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Bayes factors for superiority,
non-inferiority, and equivalence designs
Don van Ravenzwaaij1 *, Rei Monden1,2, Jorge N. Tendeiro1 and John P. A. Ioannidis3

Abstract

Background: In clinical trials, study designs may focus on assessment of superiority, equivalence, or non-inferiority,
of a new medicine or treatment as compared to a control. Typically, evidence in each of these paradigms is quantified
with a variant of the null hypothesis significance test. A null hypothesis is assumed (null effect, inferior by a specific
amount, inferior by a specific amount and superior by a specific amount, for superiority, non-inferiority, and
equivalence respectively), after which the probabilities of obtaining data more extreme than those observed under
these null hypotheses are quantified by p-values. Although ubiquitous in clinical testing, the null hypothesis
significance test can lead to a number of difficulties in interpretation of the results of the statistical evidence.
Methods: We advocate quantifying evidence instead by means of Bayes factors and highlight how these can be
calculated for different types of research design.
Results: We illustrate Bayes factors in practice with reanalyses of data from existing published studies.
Conclusions: Bayes factors for superiority, non-inferiority, and equivalence designs allow for explicit quantification of
evidence in favor of the null hypothesis. They also allow for interim testing without the need to employ explicit
corrections for multiple testing.

Keywords: Bayes factors, Clinical trials, Statistical inference, Non-inferiority designs

Background
In clinical trials, study designs may focus on assessment
of superiority, equivalence, or non-inferiority of a new
medicine or other intervention as compared to some con-
trol intervention [1, 2]. Typically, evidence in each of these
paradigms is quantified with a variant of the null hypothe-
sis significance test (NHST). A null hypothesis is assumed,
after which the probability of obtaining datamore extreme
than those observed under the null hypothesis is quanti-
fied by a p-value. The specific null hypothesis that forms
the basis of these tests differs depending on the design. A
graphical display of each of the three designs is provided
in Fig. 1.
The first, and by far most common, type of design is

the superiority design (see top two rows). In the superi-
ority design, the null hypothesis is that the true popula-
tion effect size is exactly zero. The test can typically be
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conceived as being one-tailed, even though in prac-
tice superiority analyses often employ a two-tailed test.
In other words, the null hypothesis states that a new
medicine or other intervention being tested does not work
better than an existing placebo or active control. The first
row in Fig. 1 provides an example of a superiority design
in which the null hypothesis was rejected and the second
row in Fig. 1 provides an example of a superiority design
in which the null hypothesis was not rejected.
The second type of design is the non-inferiority design

(see middle two rows). In the non-inferiority design, the
null hypothesis is that the true population effect size
is lower than −c. This amounts to a one-tailed test in
which a point-null hypothesis of effect size = −c is com-
pared to an alternative hypothesis of effect size > −c. In
other words, the relevant test is that a new medicine or
other intervention being tested works better than an exist-
ing placebo or medication minus an apriori determined
amount c. The third row in Fig. 1 provides an example of
a non-inferiority design in which the null hypothesis was
rejected and the fourth row in Fig. 1 provides an exam-
ple of a non-inferiority design in which the null hypothesis
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Fig. 1 Superiority, non-inferiority, and equivalence designs. Each design type has an example for which the prospective null-hypothesis was
rejected (the ones highlighted with check marks) and one for which the null-hypothesis was not rejected (the ones highlighted with fail marks).
Error bars indicate 95% confidence intervals. Value −c is the null hypothesis value for non-inferiority testing, values −c and c are the two null
hypotheses values for equivalence testing

was not rejected. Note that it is possible for an interven-
tion to be deemed non-inferior, but simultaneously lower
than zero (in this case, the constructed confidence interval
would fall between −c and zero in its entirety).
The third type of design is the equivalence design (see

bottom two rows). In the equivalence design, one essen-
tially carries out two NHSTs. In this design, the null
hypotheses are that the true population effect size is lower
than −c and higher than c. This amounts to a one-tailed
test in which a point-null hypothesis of effect size = −c is
compared to an alternative hypothesis of effect size > −c
and a one-tailed test in which a point-null hypothesis of
effect size = c is compared to an alternative hypothe-
sis of effect size < c. If both of these null hypotheses
are rejected, equivalence is established. Graphically speak-
ing, equivalence is established if the confidence interval
falls in its entirety between the borders of −c and c. The
fifth row in Fig. 1 provides an example of an equiva-
lence design in which both null hypotheses were rejected
and the sixth row in Fig. 1 provides an example of an
equivalence design in which at least one of the two null
hypotheses was not rejected. Analogous to non-inferiority
designs, it is possible for an intervention to be deemed
equivalent, but simultaneously different from zero (in this
case, the constructed confidence interval would either fall

between −c and zero in its entirety or between zero and
c in its entirety). Study results can be interpreted very
differently depending on whether the original design was
a superiority or an equivalence design [3].
Each of these designs seeks to answer important ques-

tions. Unfortunately, the NHSTs employed to carry out
statistical inference do not allow researchers to quantify
evidence in favor of the null hypothesis. The desire to
quantify evidence in favor of the null hypothesis is perhaps
most relevant in equivalence designs. We quote Greene,
Concato, and Feinstein [4], who say: “. . .Methodological
flaws in a systematic review of 88 studies claiming equiva-
lence, published from 1992 to 1996. Equivalence was inap-
propriately claimed in 67% of them, on the basis of non-
significant tests for superiority. Fifty-one percent stated
equivalence as an aim, but only 23% were designed with a
preset margin of equivalence. Only 22% adopted appropri-
ate practice: a predefined aim of equivalence, a preset �,
consequent sample size determination, and actually test-
ing equivalence.” A non-significant p-value (any p > .05)
can result from (1) the null hypothesis being true or (2) the
null hypothesis being false combined with an underpow-
ered trial (that is, if we would have collected more data,
the results of our inference would have been statistically
significant see [5]. In medical research, it is important



Ravenzwaaij et al. BMCMedical ResearchMethodology           (2019) 19:71 Page 3 of 12

to distinguish between these two scenarios. Quantify-
ing evidence in favor of the null hypothesis potentially
leads to a reduction in the waste of scarce research
resources, as research into ineffectual interventions can be
discontinued [6].
Another problem with NHST emerges when there is

multiple testing in interim analyses. In biomedicine, a
range of methods exists that are employed to account for
sequential testing and interim analyses, and they all basi-
cally change the level of statistical significance by asking
for more stringent statistical thresholds to reject the null
hypotheses when multiple analyses due to sequential test-
ing or interim re-assessments are performed. However,
these correction methods are not always applied. Further-
more, the number of participants tested in clinical trials
often changes relative to the number decided upon a-
priori based on interim analysis results [7]. Both of these
practices lead to an overestimation of the evidence in favor
of an effect.
Bayesian methods are an alternative to NHST that allow

quantification of evidence in favor of the null hypoth-
esis, sequential testing, and comparison of strength of
evidence across different studies [8, 9]. Bayesian meth-
ods are increasingly considered for more widespread use
in clinical trials (see e.g., [10]; for an overview of dif-
ferent fields, see [11]) and their advantages have been
argued many times (e.g., [12–17], but see [18]). Several
approaches to carrying out Bayesian inference exist, but
for the remainder of this manuscript we will focus on the
Bayes factor [19, 20]. The Bayes factor allows for explicit
quantification of evidence in favor of the null hypothesis,
which means that the interpretational pitfalls associated
with non-inferiority and equivalence designs naturally
disappear.
In the case of equivalance designs, traditional meth-

ods require specification of a potentially arbitrary band
around zero, even if clear theoretical grounds for the
width of this band are lacking. Bayes factors can quan-
tify evidence in favor of a point null hypothesis or in favor
of an interval null hypothesis, depending on which one is
theoretically appropriate.
Bayes factors also allow for sequential testing without

having to correct for multiple testing (see e.g. the simula-
tion results reported in [21]). It is “. . . entirely appropriate
to collect data until a point has been proven or dis-
proven, or until the data collector runs out of time, money,
or patience” [22], but see [23]. To put this quote into
perspective, NHST has essentially one decision criterion
(i.e., p < α). As such, if one employs sequential test-
ing, every additional test increases the chance that this
criterion is reached, even if the null hypothesis is true
(see Table 1 in [24]). Bayesian testing does not require a
fixed n in the sampling plan because the decision crite-
rion is symmetrical. If one were to decide, for instance,

to test until the relative evidence for one hypothesis over
the other is at least ten, one would stop when the evi-
dence provided by the data is ten over one in favor
of the alternative hypothesis or ten over one in favor
of the null hypothesis, and one would be wrong once
for every ten times one were correct. The Bayes fac-
tor will provide progressively stronger relative support
for the hypothesis that is true when data continues to
be collected.
In what follows, we will describe how to implement

Bayes factors for the three types of study design men-
tioned above.

Methods
The Bayes factor
Bayesian statisticians use probability distributions to
quantify uncertainty or degree of belief about statistical
propositions [25, 26]. For a given statistical model, say
M, the prior distribution or prior p(θ |M) for a parameter
θ is updated after encountering data y to yield a poste-
rior distribution or posterior p(θ |y,M). Bayesian statistics
can be viewed as a method for the rational updating of
beliefs about statistical propositions. Specifically, Bayes’
rule combines the prior, what we believe to be true before
having seen the data, with the likelihood, what the data
tell us we should believe about the data, to obtain the
posterior, what we believe to be true after having seen
the data:

p(θ |y,M) = p(θ |M)p(y|θ ,M)

p(y|M)
= prior × likelihood

marginal likelihood
(1)

In this equation, p(y|M) is the marginal likelihood
of the data, a constant that does not involve θ . The
posterior p(θ |y,M) is a mathematical product of prior
knowledge p(θ |M) and the information coming from
the data p(y|θ ,M); hence, the posterior contains all that
we know about θ (under model M) after observing the
data y.
A similar Bayesian procedure can be used for hypoth-

esis testing. Consider for example the choice between
hypotheses H0 (the null hypothesis) and H1 (the alterna-
tive hypothesis). Bayes’ theorem dictates how the prior
probability of H0, p(H0), is updated through the data to
give the posterior probability of H0:

p(H0|y) = p(H0)p(y|H0)

p(H0)p(y|H0) + p(H1)p(y|H1)
(2)

In the same way, one can calculate the posterior prob-
ability of H1, p(H1|y). These quantities require specifica-
tion of the null hypothesis H0 and the alternative hypoth-
esis H1. A common choice is to specify the hypotheses in
terms of effect size [27]. The null hypothesis then becomes
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H0 : δ = 0 and the alternative hypothesis becomes H1 :
δ �= 0 (or, alternatively, H1 : δ < 0 or H1 : δ > 0).
The ratio of the posterior probabilities is given by

p(H1|y)
p(H0|y) = p(H1)

p(H0)
× p(y|H1)

p(y|H0)
(3)

which shows that the change from prior odds of the
hypotheses p(H1)/p(H0) to posterior odds of the hypothe-
ses p(H1|y)/p(H0|y) is given by the ratio of marginal like-
lihoods p(y|H1)/p(y|H0), a quantity known as the Bayes
factor, or BF [19, 20].
To see how Bayes factors may be obtained for point

null hypotheses, it is illustrative to first consider the cal-
culation of a Bayes factor for interval hypotheses. Let
H0 be that the population effect size falls in an inter-
val around zero: −c < δ < c and let H1 be that
the population effect size does not fall in that interval:
δ < −c or δ > c. We obtain the Bayes factor by cal-
culating (p(H1|data)/p(H1))/(p(H0)/p(H0|data)). The
smaller one chooses c (and therefore the interval around
zero), the more p(H0|data)/p(H0) will dominate in the
calculation of the Bayes factor, as p(H1|data)/p(H1) will
tend to 1. In the limit of a point null hypothesis, one can
get the Bayes factor by calculating p(H0)/p(H0|data), or
by evaluating the ratio of the density of the prior and
the posterior, evaluated at δ = 0. This way of calculat-
ing the Bayes factor for point null hypotheses is known as
the Savage-Dickey procedure, see [28] for a mathematical
proof. Alternatively, one could calculate Bayes factors for
a point null hypothesis over a point alternative hypothesis
(say δ = 0.25), based on prior study results or theoretical
grounds [23].
Bayes factors represent “the primary tool used in

Bayesian inference for hypothesis testing andmodel selec-
tion” [29, p. 378]; Bayes factors allow researchers to
quantify evidence in favor of the null hypothesis vis
à vis the alternative hypothesis. For instance, when a
Bayes factor BF10 = 10, with the subscript meaning
the alternative hypothesis over the null hypothesis, the
observed data are 10 times more likely to have occurred
under the alternative hypothesis than under the null
hypothesis. When BF10 = 1/10 = 0.1, the observed
data are ten times more likely to have occurred under
the null hypothesis than under the alternative hypoth-
esis. As for interpreting the strength of evidence as
quantified by a Bayes factor, an often-used standard
is described in [30]. The authors classify a Bayes fac-
tor between 1 and 3 (or, conversely, between 1/3 and
1) as ‘not worth more than a bare mention’, a Bayes
factor between 3 and 20 (or, conversely, between 1/20
and 1/3) as ‘positive’, and a Bayes factor between 20
and 150 (or, conversely, between 1/150 and 1/20) as
‘strong’.

Foundational work on choosing appropriate priors for
calculating Bayes factors has been done by Jeffreys [19]
and the resulting ‘default’ Bayes factor remains to this
day one of the most popular approaches to obtaining
Bayes factors. We will briefly describe the default Bayes
factor, then discuss more recent extensions to this work
[27, 31].

The default Bayes factor and implementations
Jeffreys’ [19] work applies to situations where the two
hypotheses to be compared break down into a hypothesis
that assigns a single value to the parameter of interest and
a hypothesis that specifies a range of values to the param-
eter of interest. In biomedicine, the practical analogue of
this is a point null hypothesis that specifies δ = 0, where
δ is an effect size parameter, and an alternative hypothesis
that may specify δ < 0, δ > 0, or δ �= 0.
Jeffreys [19] chose a Cauchy prior distributionwith loca-

tion parameter 0 and scale parameter 1 for the effect
size δ parameter. This choice was motivated by the fact
that it led to a Bayes factor of exactly 1 in case of
completely uninformative data, and on the fact that the
Bayes factor would tend to infinity or 1/infinity when
the data are overwhelmingly informative. Mathemati-
cally, this Cauchy prior corresponds to a normal prior
with a mean μδ of zero and a variance g that itself fol-
lows a scaled inverse chi-square distribution with one
degree of freedom, in which the variance is integrated
out [32, 33]. It is important to note that Jeffreys’ choice
of prior was largely motivated by practical reasons, he
had no philosophical objections to more informed pri-
ors. An extensive discussion of desiderata related to the
choice of objective prior distributions may be found
in [34].
The impact of Jeffreys’ default Bayes factor had been

mostly theoretical until quite recently. An online tool was
developed to calculate default Bayes factors for diverse
t-test designs ([27], available at http://pcl.missouri.edu/
bayesfactor). This same group also created the BayesFac-
tor package for the statistical freeware program R
[35]. An alternative group, focusing more on infor-
mative hypothesis testing, developed the Bain package
for the statistical freeware program R [36]. Specialized
point–and–click computer software was created for the
explicit purpose of doing Bayesian analyses [37] which
incorporates many features from the BayesFactor and
Bain packages.
In recent work, derivations and R code are provided for

(among other things) shifting the center of the Cauchy
distribution away from zero [31, code may be found at
https://osf.io/bsp6z/]. The full equation for obtaining the
Bayes factor of the alternative hypothesis δ �= 0 relative to
the null hypothesis δ = 0,BF10, modified from Equation
13 by Gronau et al. [31], is given by

http://pcl.missouri.edu/bayesfactor
http://pcl.missouri.edu/bayesfactor
https://osf.io/bsp6z/
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where n is the sample size, μδ and g are the mean and
standard deviation of the original effect size prior dis-
tribution, t is the t-test statistic, � denotes the Gamma
function, 1F1 denotes the confluent hypergeometric func-
tion, and r denotes the scale parameter of the Cauchy
distribution. This expression allows making modifications
to the prior distribution, such as increasing (decreasing)
the scale parameter r for fields in which high effect sizes
are more (less) frequent and shifting the center of the
prior distribution away from zero for the implementation
of Bayes factors in non-inferiority designs.

Results
In the next subsections, we discuss calculating Bayes fac-
tors specifically for superiority and equivalence designs
(for which the procedure is essentially identical) and
non-inferiority designs. We provide worked examples of
reanalyses of real data from publications of clinical tri-
als for each of these to highlight the calculation of these
Bayes factors, as well as to provide insight into the merits
of this approach over more conventional analyses. Anno-
tated code for conducting these reanalyses is available at
https://osf.io/8br5g/.

Bayes factors for superiority designs
For superiority designs, the null hypothesis is defined as
δ = 0. In order to evaluate this null hypothesis, we can use
the Cauchy prior distribution for effect size δ, centered on
zero. Ample examples of this approach have been reported
elsewhere [12, 38]. Here, we will illustrate this approach
with a reanalysis of data reported in [39].

Superiority of racemic adrenaline and on-demand inhalation
with acute bronchiolitis
In Skjerven et al. [39], the authors examine the compar-
ative efficacy of adrenaline inhalation by means of bron-
chodilators versus control (saline inhalations). Specifi-
cally, they test for superiority of racemic adrenaline over
inhaled saline. In a separate hypothesis, the authors exam-
ine whether administration on a fixed schedule is superior
to administration on demand. In both cases, the primary

outcome is the length of stay in the hospital in hours.
The authors conclude that “In the treatment of acute
bronchiolitis in infants, inhaled racemic adrenaline is not
more effective than inhaled saline. However, the strategy
of inhalation on demand appears to be superior to that
of inhalation on a fixed schedule.” The authors support
their first conclusion with a p-value of .42 and their second
conclusion with a p-value of .01. Note that the p-values
reported by the authors suggest the performed tests were
two-sided, although the study goals are more consistent
with a one-sided test. In what follows, we report both a
one- and two-sided reanalysis.
The reanalysis for the superiority test of racemic

adrenaline over inhaled saline proceeds as follows:

• Obtain the standard error, SEtreat , from the 95%
confidence interval reported in Table 2 of Skjerven
et al. [39]: SEtreat = 11/1.966 ≈ 5.6

• Calculate the t-statistic for the null-hypothesis that
the difference in estimated length of stay between
patients that inhaled racemic adrenaline and patients
that inhaled saline is zero: t = 63.6−68.1

5.6 = −0.80
(which yields a two-sided p-value of .42).

• We use Eq. 4 to calculate a one-sided Bayes factor
quantifying the relative likelihood of the one-sided
alternative of superiority, d < 0, versus the null
hypothesis of no effect, d = 0, given the data (BF−0).
This leads to BF−0 = 0.24 (or BF0− = 4.23),
indicating that the null-hypothesis is over 4 times
more likely than the one-sided alternative, given the
data. The corresponding Bayes factor for a two-sided
test is BF10 = 0.15 (or BF0− = 6.64), indicating that
the null-hypothesis is over 6 times more likely than
the two-sided alternative, given the data.

These and other superiority Bayes factors can be
obtained by providing values for the confidence interval
margin, sample size n, and group means to the script:
CImar = (15.5 − (−6.5))/2, n1 = 203, n2 = 201,M1 =
63.6, and M2 = 68.1 (further details can be found in the
annotated code). This reanalysis corroborates the finding

https://osf.io/8br5g/
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of the original authors, who found no significant differ-
ence between racemic adrenaline and inhaled saline. The
Bayes factor indicates that the null hypothesis is a little
over four times more likely than the one-sided alternative
of superiority, given the data.
A similar reanalysis for the superiority of fixed sched-

ule inhalation over inhalation on demand yields a one-
sided Bayes factor BF0− = 31.48 indicating that the null
hypothesis is over 31 times more likely than superiority
of fixed schedule inhalation over inhalation on demand,
given the data. In the sample data, the trend is actually
in the direction indicating superiority of inhalation on
demand over fixed schedule inhalation. Given that the
one-sided test compares two inappropriate hypotheses,
we consider the results of a two-sided test more appro-
priate here. The Bayes factor in favor of a two-sided alter-
native, BF10, equals 2.24 (recall that [30] classify Bayes
factors lower than 3 as not worth more than a bare men-
tion). This finding tempers the conclusion of the original
authors: although the data is slightly more consistent with
the two-sided alternative hypothesis than with the null
hypothesis, the Bayes factor suggests that the evidence is
ambiguous and that more study is needed.
In sum, we have seen that Bayes factors can augment

interpretation of the statistical evidence for superiority
designs in important ways: we can quantify the strength
of evidence of one hypothesis relative to another one; and
we can explicitly quantify evidence in favor of the null
hypothesis. The latter is particularly important for the
evaluation of equivalence designs, to which we now turn.

Bayes factors for equivalence designs
The objective of equivalence designs is to show that “the
new treatment is at least as good as (no worse than) the
existing treatment” [1]. Under a classical NHST approach,
it is not possible to test for equivalence directly (the null
hypothesis cannot be confirmed). As a result, equivalence
needs to be tested by proxy by constructing a band around
δ = 0 of 2c and evaluating two null hypotheses: δ = −c
and δ = c.
From a Bayesian perspective, the procedure is similar

to that of the procedure for superiority designs. Instead
of examining the Bayes factor’s strength of evidence in
favor of H1, we now examine the strength of evidence in
favor of H0. This removes the ambiguity associated with
the traditional approach to equivalence testing. Examine
for instance the example where equivalence was demon-
strated in Fig. 1 (the fifth row). Equivalence was estab-
lished, because both δ = −c and δ = c are rejected
(i.e., the confidence interval lies fully between these two
boundaries). However, the confidence interval does not
overlap with δ = 0, suggesting that the effect size is
not zero, which is a counter-intuitive conclusion to draw
simultaneously with the conclusion of equivalence.

Note that it is possible to calculate a Bayes factor for
the same band around δ = 0 of 2c, but there is no need
as the evidence in favor of δ = 0 can be quantified
directly. Because of this, the Bayes factor approach sim-
plifies testing for equivalence, such that no arbitrary band
needs to be established. Furthermore, one is allowed to
make claims about the absence of an effect, something
that is not possible with the conventional NHST approach.
We will illustrate this approach with a reanalysis of data
reported in [40].

Equivalence between short- and long-term storage of
red-cells on theMultiple Organ Dysfunction Score
In Steiner et al. [40], the authors examine the proper-
ties of the duration of storage for red-cells intended for
transfusion. The authors assert that there is considerable
uncertainty about potentially deleterious effects of long-
term storage of red-cells before transfusion. In this study,
the authors examine whether there are differences on
the Multiple Organ Dysfunction Score (MODS) between
patients that receive red-cells for transfusion that have
been stored a short time (10 days or less) versus a long
time (21 days or more). Although the authors do not
explicitly conduct an equivalence design, the implicit goal
seems to be to test whether or not longer storage of red
cells is harmful. The authors conclude that “duration of
red-cell storage was not associated with significant differ-
ences in the change in MODS”. The authors support this
claim with a p-value of 0.44.
The application of the conventional NHST does not

allow us to make any definite claims about the absence
of a difference. In this demonstration, we reanalyze these
data and calculate a Bayes factor to quantify the strength
of evidence for equivalence provided by the data. For the
analyses, we make use of the data presented in Table 2 of
Steiner et al. [40]. In this table, the means are rounded
to one decimal. To approximate the original analysis as
accurately as possible, we work with means of 8.516 and
8.683 (reported means are 8.5 and 8.7, respectively) to
approximate the reported p-value as closely as possible.
For calculation of the Bayes factor, we assume a Cauchy
prior centered on δ = 0.
The reanalysis for the equivalence test of short- versus

long-term storage of red-cells now proceeds as follows:
• Calculate the t-statistic for the null-hypothesis that

the difference in MODS scores between patients that
were administered red-cells that were stored short-
versus long is zero: t = 8.516−8.683

3.6
√
1/538+1/560 = −0.77.

• We use Eq. 4 to calculate a two-sided Bayes factor
quantifying the relative likelihood of the hypotheses
d = 0 versus d �= 0 given the data (BF01). This leads
to BF01 = 11.04, indicating that the null-hypothesis
is over 11 times more likely than the two-sided
alternative, given the data.
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These and other equivalence Bayes factors can be
obtained by providing values for the sample size n, group
means, and group sds to the script: n1 = 538, n2 = 560,
M1 = 8.516, and M2 = 8.683, sd1 = 3.6, and sd2 =
3.6 (further details can be found in the annotated code).
This reanalysis corroborates the finding of the original
authors, but allows us to go beyond the original claim by
stating we have found evidence in favor of equivalence
between short-term and long-term storage of red-cells as
far as MODS scores are concerned. The Bayes factor lies
between 3 and 20, which may be interpreted as positive
evidence in favor of equivalence.
Steiner et al. [40] do not provide an equivalence margin,

but it is important to stress that if they had, a Bayes fac-
tor for the relative likelihood of the population parameter
being inside versus outside of this equivalence band can
easily be calculated as well. Say, for instance, that c = 0.05,
then the two-sided Bayes factor quantifying the relative
likelihood of the nul hypothesis −c < d < c versus the
alternative hypothesis d < −c or d > c given the data is
19.09.

Bayes factors for non-inferiority designs
In a traditional NHST approach, a non-inferiority design
specifies a null-hypothesis of δ = −c, and requires a one-
sided z- or t-test (or construction of a confidence interval).
The crucial test is whether this test rejects or fails to reject
inferiority (see Fig. 2, left panel).
The NHST approach for non-inferiority houses some

unfortunate inconsistencies. Take for instance the top
confidence interval in the left panel. This is an exam-
ple of a situation where the null-hypothesis of inferiority
gets rejected. From an NHST perspective, there is noth-
ing wrong with this conclusion, as the confidence interval
overlaps with zero, making the conclusion “non-inferior”
warranted within that framework.

By contrast, examine the middle confidence interval in
the left panel. Again, the null-hypothesis of inferiority
gets rejected. This time, the implications are a bit less
clear, because the confidence interval does not overlap
with zero. From an NHST perspective, one would simul-
taneously reject the inferiority hypothesis and a classical
one-sided null-hypothesis, reaching opposite conclusions.
This makes it somewhat unclear if the conclusion “non-
inferior” is really warranted here.
Finally, the bottom confidence interval in the left panel

shows the scenario where the “inferior” null-hypothesis
cannot be rejected. From an NHST perspective, we
are unable to draw any further conclusions: is the
drug/treatment inferior, or was the trial underpowered?
The Bayesian approach is not hampered by these pit-

falls in interpretation. A Bayesian is concerned with the
two hypotheses depicted in the right panel of Fig. 2.
In [41] Bayesian approaches for non-inferiority trials are
discussed (see also [42–44]), but discussion of the imple-
mentation of Bayes factors is limited to dichotomous data
[45]. Here, we propose to calculate Bayes factors for con-
tinuous data, using the same principle as for superiority
and equivalence designs illustrated above. The Bayes fac-
tor in this case quantifies the relative likelihood of the data
having occurred given inferiority versus the likelihood of
the data having occurred given non-inferiority.
Analogous to the Bayes factor for superior-

ity/equivalence designs, we use the Cauchy prior
distribution for effect size δ, centered on zero. The clas-
sical z- or t-statistics were evaluated against δ = −c. In
order to maintain the theoretical property of the prior
being centered on zero as specified in Jeffreys work, we
shift the center of the Cauchy prior distribution to c. The
easiest way to see why this is so is by imagining adding
c to all data-points, all hypotheses, and all distributions,
so that we evaluate the t-test for null hypothesis δ = 0.

Fig. 2 Non-inferiority design within an NHST framework (left) and a Bayesian framework (right). See text for details
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The resulting test statistic will not change, as the data
and the hypotheses have shifted by the same amount, but
the prior distribution is now centered at c. Equation 4
allows for different specifications (for instance, a prior
centered on the non-inferiority margin), but for these
examples, we will keep the prior consistent across
the design types. We will illustrate this approach with
two examples. We first reanalyze dichotomous data
published in [46], and then reanalyze continuous data
published in [47].

Non-inferiority of beta-lactam
In [46], the authors examine antibiotic treatments for
patients with clinically suspected community-acquired
pneumonia (CAP). Specifically, guidelines recommend
supplementing administration of beta-lactam with either
macrolides or fluoroquinolones. The authors state that
there is limited evidence that macrolides and/or fluoro-
quinolones have added benefits over the administration of
just beta-lactam. In this study, the authors “tested the non-
inferiority of the beta-lactam strategy to the beta-lactam-
macrolide and fluoroquinolone strategies with respect to
90-day mortality using a noninferiority margin of 3 per-
centage points and a two-sided 90% confidence interval.”
The authors conclude that “the risk of death was higher
by 1.9 percentage points (90% confidence interval [CI], -
0.6 to 4.4) with the beta-lactam-macrolide strategy than
with the beta-lactam strategy and lower by 0.6 percent-
age points (90% CI, -2.8 to 1.9) with the fluoroquinolone
strategy than with the beta-lactam strategy. These results
indicated noninferiority of the beta-lactam strategy.”
Sample sizes in the beta-lactam, beta-lactam-macrolide,

and beta-lactam-fluoro-quinolone groups are 656, 739,
and 888, respectively. The crude 90-day mortality was
9.0% (59 patients), 11.1% (82 patients), and 8.8% (78
patients), respectively, during these strategy periods. In
this demonstration, we reanalyze these data and do two
Bayesian tests for non-inferiority. For the analyses, we
make the following assumptions:

• The critical non-inferiority tests compare two
proportions. Like the original authors, we use the
normal approximation for the sampling distribution
of proportions. In all three groups, sample sizes are
sufficiently large to make this a safe assumption.

• The Bayes factor approach requires specifying the
non-inferiority margin in terms of effect size Cohen’s
d. Cohen’s h for proportions has similar properties to
Cohen’s d for continuous data. Converting the 3
percentage points yields a Cohen’s h of
2 ∗ arcsin(

√
59+82

656+739 ) − 2 ∗ arcsin(

√
59+82

656+739 − .03) =
0.11. Going forward, we will refer to this value as h.

• The equation we use to calculate the relevant Bayes
factors, Equation 4, assumes a t-test statistic. For

these sample sizes, the t-statistic is virtually
indistinguishable from the Z-statistic provided by the
normal approximation.

With these assumptions in place, the reanalysis for the
beta-lactam versus beta-lactam-macrolide groups now
proceeds as follows:

• Calculate the Z-statistic for the null-hypothesis that
the difference in proportions of mortality in the
beta-lactam group and the beta-lactam-macrolide
group is .03: Z =

59/656−82/739−.03√
(59+82)/(656+739)×(1−(59+82)/(656+739))×(1/656+1/739)= −3.16.

• We use Eq. 4 to calculate a one-sided Bayes factor
quantifying the relative likelihood of the hypotheses
h < 0.11 versus h = 0.11 given the data (BF−h), and
to calculate a one-sided Bayes factor quantifying the
relative likelihood of the hypotheses h = 0.11 versus
h > 0.11 given the data (BFh+).

• Finally, we use the principal of transitivity,
BF−+ = BF−h × BFh+. BF−+ quantifies the relative
evidence for non-inferiority (difference in mortality
rate is lower than 3 percentage points) versus
inferiority (difference in mortality rate is higher than
3 percentage points), given the data. For these data,
BF−+ = 1307.76, indicating that the non-inferiority
hypothesis is over 1300 times more likely than the
inferiority hypothesis, given the data.

These and other non-inferiority Bayes factors for pro-
portions can be obtained by providing values for the
sample size n, mortality count k, and the non-inferiority
margin to the script: n1 = 656, n2 = 739, k1 = 59, k2 =
82, and NImar = 0.03 (further details can be found in
the annotated code). A similar reanalysis for the beta-
lactam versus beta-lactam-fluoroquinolone groups yields
BF−+ = 39.07, indicating that the non-inferiority hypoth-
esis is almost 40 times more likely than the inferiority
hypothesis, given the data. Thus, our results corroborate
those of the original authors, we find non-inferiority
for beta-lactam versus beta-lactam-macrolide and beta-
lactam-fluoroquinolone. The Bayes factors allow us to
make claims about the strength of evidence, with sup-
port for non-inferiority of beta-lactam compared to beta-
lactam-fluoroquinolone being strong, and support for
non-inferiority of beta-lactam compared to beta-lactam-
macrolide being overwhelming.
The above example demonstrates calculation of the

Bayes factor for non-inferiority trials with dichotomous
outcome measures. We now turn to a second example
of our approach that showcases the application of our
method for outcome data that is measured on a continu-
ous scale.
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Non-inferiority of internet-delivered cognitive behavior
therapy
In [47], the authors examine the efficacy of internet-
delivered cognitive behavior therapy (ICBT) in the treat-
ment of mild to moderate depression symptoms, specif-
ically by comparing its effectiveness to the ‘regular’
group-based cognitive behavior therapy (CBT). Depres-
sion symptoms are measured with the self-rated ver-
sion of the Montgomery-Asberg Depression Rating Scale
(MADRS). The authors define inferiority as a two-point
difference on the MADRS between CBT and ICBT. The
authors assess non-inferiority directly post-treatment and
in a three-year follow-up and conclude that “Results
on the self-rated version of the Montgomery-Asberg
Depression Scale showed significant improvements in
both groups across time indicating non-inferiority of
guided ICBT.”
Sample sizes in the ICBT and CBT groups are 32 and

33 respectively post-treatment and 32 and 30 respectively
in the three year follow-up. In this demonstration, we
reanalyze these data and do two Bayesian tests for non-
inferiority. For the analyses, we make use of the data
presented in Table 2 of Andersson et al. [47].
The reanalysis for the ICBT versus CBT groups now

proceeds as follows:

• The Bayes factor approach requires specifying the
non-inferiority margin in terms of effect size Cohen’s
d. Converting the 2 point difference yields a Cohen’s
d of dpost = 2/

√
31∗9.82+32∗82

63 ≈ 0.22 for the post-

treatment group and d3 = 2/
√

31∗7.62+29∗8.72
60 ≈ 0.25

for the three year follow-up group.
• Calculate the t-statistic for the null-hypothesis that

the difference in MADRS scores in the ICBT group
and the CBT groups is 2:
tpost = 13.6−17.1−2√

31∗9.82+32∗82
63 ×√

1/32+1/33
= −2.48.

• We use Eq. 4 to calculate a one-sided Bayes factor
quantifying the relative likelihood of the hypotheses
dpost < 0.22 versus dpost = 0.22 given the data
(BF−d), and to calculate a one-sided Bayes factor
quantifying the relative likelihood of the hypotheses
dpost = 0.22 versus dpost > 0.22 given the data
(BFd+).

• Finally, we use the principal of transitivity,
BF−+ = BF−d × BFd+. BF−+ quantifies the relative
evidence for non-inferiority (difference in depression
scores is lower than 2 points) versus inferiority
(difference in depression scores is higher than 2
points), given the data. For these data, BF−+ = 90.52,
indicating that the non-inferiority hypothesis is over
90 times more likely than the inferiority hypothesis,
given the data.

These and other non-inferiority Bayes factors for con-
tinuous data can be obtained by providing values for the
sample size n, group means, group sds, and the non-
inferiority margin to the script: n1 = 32, n2 = 33,M1 =
13.6, and M2 = 17.1, sd1 = 9.8, sd2 = 8, and NImar =
2 (further details can be found in the annotated code).
A similar reanalysis for the three year follow-up non-
inferiority test yields BF−+ = 353.61. Thus, our results
corroborate those of the original authors, we find non-
inferiority for ICBT versus CBT directly after treatment
and in a three-year follow-up. Note that despite the rel-
atively small sample size, the Bayes factors quantifying
strength of evidence in favor of non-inferiority are sub-
stantial, highlighting one of the advantages of quantify-
ing evidence with Bayes factors: a clear measure of the
strength of evidence for one hypothesis relative to another
that can be used to compare evidence across studies.

Discussion
In this paper, we showed worked examples of the applica-
tion of default Bayes factors to superiority, non-inferiority,
and equivalence designs. In each of these cases, we believe
that application of Bayes factors brings significant advan-
tages. For superiority and equivalence designs alike, it is
possible to explicitly quantify evidence in favor of the
null hypothesis. For equivalence studies, specification of
a potentially arbitrary band of equivalence is no longer
necessary. For non-inferiority and equivalence designs
alike, the interpretational hazard of simultaneously claim-
ing non-inferiority/equivalence on one hand, but rejecting
the null hypothesis of an effect size of zero on the other
hand, disappears. The Bayes factor offers a way to quan-
tify each of these types of evidence in a compelling and
straightforward way.
Some caveats to this kind of analysis should be con-

sidered. First of all, much like in NHST, one-tailed and
two-tailed tests can give strikingly different results when
the difference between groups is in the opposite direction
of the one specified by the one-tailed test. We have seen
such a scenario in our example for the superiority design,
where we obtained BF0− = 31.48 indicating that the null
hypothesis is over 30 times more likely than superiority
for our one-tailed test and BF10 = 2.24 indicating that the
alternative hypothesis is slightly more likely than the null
hypothesis for our two-tailed test. An illustration of how
such discrepancies come about is given in Fig. 3.
The two panels demonstrate a two-sided Bayes fac-

tor (left) and a one-sided Bayes factor (right), calculated
based on the same hypothetical prior (N(0, 1)) and pos-
terior (N(1, 0.75)) distributions for effect size. In both
cases, the Bayes factor is obtained by dividing the den-
sity of the prior, evaluated at zero, by the density of the
posterior, evaluated at zero (i.e., the black dot divided
by the red dot). For the one-sided Bayes factor, both
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Fig. 3 Hypothetical two-sided Bayes factor (left) and one-sided Bayes factor (right) for the same prior (black) and posterior (red) distribution on
effect size

distributions are truncated at zero. Because both dis-
tributions are normalized to have a density of 1, the
effect of this truncation is especially strong for a dis-
tribution that falls almost entirely inside the truncated
region, such as in the posterior distribution of our exam-
ple data here and in the [39] superiority design data
we reanalyzed. As a result, the Bayes factors in Fig. 3
lead to opposite conclusions, depending on whether the
test was designed to be one-tailed or two-tailed. This
example demonstrates that it is crucial to think about
the hypotheses one wishes to test and the direction
of testing before one obtains the data. Similar consid-
erations apply when testing within the classical NHST
framework.
Secondly, in NHST the status of α = 0.05 is well estab-

lished as a cut-off for significance (but see citeBenjaminE-
tAl2018). Bayesian inference does not have such universally
agreed upon decision thresholds. Although different
suggestions are offered in the literature [19, 30, 48],
the authors caution against too rigid interpretation of
these labels. We would argue that every cut-off value one
chooses is to some extent arbitrary. With Bayes factors,
one can at least choose a symmetrical cut-off score (for
instance, we test until one hypothesis is 20 times more
likely than the other given the data, so BF10 = 20 or

BF10 = 1/20 = 0.05), whereas no such symmetry can be
obtained with a p-value.
Thirdly, there are different ways to calculate Bayes fac-

tors [45]. Arguably the most important determinant for
differences in Bayes factors stem from the choice of the
underlying prior. Taking as an example the category of
Bayes factors that assume a prior distribution on effect
size, a prior that places a relatively high weight on an
effect size of zero (i.e., is tightly peaked around zero),
will lead to a relatively large Bayes factor in favor of the
alternative hypothesis if the sample effect size is relatively
different from zero. For reasonable priors, the effect of the
choice of prior on the Bayes factor appears to be mostly
quantitative and unlikely to alter the qualitative conclu-
sions [31]. Nevertheless, in specific applications, these
default prior analyses can be supplemented by substan-
tive knowledge based on earlier experience. With a more
informative prior distribution, the alternative hypothesis
will make different predictions, and a comparison with the
null hypothesis will therefore yield a different Bayes fac-
tor. The more informed the prior distribution, the more
specific the model predictions, and the more risk the ana-
lyst is willing to take. Highly informed prior distributions
need to be used with care, as they may exert a dominant
effect on the posterior distribution, making it difficult to
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“recover” once the data suggest that the prior was ill-
conceived. With informed prior distributions, it is wise
to perform a robustness analysis to examine the extent
to which different modeling choices lead to qualitatively
different outcomes.

Conclusions
Our paper offers an easy way of calculating Bayes factors
for superiority, equivalence, and non-inferiority designs
that is consistent across methods and scale of the outcome
measure. With increasing accessibility of software aimed
to conduct Bayesian inference [37], the absence of tools
necessary to obtain Bayes factors is no longer a reason
to refrain from using Bayesian analyses. We recommend
standard consideration of Bayesian inference in clinical
trials for obtaining strength of evidence that is consistent
across studies.
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