The role of (shared) genetics and environment in (co-occurring) psychiatric problems, substance use, and obesity
Wang, Rujia

DOI:
10.33612/diss.825415169

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
CHAPTER 8
Summary
Nederlandse samenvatting
Acknowledgements
About the author
Chapter 8

Summary

Psychiatric disorders, substance use, and obesity often co-occur. These conditions not only co-occur within the same individual but also co-aggregate within families. However, the mechanisms underlying this co-occurrence are not fully understood. This thesis aimed to improve our understanding of the associations of (shared) genetics and the environment with psychiatric problems, substance use, obesity, and the co-occurrence of these phenotypes. We used data from the large multi-generational Lifelines Cohort Study conducted in the Netherlands to investigate these aims through three main parts. Firstly, we estimated familial aggregation, co-aggregation, heritability, and genetic correlations of psychiatric problems, substance use, and obesity using the traditional family design (Chapters 2 and 3). Secondly, we investigated the interactions between environmental factors, such as stress exposures and socioeconomic status (SES), and polygenic risk scores (PRSs) for depression, anxiety, substance use, and obesity at both individual and aggregated levels (Chapters 4 and 5). Finally, we combined family history and PRS to predict obesity using between-family and within-family approaches (Chapter 6).

Chapter 2 investigated the familial (co)aggregation and (shared) heritability of depression, anxiety, obesity, and substance use in the multi-generational population-based Lifelines Cohort Study (n=162,423). The findings showed that depression, anxiety, obesity, and substance use aggregated within families phenotypically and genetically. Similar phenotypic aggregation was also found between spouses. All phenotypes were found to be moderately heritable. Additionally, depression, anxiety, obesity, and smoking showed positive familial co-aggregation, where each conferred increased risk on all the other phenotypes within families, consistent with the positive genetic correlations between these phenotypes.

Chapter 3 estimated the familial (co)aggregation and (shared) heritability of attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) problems, both among themselves and in relation to aggressive behaviour, depression, anxiety, and substance use, using data collected in a subset of the Lifelines Cohort Study (n=37,716). The findings revealed that a high level of similarity was observed within the two subdomains of ADHD and the six subdomains of ASD, with stronger phenotypic and genetic overlap observed within the same disorder domains compared to the cross-disorder domains. Furthermore, ADHD and ASD problems have strong associations with aggressive behaviour at both the phenotypic and genetic levels, and strong associations with depression and anxiety at the genetic level, while displaying weak associations with substance use.

Chapter 4 examined the moderating effects of stress-related exposures on the association between PRSs and depression and anxiety using genome-wide data in the
Lifelines Cohort Study (n=41,810). The study showed that reduced social support, higher exposure to long-term difficulties and stressful life events, as well as loneliness amplified the genetic PRS effects on both depression and anxiety. For exposure to childhood trauma, the interaction with the PRS was significant for depression but not for anxiety. This study provided evidence on the presence of interactions between polygenic risk and stress exposures in relation to depression and anxiety.

Chapter 5 investigated the moderating effects of socioeconomic status (SES) on the association between PRSs and depression, anxiety, substance use and obesity, and explored these moderation effects at higher aggregated genetic levels and aggregated phenotypic outcomes using the genome-wide genotyped data in the Lifelines Cohort Study (n=50,761). The study found that lower SES amplified the effects of PRSs on depression, anxiety, body mass index (BMI), and smoking, while higher disposable income amplified the effect of PRS on alcohol use, with 14 out of 24 interactions proving to be significant. Additionally, lower SES amplified the shared genetic effects on aggregated outcomes. Nine of sixteen interactions investigated between four SES indices (educational attainment, occupational status, household disposable income, and neighborhood SES) and four shared PRSs were significant for the aggregated, latent, depression/anxiety, BMI/waist-hip-ratio, and smoking/alcohol use domains, as well as the latent highest level of aggregation across these three domains. This study provided evidence on the presence of polygenic risk-by-SES interaction effects at, the level of individual PRSs on individual depression, anxiety, BMI, smoking, and alcohol use. Significant interactions were also observed for shared PRS and SES on aggregated outcomes, but with smaller effect sizes, yielding no additional etiological understanding.

Chapter 6 investigated the influences of PRS and family history on BMI, waist circumference and waist-hip-ratio using between-family and within-family approaches in the genotyped part of the Lifelines Cohort Study (n=50,747). The findings revealed that the combination of PRS and family history improved the prediction of these obesity phenotypes. In addition to genetic parent-offspring transmission captured by the PRS, family history, as indexed by parental BMI, waist circumference and waist-hip-ratio, also independently predicted the offspring’s BMI, waist circumference and waist-hip ratio. Similar effects observed for the between-family and within-family PRSs indicated minimal bias, such as caused by gene-environment correlations, in the genetic effects on obesity phenotypes.

In summary, this thesis offered insights into the familial co-aggregation and shared genetics between psychiatric problems, obesity, and substance use based on a large family study. Further research utilizing advanced genetic methods is necessary to better understand the mechanisms driving these shared genetics. The thesis also provided evidence for the presence of interactions between polygenic risk and stress exposures in relation to depression and anxiety, as well as interactions between polygenic risk and
SES in relation to depression, anxiety, obesity, and substance use. These studies aimed at finding interaction effects are proof of principle studies: the underlying mechanisms is still unknown. In the study that examined the interaction between polygenic risk and SES, the interaction effects were relatively smaller at the aggregated phenotypic level. This suggests that modelling the genetic and phenotypic overlap of aggregated disease outcomes yielded no additional etiological understanding. Finally, the thesis demonstrated that combining polygenic risk with family history led to improved prediction for obesity phenotypes. By comparing between-family and within-family results, the study revealed little bias in the genetic estimates for obesity phenotypes. This method could also be applied to other phenotypes, such as depression, anxiety, and substance use, to determine any possible bias.
Nederlandse samenvatting

Psychiatrische stoornissen, middelengebruik en obesitas komen vaak samen voor, niet alleen bij dezelfde persoon, maar ook binnen families. De mechanismen die ten grondslag liggen aan deze clustering worden echter niet goed begrepen. Dit proefschrift heeft als doel om meer inzicht te krijgen in het verband tussen erfelijkheid en omgevingsfactoren in psychiatrische problemen, middelengebruik, obesitas en het samen voorkomen van deze fenotypes. We gebruiken het Nederlandse multi-generationele Lifelines Cohort Study om dit op drie verschillende manieren te onderzoeken. Ten eerste schatten we de familiale aggregatie, co-aggregatie, erfelijkheid en genetische correlaties van psychiatrische problemen, middelengebruik en obesitas met behulp van het traditionele familie onderzoek (hoofdstukken 2 en 3). Ten tweede onderzoeken we de interacties tussen omgevingsfactoren, zoals blootstelling aan stress en sociaaleconomische status (SES), en polygene risicoscores (PRSs) voor depressie, angst, middelengebruik en obesitas, op zowel individueel als geaggregeerd niveau (hoofdstukken 4 en 5). Tot slot combineren we familiegesciendenis en PRS om obesitas te voorspellen met behulp van inter-familie en intra-familie methodes (Hoofdstuk 6).

Hoofdstuk 2 onderzocht de familiale (co)aggregatie en (gedeelde) overerfbaarheid van depressie, angst, obesitas en middelengebruik in het multi-generationele Lifelines Cohort Study bevolkingsonderzoek (n=162,423). De bevindingen tonen aan dat depressie, angst, obesitas en middelengebruik fenotypisch en genetisch clusteren binnen families. Vergelijkbare fenotypische clustering werd ook gevonden tussen echtparen. Alle fenotypen bleken matig erfelijk te zijn. Daarnaast vertonen depressie, angst, obesitas en roken een positieve familiale co-aggregatie, waarbij elk fenotype een verhoogd risico gaf op alle andere fenotypes binnen families, consistent met de positieve genetische correlaties tussen deze fenotypes.

Hoofdstuk 3 schat de familiale (co)aggregatie en (gedeelde) overerfbaarheid van aandachtstekort-hyperactiviteitstoornis (ADHD) en autismspectrumstoornis (ASS), zowel onderling als in relatie tot agressief gedrag, depressie, angst en middelengebruik, met behulp van gegevens verzameld in een subset van de Lifelines Cohort Study (n=37,716). De bevindingen tonen aan dat er een hoge mate van gelijkenis werd waargenomen binnen de twee subdomeinen van ADHD en de zes subdomeinen van ASS, met sterkere fenotypische en genetische overlap binnen stoornis domeinen dan tussen stoornis domeinen. Verder hebben ADHD- en ASS-problemen sterke associaties met agressief gedrag op zowel fenotypisch als genetisch niveau, en sterke associaties met depressie en angst op genetisch niveau, maar zwakke associaties met middelengebruik.

Hoofdstuk 4 onderzoekt de modererende effecten van blootstelling aan stress op de associatie van PRSs met depressie en angst, met behulp van genoombrede gegevens in de Lifelines Cohort Study (n=41,810). De studie toont aan dat verminderde sociale steun,
hoogere blootstelling aan langdurige problemen en stressvolle levensgebeurtenissen, evenals eenzaamheid, de genetische PRS-effecten op zowel depressie als angst versterken. Voor blootstelling aan jeugdtrauma was de interactie met de PRS significant voor depressie, maar niet voor angst. De resultaten van hoofdstuk 4 wijzen op het bestaan van interacties tussen het polygene risico en blootstelling aan stress in relatie tot depressie en angst.

Hoofdstuk 5 onderzoekt de modererende effecten van sociaaleconomische status (SES) op de associatie tussen PRSs en depressie, angst, middelengebruik en obesitas, en onderzoekt deze modererende effecten op hogere geaggregeerde genetische niveaus en geaggregeerde fenotypische uitkomsten met behulp van de genoombrede gegevens in de Lifelines Cohort Study (n=50,761). Uit het onderzoek blijkt dat een lagere SES het effect van PRSs op depressie, angst, body mass index (BMI) en roken versterkt, terwijl een hoger besteedbaar inkomen het effect van PRSs op alcoholgebruik versterkt, waarbij 14 van de 24 interacties significant blijken te zijn. Daarnaast versterkt een lagere SES de gedeelde genetische effecten op geaggregeerde uitkomsten. Negen van de zestien onderzochte interacties tussen vier SES indices (opleidingsniveau, beroepsstatus, besteedbaar inkomen van het huishouden en omgevings-SES) en vier gedeelde PRSs waren significant voor de geaggregeerde, latente, depressie/angst, BMI/taille-heup-ratio, roken/alcoholgebruik domeinen en het latente hoogste aggregatieniveau over deze drie domeinen. Deze studie duidt op het bestaan van interacties tussen het polygene risico en SES op het niveau van individuele PRSs op individuele depressie, angst, BMI, roken en alcoholgebruik. Er werden ook significante interacties waargenomen voor gedeelde PRS en SES op geaggregeerde uitkomsten, maar met kleinere effectgroottes, waardoor geen extra inzicht in de onderliggende oorzaken werd verkregen.

Hoofdstuk 6 onderzoekt de invloed van PRS en de familiegeschiedenis op BMI, middelomtrek en taille-heup-ratio, door middel van analyses binnen en tussen families in het gegenotypeerde deel van de Lifelines Cohort Study (n=50,747). De bevindingen tonen aan dat de combinatie van PRS en familiegeschiedenis de voorspelling van deze obesitas fenotypes verbetert. Naast de genetische ouder-kind transmissie (bepaald met de PRS), voorspelt de familiegeschiedenis (bepaald met BMI, middelomtrek en taille-heup-ratio van de ouders) ook onafhankelijk van BMI, middelomtrek en taille-heup-ratio van de kinderen. Gelijksoortige effecten die werden waargenomen voor de inter-familie en intra-familie PRSs wezen op een minimale bias, zoals veroorzaakt door gen-omgevings correlaties, in de genetische effecten op obesitas fenotypes.

Samenvattend biedt dit proefschrift inzicht in de familiaire co-aggregatie en gedeelde genetica tussen psychiatrische problemen, obesitas en middelengebruik, op basis van een grote familiestudie. Verder onderzoek met geavanceerde genetische methoden is nodig om de mechanismen die deze gedeelde genetica sturen beter te begrijpen.
Het proefschrift levert ook aanwijzingen voor het bestaan van interacties tussen het polygene risico en blootstelling aan stress met betrekking tot depressie en angst, en van interacties tussen het polygene risico en SES met betrekking tot depressie, angst, obesitas en middelengebruik. De studies gericht op het vinden van interactie effecten zijn z.g.n. proof-of-principle studies: het onderliggende mechanisme is nog onbekend. In de studie die de interactie tussen het polygene risico en SES onderzocht waren de interactie-effecten relatief kleiner op het geaggregeerde fenotypische niveau. Dit suggereert dat het modelleren van de genetische en fenotypische overlap van geaggregeerde ziekte-uitkomsten geen extra etiologisch inzicht oplevert. Tot slot toont het proefschrift aan dat het combineren van het polygene risico met de familiegeschiedenis leidt tot een betere voorspelling voor obesitas fenotypes. Door de resultaten van inter-familie en intra-familie met elkaar te vergelijken liet de studie tevens zien dat er geen bias in de genetische schattingen voor obesitas fenotypes is. Deze methode zou ook toegepast kunnen worden op andere fenotypes, zoals depressie, angst en middelengebruik, om mogelijk aanwezige bias vast te stellen.
Acknowledgements

During my PhD study, I extend my heartfelt gratitude to all those who have supported, mentored, loved, and shown kindness to me. Each of you has played a significant role in shaping me into a better person and an independent researcher.

Dear Harold, it’s a great honour to be one of your “scientific children”. At the beginning of my PhD, you emphasized, “Rujia, you are the leader of your PhD projects, we are always here to provide support and assistance.” Your unwavering encouragement and guidance have been instrumental in bolstering my scientific confidence. It is not just about research, you have also imparted valuable life skills, teaching me how to forge good connections with other researchers. You have been a profound influence on my career. I hope that one day I can grow to be as knowledgeable, gentle, and kind as you are.

Dear Catharina, your keen critical thinking and innovative ideas have been instrumental in producing many beautiful research papers. Working together with you has been a truly enjoyable experience. Your boundless passion for research always inspires me. When we discuss some novel scientific ideas, your shining eyes really impressed me. During my PhD study, you guided me in the path to become an independent researcher and stressed the importance of maintaining a work-life balance. I am deeply grateful for your mentorship.

Thanks for all support from collaborators: Dear Peter Visscher, thank you for your invaluable input in the within- and between-family design paper. Your insights have encouraged me to think deeply about how to interpret the results of my research. Dear Arthur, your technical support in using ASReml has been instrumental in enabling us to use large family designs to estimate heritability and genetic correlations. Your assistance has been invaluable to our work. To all my other co-authors: Melissa, Ebba, Jian, Rima, Zekai, Zhili, thank you for your dedicated efforts in producing outstanding research papers.

Dear Prof. R.A. Schoevers, Prof. B.J.W.H. Penninx, Prof. G. Breen, thank you so much for being the members of the reading committee and spending your precious time reviewing this thesis.

Special thanks go to my paranymphs, fellow unit members: Wenbo and Peter. Dear Wenbo, your support and assistance in organizing all the intricate details of my defense have been invaluable. I also appreciate your encouragement when I am making decisions and your efforts in arranging the engaging table games for Friday night in our department. Dear Peter, thank you for your assistance in coordinating the mock defense and in translating the Dutch summary of my thesis. Your deep knowledge and
leading our diverse languages learning during lunch time have been greatly appreciated. Working alongside you has been a delightful and enriching experience.

Thanks for the unit members of genetic epidemiology: Ahmad, Alireza, Anna, Bale, Chris, Eliza, Felix, Ilja, Jia, Jing, Judith, Katri, Maaike, Martje, Nam, Nigus, Peter, Qihua, Rima, Siqi, Tian, Tigist, Yeliz, Yiran, Wenbo, Xueling, Zekai, Zoha, Zhen. Thank you for all the stimulating scientific discussions we’ve had during our unit meetings, journal clubs, seminars, and for your valuable feedback on my work. I really enjoy my time in our unit, as it fosters an atmosphere where we enjoy sharing knowledge, collaborating, and supporting each other. Dear Ilja, thank you for your excellent courses in genetic epidemiology and statistics in R, as well as your guidance in genetic QC, which help me to build up essential skills for my research. Dear Tian, thank you for your unwavering support for my research, and for introducing many interesting activities in Groningen. I look forward to continuing our collaboration in the future. Dear Bale, thank you for inviting me to watch football together and for the enjoyable catch-up in New York City. Our shared moments have been truly memorable. Dear Nigus, I am grateful for your invitation to be your paranymph, and for assisting me in accumulating the experience for PhD defense. Dear Chris, your brilliance in teaching the MR course and providing insightful feedback on statistical methods has been greatly appreciated. Dear Katri, your warm-hearted nature and your dedication to organizing memorable unit gatherings have contributed to a positive and enjoyable experience within our unit. Dear Zekai, thank you for your support and for sharing your knowledge of wise stock investments. Dear Siqi and Zhen, I want to express my gratitude for the countless late nights we’ve spent together in the department. Our support and encouragement have been invaluable throughout our academic journey.

Thanks for my colleagues in the Department of Epidemiology: Marike, Truuske, Gerton, Nynke, Behrooz, Eva, Karin, Aukje, Elnaz, Pato, Melissa, Sisay, Simon, Xin, Senshuang, Erick, Yixuan, Jing, Lilu, Yihui, Carel-Peter, Reinder. Our department, with its multitude of international students, boasts a remarkable diversity of backgrounds. This diversity creates an open and inclusive atmosphere, nurturing our collective open-mindedness and tolerance for various cultures. Dear Elnaz, you’re like a sister to me, always offering guidance on taking next steps in both my career and life planning. Your warm hospitality during my visit to New York is deeply appreciated. Dear Arepa and lunch groups, I really enjoy our lunchtime gatherings, with Friday being our Arepa day. We engage in interesting conversations, share laughter, and exchange culture experiences, even learning different languages during our lunches. These moments have added a brust of color to our lives, particularly during the challenging time of the pandemic. Dear Aukje and Erwin, thank you for your invaluable support in the administration of our department.
Chapter 8

Thanks for my friends in Groningen: Dear Jiamin, over the course of our seven-year friendship, your constant presence and unwavering support have meant the world to me. Your readiness to be there whenever I need you is a treasure that I really appreciate. Dear Inna, thank you for always taking care of me. I have learned so much from your high emotional intelligence, and our journey to Germany was enjoyable. Dear Yiming and Lei, thank you for always traveling alongside Jiamin and me in the Europe. Our shared adventures in Spain and Iceland have filled my life with joyful memories. Dear Novamedik team, Prof. Qu, Mark, Brian, Feifei, Joerd, yuanyuan, and Anny, the internship during the challenging times of the pandemic was a valuable learning experience. It taught me the importance of effective teamwork and collaboration. Dear Melissa, Dener, Victoria, mannan, Xiaoming, Rumei, Xingyu, Jieying, Shaoxian, thank you all for the wonderful time we have spent together, which made my life joyful, warm, and colorful in the Netherlands.

I also appreciate very much the financial support during my PhD from the Chinese Scholarship Council (CSC) and the Graduate School of Medical Science (GSMS).

Dear Gerome, thank you very much for offering me a postdoctoral position at King’s College London. You always encourage me to participate in diverse conferences, acquire new skills, and expand my network with other researchers. Your unwavering support and motivation consistently inspire me, especially in the context of grant writing, which is a crucial skill on the path to becoming an independent researcher.

Dear colleagues at King’s College London: Cathryn, Thalia, Vangelis, Joni, Oliver, Ewan, Julie, Helena, Jared, Johan, Sang-Hyuck, Kaye, Laura, Danni, Danyang, Jet, Abi, Jess, Zain, Genevieve, Yuhao, Topher, thank you for your invaluable assistance in helping me adapt to the new environment in the UK and for your unwavering support for my research. Working alongside you has brought me joy and fulfillment.

Dear Linan, I want to express my heartfelt gratitude for meeting you in my life. Our shared experiences, such as hiking and cycling in Switzerland, city walks in Edinburgh, and delving into machine learning on Coursera, have been truly memorable. These adventures have inspired in me the desire to explore the world with you by my side. I look forwarding to going wherever you go and embarking on new journeys together.

Thanks to my parents for their boundless love and support, which has made me an optimistic, confident, and independent person. These qualities have helped me overcome all the challenges and difficulties in life and academic research. I cannot express in words the depth of my gratitude. My PhD degree has your involvement.
About the Author

Rujia Wang was born on March 23, 1992, in Shandong, China. In September 2010, she enrolled in the School of Public Health at Central South University, where she obtained a bachelor’s degree in medicine (majoring in preventive medicine) in 2015. In September 2015, she began her master at Peking University. During her master’s studies, her research focused on exploring the risk factors for HCV and HIV among drug users in China. Simultaneously, she also conducted psychological interventions for amphetamine drug users in Guangdong, China. She obtained a Master of Public Health in 2018.

In October 2018, she initiated her PhD studies under the supervision of Prof. Harold Snieder and Dr. Catharina Hartman at the Department of Epidemiology in the University Medical Center Groningen. During the PhD track, her primary research objective was to investigate associations between (shared) genetics and environmental factors and their influences on psychiatric problems, substance use, obesity, and their co-occurrence using the large multi-generational Lifelines Cohort Study in the Netherlands.

Since December 2022, she has been working as a postdoctoral researcher in Prof. Gerome Breen’s team at King’s College London. During her postdoctoral work, her mainly focus has been on utilizing machine learning to combine multi-family history and multi-polygenic risk scores for predicting depression in the Genetic Links to Anxiety and Depression (GLAD) study. Additionally, she combines genetic data from the UK Biobank and GLAD to conduct severe depression genome-wide association studies (GWAS) and meta-GWAS.
Publications


Research Institute SHARE

This thesis is published within the Research Institute SHARE (Science in Healthy Ageing and healthcare) of the University Medical Center Groningen / University of Groningen. Further information regarding the institute and its research can be obtained from our internet site: https://umcgresearch.org/w/share

More recent theses can be found in the list below (supervisors are between brackets).

2023
Kerver N
The effectiveness and cost-effectiveness of upper limb prostheses
(Prof CK van der Sluis, dr RM Bongers, Dr S van Twillert)

Devandi R
Management of anterior cruciate ligament injury in lower-middle income countries: Focus on outcomes and health economics in Indonesia
(dr I van den Akker-Scheek, Prof MJ Postma, dr HC van der Veen, dr Andri MT Lubis)

Mangot Sala L
Disruptive Life Events and Health: Longitudinal evidence from a large cohort in the Netherlands
(Prof AC Liefbroer, dr N Smidt)

Wijk DC
From prosperity to parenthood: How employment, income, and perceived economic uncertainty influence family formation
(Prof AC Liefbroer, Prof HAG de Valk)

Dai Y
Effects of exposure to polycyclic aromatic hydrocarbons and heavy metals on placental trophoblasts and childhood inflammation
(Dr MM Faas, Prof X Xu, Prof X Huo)

Menting SGP
Picking up the pace: The development of pacing behaviour during adolescence
(Dr MT Elferink-Gemser, Prof FJ Hettinga)

Vos M
My name is legion for we are many: Lessons learned from linking and splitting psychiatric Disorder
(Dr CA Hartman, Prof NNJ Rommelse)
Haan-Du J De
Cancer risk, stage, and survivorship among patients with type 2 diabetes
(Prof GH de Bock, Dr GWD Landman, Dr N Kleefstra)

Nieboer P
Teaching and learning in the operating room: Navigating treacherous waters
(Prof SK Bulstra, Prof M Huiskes, Dr M Stevens, Dr F Cnossen)

He Z
Risk factors for elevated blood pressure: focus on perimenopausal women and potential causality
(Prof H Snieder, Dr CHL Thio, Prof QYZ Qingying Zhang)

Peeters CMM
Brace therapy and radiographic imaging in adolescent idiopathic scoliosis; where do we stand?
(Prof PC Jutte, Dr C Faber, Dr FH Wapstra, Dr DHR Kempen)

Kunkels YK
Early-warning signals derived from physiological and behavioural measures: Is it worth a transition in clinical practice?
(Dr H Riese, Prof MC Wichers, Dr AM van Roon)

Bittó-Urbanová L
Adolescents in a digital world: The risks and benefits of the use of digital technology
(Prof SA Reijneveld, Prof A Madarasová Gecková, Dr JP van Dijk, Dr J Holubčíková)

Ferraris GMA
Interactions between caregivers and their close ones: psychological wellbeing and willingness to care
(Prof M Hagedoorn, Prof R Sanderman)

Karchynskaya V
Adolescents’ engagement in physical activity: measurements, risks and outcomes
(Prof SA Reijneveld, Prof A Madarasová Gecková, Dr AF de Winter, Dr J Kopčáková)

Horaničová S
Is school not calling? Adolescents’ experiences at school, contributing factors and consequences for a healthy development
(Prof SA Reijneveld, Prof A Madarasová Gecková, Dr AF de Winter, Dr D Husarova)

For earlier theses visit the website: Find Research outputs — the University of Groningen research portal (rug.nl)