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Inhalation of vaccines and antiviral drugs to fight respiratory 
virus infections: reasons to prioritize the pulmonary route 
of administration
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ABSTRACT Many of the current pandemic threats are caused by viruses that infect the 
respiratory tract. Remarkably though, the majority of vaccines and antiviral drugs are 
administered via alternative routes. In this perspective, we argue that the pulmonary 
route of administration deserves more attention in the search for novel therapeutic 
strategies against respiratory virus infections. Firstly, vaccines administered at the viral 
portal of entry can induce a broader immune response, employing the mucosal arm 
of the immune system; secondly, direct administration of antiviral drugs at the target 
site leads to superior bioavailability, enabling lower dosing and reducing the chance of 
side effects. We further elaborate on why the pulmonary route may induce a superior 
effect compared to the intranasal route of administration and provide reasons why dry 
powder formulations for inhalation have significant advantages over standard liquid 
formulations.

KEYWORDS respiratory viruses, mucosal immunity, antiviral agents, inhalation, 
vaccines, dry powder formulation, pulmonary administration, dry powder inhaler, IgA, 
aerosols, spray drying, SARS-CoV-2

M ost of the pandemics of the last centuries have originated from viruses that have 
evolved to infect the respiratory tract, primarily because, via this route, they can 

easily be transmitted between hosts (1). For effective vaccination, therefore, it would be 
intuitive to target the viral portal of entry, thereby exploiting the local immune system 
that was developed during millennia of evolution. Likewise, it also seems rational to 
use the pulmonary route of administration for antiviral drugs, since this could multiply 
the drug’s efficacy at the site of infection. Paradoxically though, among all routes of 
administration, the pulmonary route is often neglected with the vaccination dogma still 
being centered around injection-based administration (2) and most of the approved 
antiviral drugs being administered via the oral route. This is highly remarkable consider­
ing the fact that more than 50 years ago, the efficacy of inhaled vaccines in humans 
was already described (3, 4). Furthermore, a range of bacterial infections and chronic 
lung diseases are already treated successfully with inhalable drugs for decades (5, 6). 
We, therefore, argue that, in light of pandemic preparedness, it will be essential not 
only to focus on the development of novel drugs or vaccines but also to consider the 
administration route. Specifically, more attention should be paid to the administration 
of vaccines and antiviral drugs by inhalation in order to directly act at the viral portal of 
entry, which is the respiratory tract.

THE RATIONALE BEHIND INHALATION OF VACCINES

While proven successful for measles, mumps, and rubella (MMR) viruses, most respiratory 
viruses are less effectively counteracted with injected vaccines. This is partly due to 
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the fact that these viruses do not rely on viremia (systemic spread) and have shorter 
incubation times that are not sufficient for stimulating systemic and long-lasting immune 
responses. For this reason, the vast majority of the currently licensed injectable vaccines 
induces only moderate immunity (1). In addition, the high mutation rate of certain 
viruses (e.g., influenza and SARS-CoV-2) requires the continuous development of novel 
vaccines that carry (or encode for) epitopes that better match the circulating virus. To this 
end, the pulmonary route of administration could be of high importance in inducing an 
immunological response that more closely resembles the response to a natural infection 
and leads to a broadened immune repertoire.

Unlike injectable vaccines, inhalable vaccines have the capacity to prime local 
IgA-mediated immune responses that are induced in specialized mucosa-associated 
lymphoid tissues (MALT) present along the respiratory tract (7). These responses aid in 
preventing future infections via neutralizing dimeric IgA antibodies that are secreted 
into the airway lumen (2). The importance of these secretory IgA (SIgA) antibodies in 
the neutralization of respiratory virus infections has been acknowledged in a plethora 
of studies, as comprehensively outlined recently by Morens et al. (1). It is therefore of 
relevance to note that significantly higher levels of IgA antibodies may be reached when 
the vaccine is targeted to the lungs (8–10). Also, IgA has been implicated to be more 
cross-reactive than IgG (1). Therefore, inhalation of vaccines may lead to an immune 
response that is more representative of the response following a natural infection. Upon 
reinfection, this could aid in the neutralization of the virus at the earliest stage, thereby 
preventing transmission between susceptible individuals. This, in turn, may lead to a 
reduction in the number of booster doses that are needed for prolonged protective 
immunity.

The benefits of inhalation as an administration route for vaccines against respiratory 
viruses (e.g., measles and influenza vaccines) have been confirmed in several studies, 
as reviewed before (2). Many clinical studies that have assessed the effectiveness of, 
for instance, inhaled liquid influenza vaccines have shown better protection against 
reinfection and a reduced occurrence of influenza-related illness compared to patients 
who received the vaccine via the subcutaneous route. In addition, inhaled forms of 
measles vaccines have also been shown to lead to superior antibody responses in several 
cases compared to subcutaneously administered vaccines (2). A few striking examples 
come from large vaccination trials in school children receiving an aerosolized live-atte­
nuated measles vaccine (11, 12). After revaccination via the aerosol route, seropositive 
individuals were detected even 6 years after the booster immunization had taken place 
(12). In contrast, some studies have shown inferiority of the aerosolized method over 
the injection method, but it is argued that this may be the result of poor delivery of the 
vaccine to the lower parts of the respiratory tract where the attenuated virus is required 
to replicate (13). A recent global spike in measles cases, related to a declined vaccination 
coverage, once again underlines the relevance of alternative immunization strategies 
that are suitable for mass-vaccination campaigns (14).

Over recent years, there has been an upsurge of studies exploring mucosal routes of 
administration, especially in light of the COVID-19 pandemic (15). For novel mRNA-based 
vaccines in particular, it may be beneficial to introduce the vaccine at the natural site of 
infection (16), considering the fact that Moderna’s novel mRNA-1010 vaccine candidate 
against influenza has thus far failed to surpass the noninferiority threshold for influenza 
B strains after parenteral administration (17). Furthermore, the benefits of using the 
respiratory route for booster vaccination against SARS-CoV-2 have already led to the 
first-ever conditional approval of a nebulized viral vector vaccine (Ad5-nCoV, produced 
by CanSino Biologics) for inhalation in China (18, 19). A recently published phase-3 
trial has shown that the inhaled vaccine, administered as a heterologous booster, was 
superiorly effective in inducing seroconversion 14 days post-immunization (reaching a 
geometric mean neutralizing IgG-titer of 91.4) compared to the intramuscularly injected 
whole inactivated virus vaccines (19.1). Importantly, it also conferred protection against 
drifted Omicron variants (20). In addition, the aerosolized vaccine led to superior T cell 
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activation and induced increased levels of both serum- and mucosal IgA antibodies. 
Furthermore, as reported in a previous trial, using only one-fifth of the dose used for the 
injection regimen, the vaccine led to less reported side effects than the same vaccine 
administered intramuscularly (21).

SHOULDN’T WE GO INTRANASALLY?

When considering the respiratory tract for vaccine delivery, most studies focus on nasal 
immunization instead of targeting the lungs, as exemplified by SARS-CoV-2 vaccine 
candidates (15). This is likely due to two reasons. Firstly, nasal immunization is attrac­
tive due to its relative ease of administration compared to pulmonary administration. 
Secondly, there usually is a high abundance of viral attachment receptors on the ciliated 
epithelia of the upper respiratory tract (22, 23). Although nasal vaccination strategies 
against SARS-CoV-2 have shown encouraging results in a variety of preclinical studies 
(24–30), studies in humans have thus far failed to meet up their expectations (15, 31, 32), 
or did not report any clinical trial data (33). A possible explanation that has been given 
for this discrepancy is that a significant portion of the vaccine may have been swallowed 
or cleared by the mucociliary escalator before being able to adequately stimulate the 
immune system (31). In contrast, intranasal instillation of laboratory animals usually 
happens under mild sedation. Therefore, the swallowing reflex is suppressed, enabling 
a large proportion of the vaccine to be distributed into the lungs (34). Because of this, 
there may be a discrepancy between the outcomes of preclinical and clinical studies 
leading to translational gaps. Also, as the mentioned clinical studies were performed 
on naive individuals who had no pre-existing memory response against SARS-CoV-2, 
the immune system may not have been able to rapidly react (31, 32). Supportive of 
this hypothesis is the fact that the only FDA/EMA-approved intranasal vaccine to date 
is directed at the influenza virus (FluMist), to which most of the vaccinated population 
have immunological memory (35, 36). For this reason, we believe the pulmonary route in 
general could be a more attractive target for generating a robust immune response than 
the nasal route of administration.

Although not many studies have directly compared the pulmonary route of 
immunization with the intranasal route (i.e., lower respiratory tract versus upper 
respiratory tract administration), the pulmonary route has been shown to lead to 
superior outcomes in both preclinical (13, 37, 38) as well as clinical studies (39). In this 
regard, some studies have shown that even non-respiratory infections such as human 
papilloma virus (39) or hepatitis B (40) could benefit from pulmonary administration 
as long as the vaccine reaches the lower airways. Of interest, also bacterial vaccines 
have been shown to lead to enhanced protective efficacy against challenges when 
administered pulmonary compared to intranasally, again favoring the lower respiratory 
tract as the target site (41, 42). A recent study on a pulmonary administered SARS-CoV-2 
subunit vaccine in mice has shown comparable efficacy upon both administration via 
the pulmonary route and via the intranasal route (43). However, as the mice were 
anesthetized prior to intranasal instillation (thus enabling the vaccine to distribute into 
the lungs), it is yet to be determined whether this also holds true for the clinical setting. 
Nevertheless, a dry powder formulation for inhalation of the vaccine is currently in 
development (43).

THE RATIONALE BEHIND INHALATION OF ANTIVIRAL DRUGS

While they are a vital component of global health care, the biggest caveat of vaccines 
is that they only work prophylactically and need a window of weeks before building an 
effective and durable immune response. Therefore, antiviral drugs are essential especially 
during the early stages of a viral outbreak when vaccination campaigns are not yet fully 
at scale. The importance of this was exemplified at the beginning of the SARS-CoV-2 
pandemic during which major hospitalization rates led to an unmanageable burden on 
hospital care and COVID-19 incidence around the world (44–46).
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As with vaccines, an important aspect of successful treatment is the administra­
tion route. In this regard, there are several benefits of using the pulmonary route 
for the administration of antiviral drugs against respiratory viruses. In contrast to 
orally administered drugs, direct administration to the respiratory tract causes superior 
bioavailability of the drug at the primary site of action as it does not rely on the systemic 
circulation to be delivered at the target site and is, therefore, not affected by the hepatic 
first-pass effect (47). This enables lower dosing. As a consequence, the chances for 
(severe) adverse events are lower. Especially for respiratory viruses such as SARS-CoV-2 
and influenza, inhaled antivirals can be a good addition to the currently approved 
treatment regimens, as has been pointed out in several studies (48–53). Considering 
these benefits, it is highly remarkable that, in addition to vaccines, the pulmonary 
route of administration is not used more often for the administration of antiviral drugs. 
While three out of 10 treatable viruses infect the respiratory tract, only two out of the 
±80 currently FDA-approved antiviral drugs and combination therapies (2.5%) can be 
administered via inhalation (i.e., ribavirin and zanamivir). In fact, the most common 
administration route for antiviral drugs is still the oral route (Fig. 1). This is remarkable 
as inhalation of pharmaceutical compounds for the treatment of common lung diseases 
is widespread (5) and has its origin in ancient history (54). Also, bacterial infections of 
the lower respiratory tract are already treated successfully with inhalable antibiotics and 
several other inhaled antibiotics are currently in development (55). Furthermore, even 
pulmonary bacteriophage therapy is gaining traction (56).

WHY DRY FORMULATIONS OF VACCINES AND ANTIVIRAL DRUGS FOR 
INHALATION ARE THE WAY TO GO

Although mRNA vaccines against COVID-19 have proven to be highly efficacious in 
preventing severe disease, they require storage (and transportation) at −80º or −20º 
which puts an enormous burden on the distribution of vaccines around the world. 
We, therefore, argue that one of the major opportunities for the field of pulmonary 
administered vaccines and antiviral drugs is to formulate them as thermostable dry 
powders. The advantage of this is that, when formulated correctly either with or 
without the use of stabilizing excipients, they can be stored at ambient temperatures 

FIG 1 FDA-approved antiviral drugs and combination regimens divided over the administration route (data derived from reference 57 and via a comprehensive 

search on www.drugs.com). Some drugs that are included in the graph are approved for administration via several routes, namely, acyclovir (oral, intravenous, 

and buccal), interferon alfa-2b (intramuscular and subcutaneous), letermovir (oral and intravenous), and ribavirin (oral and pulmonary).
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because they are less thermosensitive than liquid formulations. In addition, they are 
lighter in weight which benefits bulk storage and transportation. Another advantage of 
dry powder formulations compared to liquid formulations is that they can be admin­
istered via single-use inhalers that are easier to operate by the patient and can be 
disposed of (or even recycled) afterwards (58). Such dry powder inhalers do not rely 
on laborious procedures that require an external power source, as is the case with for 
instance nebulized ribavirin treatment against respiratory syncytial virus infection. This 
may tremendously increase both patient compliance and comfort. Also, in contrast to 
metered-dose inhalers, dry powder inhalers can carry drugs that need to be adminis­
tered at a high dose. Apart from these advantages, to our best knowledge, no single 
inhalable dry powder vaccine is currently in (clinical) development. The only dry powder 
formulation that is currently approved by the FDA for inhalation is the anti-influenza 
drug zanamivir.

With regard to dry powder vaccine formulations for inhalation, it needs to be ensured 
that a proper drying technique is used that (i) can be scaled up for industrial applications, 
(ii) yields particles with a proper (aerodynamic) size distribution, and (iii) is not detrimen­
tal to the chemical integrity of the vaccine. A method that has been widely explored 
in this regard is spray drying, as comprehensively reviewed recently (59). With this 
technique, the vaccine solution is dried under a hot stream of inert gas in a tweakable 
process, yielding particles with a desirable size distribution. By incorporating stabilizing 
glass-forming excipients, such as sugars like inulin or trehalose, the vaccine can be 
protected from heat-, shear-, and evaporation-induced stresses. Using the spray drying 
method, various types of vaccines have been successfully processed into dry powders 
for inhalation while retaining their activity, such as whole-inactivated virus vaccines, 
live-attenuated vaccines, and subunit vaccine formulations (59, 60).

Arguments against the use of dry powder formulations for inhalation have recently 
been outlined (61). They include that the effectiveness of an inhaled drug or vaccine 
may be limited by the capacity of the patient to perform a correct inhalation maneu­
ver. If performed incorrectly, this may lead to differences in the delivered dose. It is, 
therefore, of importance that inhalers are designed in such a way that both makes the 
inhaler’s performance insensitive to the naturally occurring variations in inhalation and 
that ensures that a correct inhalation is performed upon intuitive use. In addition, the 
patient should receive clear instructions about the correct inhalation technique and the 
necessity of therapy adherence (61). Other arguments involve the potential environmen­
tal impact of dry powder inhalers. However, partly due to their suitability for recycling, 
this does not necessarily outweigh the impact of syringe- and needle waste. Moreover, 
as the highly energy consuming cold chain can be omitted for these thermostable and 
relatively lightweight vaccine and antiviral drug powders, the environmental impact as 
well as potentially increased costs are in part canceled out. Nevertheless, in relation to 
the inability of some patient groups (e.g., infants and cognitively or physically impaired 
patients) to correctly use inhalers, the importance of offering multiple administration 
routes, i.e., oral or injection-based or via nebulization methods remains.

A CALL FOR ACTION

Although the emergence of SARS-CoV-2 in 2019 initiated an unmet acceleration in 
research and development of both vaccines and antiviral drugs, the pressure of 
(emerging) viruses with pandemic potential has not yet declined. In fact, while we are 
still in the aftermath of the COVID-19 crisis, the next pandemic might already be lurking 
around the corner. An example of such a pandemic threat is the H5N1 bird flu, which has 
killed an astounding number of (at least) 50 million birds in recent years and has already 
caused multiple spillovers to mammals, including humans (62). Largely due to external 
factors such as (the indirect effects of ) climate change (63, 64), intensive farming (65, 
66), an increasing world population, globalization, and its effect on international travel 
(67), emerging (zoonotic) viruses can spread rapidly, employing an efficient infrastructure 
that is not limited by borders (68). One of the major lessons that should be learned 
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from COVID-19 and previous pandemics is that pandemic preparedness is of major 
importance for effective containment. While protective measures such as lockdowns 
and face masks have been essential in putting the break on the viral spread, parallel 
development of potent antiviral drugs and novel vaccines has been proven of utmost 
importance. In light of this, we believe that the administration route is key to achieving 
the best therapeutic outcome. Specifically, the pulmonary route of administration should 
no longer be neglected.
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