Poor old pores
Rempel, Irina Lucia

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 5

144

and genome organization (Sood and Brickner, 2014). Changes in NPC architecture or NPC numbers might change the availability of NPCs as anchoring points for these processes. We conclude, that nuclear pores, the physical gatekeepers to the nuclear interior may well represent an important gatekeeper in aging, and boosting its quality control may provide opportunities to increase resilience to aging and age-related diseases.

Bibliography


Bibliography


Bibliography


Chatterjee, M., and Paschal, B.M. (2015). Disruption of the Ran System by Cysteine Oxidation of


Bibliography


Bibliography

Biol. 54, 19–25.


Homeostasis in the endoplasmic reticulum. J. Cell Sci. Integral membrane proteins Brr6 and Apq12 link assembly of the nuclear pore complex to lipid


Bibliography


Bibliography


Bibliography


Bibliography


