wat resulteert in de remodulering van longweefsel. Het onderstreept ook het belang van het gebruik van 3D modellen voor het bestuderen van cel-ECM interacties, omdat deze modellen beter in vivo condities repliceren. Dit proefschrift opent nieuwe wegen voor verder onderzoek naar de cellulaire en moleculaire mechanismen die ten grondslag liggen aan de pathofysiologie van COPD en biedt waardevolle inzichten voor de ontwikkeling van toekomstige therapeutische strategieën.
Acknowledgements

I would like to begin by expressing my gratitude to the team of supervisors. Thank you for being with me throughout this journey. Your boundless patience and belief in me have been invaluable. You have nurtured me as a young professional by teaching me work ethics, approaches to collaboration, and the organization of work and management. You have not only been mentors but also guides in the matters of work culture, each with your own approach and perspective on life. Together, you laid the foundation that has become and already serves as the cornerstone for my future career path. I also want to thank you for your human support, it meant a lot to me.

Dear Janette, our journey together spans nearly the entirety of my time in the Netherlands, starting from the early days of my master’s program when I joined your lab for a research project. You have known me for almost as long as anyone else in the country, and my scientific journey found its roots with you. Your offer to pursue a PhD under your guidance was a pivotal moment, altering the trajectory of my career and, subsequently, my life. I am immensely grateful for your boundless patience, especially considering the challenges I presented. Your mentorship has been instrumental in shaping not only my scientific mindset but also the way I perceive and structure concepts. I extend my heartfelt thanks for the numerous opportunities you provided, each contributing significantly to my growth as a researcher. Beyond the scientific realm, you created a positive environment that fostered both personal and professional development. As my supervisor, you became not only a guiding force but also a role model. Your excellence as a scientist and leader has profoundly influenced my own aspirations. In essence, I owe much of my career path to you, Janette. Thank you for being a beacon of inspiration and for repeatedly altering the course of my life.

Dear Corry-Anke, I extend my heartfelt gratitude for your steadfast support throughout this extensive journey. Your guidance has proven invaluable, especially in the realms of structuring and prioritizing. When faced with intricate tasks, whether deciphering complex scientific concepts or shaping article layouts, your adept assistance in organizing thoughts and sketching diagrams has been transformative. Your help ensured that every intricate detail seamlessly found its place. Your presence had an incredible therapeutic effect. Your reassurance regarding the significance of prioritization and focusing on the core task served as a calming anchor. After our meetings, I consistently left with a sense of calm, confident that challenges would find resolution. Your way of structuring and prioritization continues to resonate with me, becoming a guiding principle in navigating complex tasks even now at the new place.
Moreover, our conversations about life have been profoundly meaningful to me. Thank you for sharing your insights and contributing to my personal growth.

Dear Prakash, I want to thank you for the invaluable year at Mayo Clinic in the USA, a transformative experience made possible by your support. Under your guidance, my professional horizons expanded, exposing me to a distinctive approach to work and its dynamics. Witnessing the level and depth of your expertise was not only inspiring but also set a high standard for me to emulate. Your remarkable ability to swiftly integrate new data and research into existing concepts has become a beacon for my scientific aspirations. Thanks to your mentorship, I acquired remarkable international experience, immersing myself in an entirely new culture, both on a professional and personal level. While I always understood the vastness of the world, it was through your guidance that I fully comprehended its dimensions. I am grateful for your unwavering support, the fresh ideas that shaped the foundation of my chapters, and most importantly, for instilling belief in me as a scientist.

I would like to express my gratitude to the members of my thesis assessment committee, Professor A.J. Moshage, Professor A. Tatler, and Professor M. Weckmann for the valuable time and efforts you have put into this thesis through your suggestions and feedback.

Dear Prof. Marco Harmsen, I extend my sincere appreciation for your incredibly insightful perspective on science and life. Your ability to stimulate discussions and encourage me to look at things from different angles has been invaluable. The intellectual depth you brought to our interactions has significantly enriched my understanding of my research field. Dear Prof. Wim Timens, I want to express my deep gratitude for your invaluable contributions to my work. Your feedback on my publications, assistance with IHC analysis, and the sharing of your extensive knowledge in the field of lung pathology have played an important role in shaping my research journey.

I am immensely grateful to my colleagues at Mayo Clinic who played pivotal roles in my research journey. Dear Christina, your unwavering support during my time in the USA was invaluable, and I extend my sincere thanks for your contributions. Dear Elizabeth, working with you was a pleasure, and your unique perspective significantly enriched my understanding of scientific aspects, particularly from a clinical angle. To Ben, Jacob, Kim, and Amanda, I express my heartfelt gratitude for your technical expertise in the laboratory and your collaborative spirit, which greatly contributed to the success of my projects. Special thanks to Li for your role in managing cell cultures.
and completing experiments after I departed from Mayo Clinic. Lastly, a warm thank you to Colleen for your assistance with PCR and knockdown protocols, and for the wonderful time we spent together. Your collective efforts have left a lasting impact on the progress of my research.

I extend my heartfelt gratitude to the entire EXPIRE lab, a group that has been instrumental in shaping my PhD journey. Commencing my journey amid the challenges posed by COVID, the initial months without in-person interactions were alleviated by the unwavering support of my colleagues. Dear Irene, your dedication to science and your ability to stay connected with the team serve as an inspiring example. To Martijn, I express my thanks for the thought-provoking ideas, the unique perspective on science through bioinformatics, and the delightful conversations we shared. Theo, also known as the Master or Guru in colloquial terms, I am immensely grateful for your unwavering assistance. Your ability to optimize experiments and patiently explain protocols has been invaluable. Much of the success in my research can be attributed to your extensive knowledge. Marnix, your willingness to assist in various matters and your wonderful sense of humour have lightened the journey. Marissa, I appreciate your support, excellent lab organization, and the meaningful conversations we engaged in. Taco, thank you for your assistance with experiments and the positive attitude you brought to the lab. Ilse, thank you for your contribution to the lab atmosphere! To Frederique and Djoke, thank you for your support in the lab. A heartfelt thanks to Petra for the immensely pleasant conversations and the willingness to assist with experiments even after I depart from the lab. Your collective efforts have made a significant impact on my academic endeavors.

I wish to express my deep gratitude to my paranymphs Klaudia and Akshaya for their significant contributions. Firstly, for the exceptional organization of this defence at a time when I was fully engrossed in my new job. Both of you possess a remarkable talent for orchestrating large-scale events, and this defence was no exception.

Akshaya, you exemplify the importance of having a close friend at work. Despite the considerable amount of money we spent on coffee in the cafeteria, those coffee breaks were invaluable, making even the gloomiest or busiest days more enjoyable. Thank you for the countless Instagram memes, discussions covering every imaginable topic, and the various activities we engaged in together, from concerts to kayaking. Your openness to new experiences and your instinct to involve me, even against my initial reluctance, provided me with an abundance of energy. Your unwavering support, even during my more challenging moments, is something I deeply appreciate. Klaudia, in the realm of science, we may not put much faith in horoscopes, except for one
belief: an inactive Capricorn is a dead Capricorn. Your actions and energy have been a remarkable source of inspiration for me. Just five minutes of conversation with you rejuvenated my spirit and motivation for work. No matter how somber or chaotic my mood was, our kickboxing training sessions had the power to transform it into cheerfulness within a mere 5 minutes. Despite my assertions of independence, I found myself in need of your support. Your ability to foster a sense of friendship through bringing people together is truly commendable. To both of you, Klaudia and Akshaya, your support has been indispensable throughout this journey, infusing me with energy and boundless love. As you approach your dissertation defence, I extend my heartfelt wishes for a smooth completion. I will endeavor to be at least half of the support that you both were to me during these months.

I would like to extend my heartfelt gratitude to my PhD and post-doc colleagues, each of whom has played a role in my journey. Maunick, your support has been unwavering, spanning both the Netherlands and the USA. Thank you for your assistance with scientific experiments and the therapeutic conversations that grounded me. Reflecting on the numerous places we have visited, it is evident how much more there is to explore. Mugdha, life brought us together in a delightful way. From exchanging countless internet memes to marveling at Gen Z culture, your companionship has been a joy. I appreciate you being the first to share in my joy when I secured the job at Forbion. Your significant contribution to work during the final stages of my dissertation is something I am immensely grateful for. As you embark on finishing your dissertation, I wish you all the best, hoping you find the support you provided me. Roderick, working with you has been incredibly pleasant and enjoyable. Your calm and cheerful approach to work transformed every task into a pleasure. Thank you for your collaboration on the article when I joined the job, and I wish you success in completing your dissertation. Martin, thank you for your willingness to patiently answer my bioinformatics queries. Beyond that, I cherish our friendship, the hours of balcony conversations, barbecues, and even the not-so-great concerts. Aurore, a restaurant visit is pending, and I look forward to it. Your excellent company, unique French approach to life, and the immense fun we had together are memories I hold dear. Brady, your uniqueness, vibrant energy in the lab, endless ideas, and engaging political discussions have enriched our work environment. Maud, your sense of humor and positive outlook made our conversations a delight. Gwenda, your exemplary diligence and responsibility in your work, along with your willingness to help me tackle administrative matters, have been invaluable. Thank you for being a reliable sounding board for my complaints. Mehmet, thank you for your help with some protocols and creating a professional environment. Lei, our fun conversations in the office and shared jokes about life outside academia added a special touch to my PhD experience.
Sjoers, though we met towards the end of my PhD, I am grateful for your experienced perspective. Yanzhe, you created a warm atmosphere in the office. Your assistance with protocols and siRNA was instrumental; without you, a whole project would have been impossible. Jelmer, our political discussions in the kitchen and your help with data analysis, along with the endless jokes during coffee breaks, have been memorable. Ayla, your ironic yet kind perspective is something I aspire to learn. Best of luck with your research. Akash, your passion for knowledge and the desire to understand assure me that the future of science is in good hands with individuals like you. Marijn, your endless culinary fairs were a delight. May your passion for cooking and science lead to something extraordinary. Tessa, your calm and measured approach always made our conversations special. XinZi, thank you for your willingness to help at any time! Qing, your supportive approach to everyone around you has not gone unnoticed. Each one of you has left an indelible mark on my journey, and I am sincerely grateful for the camaraderie, support, and shared experiences.

I extend my heartfelt gratitude to the Lung Pathology group, a pivotal force in shaping my journey as a scientist. Dear Machteld, your efforts in organizing meetings, providing invaluable feedback, and fostering scientific discussions have been instrumental in my growth. Dear Barbro, your questions, input, and constructive criticism have been transformative for my project. I appreciate the depth you added to my work. Roy, thank you for your scientific insights, discussions on fibroblasts, assistance with protocols, and data analysis. Your contributions have significantly enriched my research. Marjan and Wierd, thank you for your efforts in assisting with experiments, especially those involving an extensive number of samples. I am grateful for your dedication. Niek, thank you for your support in data analysis and your willingness to assist with Piezo!

I express my thanks to Anika for the invaluable assistance with the 2D/3D article. Collaborating with you was a delight. Thank you to Prof. Reinoud Gosens for the collaborative efforts and contribution to the lysyl oxidase article. Fenghua, your dedication to the lysyl oxidase article and your incredible hard work are commendable. I wish you the very best in your future scientific endeavors. I want to acknowledge the Groningen Research Institute of Asthma and COPD (GRIAC) for providing a broader perspective through the expertise of professionals from diverse fields. Dear Maaike, your creation of a space for young scientists is highly appreciated. Dear Judith, I am immensely grateful for your guidance in statistical analysis and navigation in the intricate world of formulas, which has been a complex mystery for me. Tanya, thank you for the scientific feedback and our enriching trip to Milan; it was a great experience.
To my dearest friends, in expressing my gratitude, words seem insufficient to convey the depth of appreciation I feel for each one of you. Friends, you are my chosen family, and I am at a loss on how to adequately thank you for standing by me at every turn, enduring my complaints and mood swings, and consistently lifting my spirits. A special acknowledgment goes to my cherished group of friends, “NAKEDS,” who, time and again, rescued me from the dissertation routine. From dinners to concerts, festivals, and trips, you reminded me of the beauty of life. Heartfelt thanks to my **Berliners** for the delightful moments, from sipping in the Alps to cozy evenings on Berlin terraces, and the ultimate fun we shared. **Masha**, your ability to find words at any hour to restore my self-belief is a gift I cherish. **Elina**, my dear olive, your reminder to view things from a different, less rigid and more spiritual angle has been a guiding light. **Kristina**, your unwavering support as a flatmate deserves special recognition. **Dasha**, expressing my gratitude to you feels like an endless task. Despite numerous personal expressions, when it comes to writing acknowledgments, only one phrase resonates in Russian: “спасибо, Мать! Спасибо за возможность показывать свою уязвимость. Без твоей поддержки я бы точно сошла с ума». A monumental thank you extends to my **family**. My entire career journey began with your unwavering support. Your unconditional support, attentive listening, and encouraging words have been the pillars of my strength. Your acceptance of me as I am and expressions of pride fuel my determination. With you, I know I am never alone.

Lastly, my heartfelt gratitude goes to my boyfriend, **Erik**. Unintentionally becoming a co-author of this dissertation, you patiently listened to my tales of experiment details and articles, endured my writing woes, and showered me with immense love during laptop-bound hours. Your care during my writing immersion, maintaining our home's coziness, and your unwavering belief in me are pivotal to my success.

And I have a special word for my cat **Misha** “Mee-eh”.
Curriculum Vitae

Nataliya Migulina, born on 16 August 1996 in Moscow, Russia, commenced her academic journey by earning her bachelor’s degree in Human Physiology with high honors from Lomonosov Moscow State University (MSU) in 2017. Nataliya was awarded a full Orange Tulip scholarship in the same year, allowing her to enroll in the Master’s program in Medical and Pharmaceutical Drug Innovation (MPDI) at the University of Groningen. In 2017 she conducted a research project at the Department of Pathology and Medical Biology in University Medical Center Groningen (UMCG) aimed to understand extracellular matrix assembly disruption in chronic obstructive pulmonary disease. In 2018, Nataliya delved into further research during her Master's program at the Faculty of Science and Engineering, University of Groningen. Her Master's thesis investigated the targeting of the Tumor Necrosis Factor signaling pathway in Multiple Sclerosis.

In March 2020, Nataliya embarked on a collaborative PhD project that spanned UMCG, the Experimental Pulmonology and Inflammation Research (EXPIRE) group, and Mayo Clinic's Department of Anesthesiology in Rochester, USA. Specializing in chronic lung diseases, her work focused on pre-clinical studies aimed at discovering and developing new targets and therapies. Additionally, she contributed to the bioengineering of the extracellular matrix environment for lung model development, with implications in fibrosis. Throughout Nataliya's PhD trajectory, her research findings on potential targets for the treatment of chronic obstructive pulmonary disease were published in high-impact journals such as FASEB and Comprehensive Physiology. She showcased her work at numerous national and international scientific conferences. Collaborating with top professors and doctors in the field, she was part of an outstanding international team focused on advancing novel therapies for treating lung diseases. After successfully concluding her PhD, Nataliya transitioned to a new chapter in her career, entering the life science venture capital industry.
List of publications

