
 

 

 University of Groningen

Multi-strategy Differential Evolution
Yaman, Anil; Iacca, Giovanni; Coler, Matthew; Fletcher, George; Pechenizkiy, Mykola

Published in:
Applications of Evolutionary Computation

DOI:
10.1007/978-3-319-77538-8_42

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Yaman, A., Iacca, G., Coler, M., Fletcher, G., & Pechenizkiy, M. (2018). Multi-strategy Differential
Evolution. In Applications of Evolutionary Computation (pp. 617-633). Springer. https://doi.org/10.1007/978-
3-319-77538-8_42

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-12-2021

https://doi.org/10.1007/978-3-319-77538-8_42
https://research.rug.nl/en/publications/multistrategy-differential-evolution(57795075-ce1a-4761-8b48-b2cf53ee498a).html
https://doi.org/10.1007/978-3-319-77538-8_42
https://doi.org/10.1007/978-3-319-77538-8_42


Multi-strategy Differential Evolution

Anil Yaman1(B) , Giovanni Iacca2 , Matt Coler3, George Fletcher1,
and Mykola Pechenizkiy1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{a.yaman,g.h.l.fletcher,m.pechenizkiy}@tue.nl

2 RWTH Aachen University, Aachen, Germany
giovanni.iacca@gmail.com

3 University of Groningen/Campus Fryslân, Leeuwarden, The Netherlands
m.coler@rug.nl

Abstract. We propose the Multi-strategy Differential Evolution
(MsDE) algorithm to construct and maintain a self-adaptive ensemble of
search strategies while solving an optimization problem. The ensemble
of strategies is represented as agents that interact with the candidate
solutions to improve their fitness. In the proposed algorithm, the perfor-
mance of each agent is measured so that successful strategies are pro-
moted within the ensemble. We propose two performance measures, and
show their effectiveness in selecting successful strategies. We then present
three population adaptation mechanisms, based on sampling, clone-best
and clone-multiple adaptation schemes. The MsDE with different per-
formance measures and population adaptation schemes is tested on the
CEC2013 benchmark functions and compared with basic DE and with
Self-Adaptive DE (SaDE). Our results show that MsDE is capable of
efficiently adapting the strategies and parameters of DE and providing
competitive results with respect to the state-of-the-art.

Keywords: Continuous optimization · Differential evolution
Parameter control · Strategy adaptation

1 Introduction

Evolutionary algorithms (EAs) are meta-heuristic search algorithms that oper-
ate on a population of candidate solutions. Biologically inspired evolutionary
operators -namely selection, mutation and crossover- are used to manipulate
iteratively the candidate solutions to improve their fitness [1]. Among EAs, Dif-
ferential Evolution (DE) has been shown to be an efficient method for several
optimization problems [2]. Various kinds of strategies have been suggested in the
literature for improving upon basic DE [3,4]: these strategies typically adapt,
according to some logics, the mutation scale factor (F ) and crossover rate (CR)
[5]. Such strategies significantly influence the behavior of DE as they alter the
balance between exploration and exploitation [6].

c© Springer International Publishing AG, part of Springer Nature 2018
K. Sim and P. Kaufmann (Eds.): EvoApplications 2018, LNCS 10784, pp. 617–633, 2018.
https://doi.org/10.1007/978-3-319-77538-8_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77538-8_42&domain=pdf
http://orcid.org/0000-0003-1379-3778
http://orcid.org/0000-0001-9723-1830


618 A. Yaman et al.

An appropriate strategy and parameter setting of an algorithm is the best or
near-best of all possible settings. Finding an appropriate strategy and parameter
setting is an optimization problem that is as hard as finding the solution to the
problem [7–9]. Eiben et al. categorized the parameters setting problem into two
main categories, parameter tuning and parameter control [7]:

1. Parameter tuning aims to find the appropriate parameter settings offline,
before an evolutionary run. The parameter tuning process can be performed
by trial and error, from studies in the literature [10,11], or by using settings
of similar problems [12].

2. Parameter control on the other hand, aims to adjust the parameter settings
during an evolutionary process because the goodness of a parameter setting
varies depending on the state of the search [6]. Deterministic, adaptive and
self-adaptive methods have been proposed for the parameter control task [7].

We propose here a Multi-strategy Differential Evolution (MsDE) approach to
self-adapt strategies and their parameters in DE during an evolutionary process.
Most of the self-adaptive parameter control approaches aim to adapt algorithm
parameters by including them within the genotype of the individuals and inher-
iting with the successful individuals during an evolutionary run. In MsDE, dis-
tinct from the inheritance based methods, an ensemble of search strategies are
employed to operate on, and co-evolve with the candidate solutions. The strate-
gies are referred as agents to distinguish them from the candidate solutions, and
underline their function. The agent-based representation of the strategies pro-
vides the flexibility to apply a wide range of population adaptation mechanisms.
In this work, we present three population adaptation schemes (sampling-based,
clone-best and clone-multiple), to show how various self-adaptive agent-based
approaches perform on the CEC2013 benchmark functions. Notably, the app-
roach we propose here can be easily extended to any evolutionary algorithm to
adapt their operators and parameters.

The rest of the paper is organized as follows: in Sect. 2, we provide the related
work, where we discuss the basic DE algorithm and some strategy and param-
eter adaptation mechanisms proposed in the literature for DE; in Sect. 3, we
describe our algorithm, MsDE, and present the three mechanisms for population
adaptation; in Sect. 4, we present our test results, with the different population
adaptation schemes, on the CEC2013 benchmark functions; finally, in Sect. 5 we
provide the conclusions of this work.

2 Related Work

The DE algorithm is a population-based search algorithm proposed for con-
tinuous optimization [2]. A candidate solution set {x1, x2, . . . , xNP } with a
population size of NP is represented as D-dimensional real-valued vectors
xi ∈ R

D, i = 1, 2, . . . , NP . In the initialization phase of the algorithm, the can-
didate solutions are randomly sampled within the domain boundaries of each
dimension j = 1, 2, . . . , D.



Multi-strategy Differential Evolution 619

The algorithm employs a strategy composed of a mutation, crossover, and
selection operators with their specified parameters. For each generation g, a
candidate solution xg

i , called target vector, is selected ∀i ∈ {1, 2, . . . , NP}. The
mutation, crossover and selection operators are then applied to generate a trial
vector ug

i , and replace the target vector. The mutation operator generates a
mutant vector vg

i by perturbing the target vector xg
i using the scaled differ-

ences of several distinct individuals selected randomly from the population.
The crossover operator generates a trial vector ug

i by performing recombina-
tion between the target vector and the mutant vector. The selection operator
replaces the target vector xg

i in the population with the trial vector ug
i if the fit-

ness value of ug
i is better than or equal to xg

i . This process is iteratively executed
until a stopping criteria is met.

The mutation operator is controlled by the parameter scale factor (F )
that is used to adjust the magnitude of the perturbation. There are various
mutation operators suggested in the literature [3,4]. Four types of mutation
strategies, referred as “DE/rand/1”, “DE/rand/2”, “DE/rand-to-best/2”, and
“DE/current-to-rand/1” are provided in Eqs. (1), (2), (3), and (4), respectively,
see [5].

vg
i = xg

r1
+ F · (xg

r2
− xg

r3
) (1)

vg
i = xg

r1
+ F · (xg

r2
− xg

r3
) + F · (xg

r4
− xg

r5
) (2)

vg
i = xg

i + F · (xg
best − xg

i ) + F · (xg
r1

− xg
r2

) + F · (xg
r3

− xg
r4

) (3)
vg

i = xg
i + K · (xg

r1
− xg

i ) + F · (xg
r2

− xg
r3

) (4)

where r1, r2, r3, r4, and r5 are mutually exclusive integers different from i, and
selected randomly from the range [1, NP ]; the parameter K is a random number
uniformly sampled in (0, 1]; xg

i is the target vector; xg
best is the best individual

at generation g in terms of fitness.
The crossover operator is used to recombine the target vector and the

mutant vector with a certain rate, CR, to generate a trial vector ug
i . The binomial

(uniform) crossover operator is given in (5). There are several more existing
crossover operators such as the exponential crossover [13].

ug
i,j =

{
vg

i,j , if rand([0, 1)) ≤ CR or j = randi([1,D]);
xg

i,j , otherwise. (5)

where j is an integer within the range [1,D), functions rand() and randi() return
a real and an integer value uniformly sampled from a defined range, respectively.
The notation xg

i,j refers to the jth dimension of ith vector in the population at
generation g.

If the value of the trial vector along the jth dimension exceeds the boundaries
defined as xmin

j and xmax
j , it is randomly and uniformly sampled within the

domain boundary range [5], using a toroidal boundary condition [14].
The selection operator determines whether or not the trial vector is kept

for the next generation g + 1. If the fitness value of the trial vector is better



620 A. Yaman et al.

than or equal to the target vector, then the target vector is replaced by the trial
vector as it is shown in Eq. (6), which assumes a minimization problem:

x
(g+1)
i =

{
ug

i , if f(ug
i ) < f(xg

i );
xg

i , otherwise. (6)

The selection phase can be performed synchronously or asynchronously. In
synchronous selection, the selected trial vectors are stored in a temporary set,
and replaced with target vectors after the selection process of all individuals is
complete. In asynchronous selection, a selected trial vector is replaced directly
with the target vector without waiting the selection procedure for all individuals.
Asynchronous selection makes it possible to use a newly generated trial vector
in the trial vector generation process of all the remaining target vectors within
the same generation.

2.1 Strategy and Parameter Control in DE

In this section, we highlight the recent developments in strategy and parameter
control for DE. Modern variants of DE aim to employ adaptive mechanisms to
adjust the algorithm’s parameters during an evolutionary run, or across differ-
ent problems. Strategy and parameter control in DE can be examined in two
broad classes: both strategy and parameter control, and only parameter control
[3], where the parameters involved are F and CR. There are also methods for
adapting the population size NP , see e.g. [15]; however, in this work we limit
our scope to the methods for adapting the strategies, and the parameters F and
CR. In the following we briefly describe four of the main DE variants falling in
this category, namely EPSDE, SaDE, JADE and jDE.

In the Ensemble of Parameters and mutation Strategies Differential Evolu-
tion (EPSDE), mutation strategy and parameter pools are used [16–18]. Each
individual in the candidate solution population is assigned with a strategy and
a parameter setting from these pools. The strategies and their parameters are
inherited from the target to trial vectors as long as they are successful in gen-
erating a better trial vector. Otherwise, the strategy and parameters that are
associated with the target vector are reinitialized by either randomly sampling
from their respective pools, or assigning a strategy and its parameters from the
set where successful strategies and parameters are stored.

Self-adaptive differential evolution (SaDE) uses only two mutation strategies,
namely “DE/rand/l/bin” and “DE/rand-to-best/1”, and adapts the parameters
F and CR [19]. The strategies and parameters are selected for their properties of
generating diverse individuals and faster convergence rate respectively. For each
generation, a mutation strategy is randomly selected based on its probability of
generating a trial vector successfully. The success probability of the two mutation
strategies is initialized uniformly and updated after each generation, based on
the number of individuals generated successfully. The scale factor F is randomly
sampled, for each individual, from the normal distribution with mean 0.5 and
standard deviation 0.3. The parameter CR is initialized for each individual from



Multi-strategy Differential Evolution 621

a normal distribution with mean 0.5 and standard deviation 0.1. The strategy
pool of the SaDE has been later extended by Qin et al. [5].

The JADE algorithm introduces a new mutation strategy called
“DE/current-to-pbest” with optional archive, and controls the parameters F
and CR [20]. The optional archive keeps track of recently explored worse solu-
tions, to provide additional information for the progression of the search. At
each generation, the crossover rate CRi is independently initialized from a nor-
mal distribution. The mean of the normal distribution μCR is initialized as 0.5
in for the first generation, and updated based on the mean of the CRi of the
trial vectors that are generated successfully. The mutation factor Fi is generated
and updated in similar fashion by using a Cauchy distribution.

Finally, in jDE [21] the mutation and crossover parameters F and CR are
attached to the genotype of the individuals in the population. The algorithm is
based on the idea that the parameters that survive with the individuals are likely
to produce successful trial vectors; thus, the parameters of the target vectors are
propagated to the successive trial vectors in the next generations.

3 Multi-strategy Differential Evolution (MsDE)

The MsDE aims to self-adapt the strategy types (mutation and crossover oper-
ators) and their parameters (F and CR) used in DE while solving the opti-
mization problem. It employs an ensemble of strategies with certain parameter
settings, and applies population adaptation schemes to construct and maintain
the ensemble strategy set. Different from the established ensemble methods in
the literature, the MsDE considers the strategies as agents that interact with the
candidate solution set. The agent-based representation of the strategies provides
the basis for an easy application of population adaptation approaches.

The pseudocode of MsDE (assuming an asynchronous population, see below)
is provided in Algorithm 1. The algorithm takes NP (number of solutions) and
m (number of strategies) as parameters. In addition, there are two thresholds
we refer to as performance and maturation thresholds, τ and δ, for determining
the performance of a strategy and limiting the test phase of a strategy. The
performance threshold τ is an adaptive threshold based on the average value of
all the performances in the strategy ensemble. The maturation threshold δ is
typically a small integer (e.g. 5) used to control how many algorithm iterations
should be invested for the testing phase of new strategies.

The candidate solution set X consisting of NP D-dimensional real-valued
vectors xi ∈ R

D that represent a solution to the problem. The initial candidate
solutions are randomly sampled in the domain range for each dimension. The
population size NP is chosen during the initialization phase, and remains fixed
throughout the run.

The ensemble strategy set Σ consists of m strategies σ1, σ2, . . . , σm ∈ Σ. Each
σj defines a kind of mutation and crossover operator, with specified parameters
F and CR. In the initialization phase, each strategy is initialized by selecting a
random mutation strategy with a type of crossover operator from a predefined



622 A. Yaman et al.

Algorithm 1. Asynchronous MsDE
1: procedure MsDE(NP , m)
2: g ← 0 � generation count
3: initialize X � randomly initialize NP solutions
4: ∀σj ∈ Σ, j = 1, 2, . . . , m; σj ← InitializeRandomStrategy() � see Alg. 2
5: F ← evaluate(X)
6: while termination criterion is not satisfied do
7: τ ← mean(PΣ) � τ is the average performance of the strategies
8: for each σ ∈ Σ do
9: targetV ector ← randSelect(X) � randomly select a target vector

10: mutantV ector ← σ.mutate(targetV ector)
11: trialV ector ← σ.crossover(targetV ector, mutantV ector)
12: σ.totalActivation ← σ.totalActivation + 1
13: Ftrial ← evaluate(trialV ector)
14: if Ftrial < Ftarget then � selection operator (assuming minimization)
15: targetV ector ← trialV ector
16: Ftarget ← Ftrial

17: σ.successfulActivation ← σ.successfulActivation + 1
18: end if
19: Pσj ← evaluate(σ) � performance of a strategy
20: if Pσj < τ and σ.totalActivation > δ then
21: reinitialize σ
22: end if
23: end for
24: g ← g + 1
25: end while
26: end procedure

set of strategies S, of size l. The parameters F and CR are randomly sampled
from a uniform distribution in (0, 1.2] and [0, 1], respectively. The upper limit
of the scale factor is set to 1.2 because of the works that report the effective
range for F between (0, 1.2] [16]. The initialization procedure is illustrated in
Algorithm 2.

Algorithm 2. Initialize random strategy
1: function InitializeRandomStrategy()
2: randomIndex ← randi[1, l]
3: σrandom.type ← S[randomIndex]
4: σrandom.F ← rand(0, 1.2]
5: σrandom.CR ← rand[0, 1]
6: return σrandom

7: end function

The main loop of MsDE repeats until a stopping criteria is reached. In each
iteration, each strategy agent σj is executed ∀j ∈ (1, 2, . . . ,m), such that: first,



Multi-strategy Differential Evolution 623

a target vector xi from X is randomly selected; secondly, the mutation and
crossover operators are applied to generate a trial vector ui; finally, the selec-
tion operator is applied to replace the target vector with the trial vector if its
fitness value is better or equal. The selection operator can be synchronous or
asynchronous as discussed in Sect. 2.

The MsDE calculates a performance measure within the function evaluate(σ)
to evaluate each strategy. Based on this performance measure, the strategies are
classified as successful or unsuccessful. To solve the problem efficiently, firstly
successful or unsuccessful strategies should be identified as quickly as possible;
and secondly, the number of successful strategies in the population should be
maximized, or, vice versa, the number of unsuccessful strategies should be min-
imized. We discuss these two aspects in the following sections.

Identifying Successful Strategies. Constructing and maintaining a success-
ful set of strategies is crucial for the performance of the algorithm. The self-
adaptive mechanism for ensemble construction and maintenance should be capa-
ble of managing the trade-off of exploring and exploiting successful strategies
efficiently and adaptively. We use a performance measure to asses the quality of
a strategy. We propose two measures P1 and P2 with different properties. The
performance measure P1, given in Eq. (7), measures the ratio between the num-
ber of strategy activations that led to a successful action and the total number
of strategy activations:

P1 =
σj .successfulActivation

σj .totalActivation
(7)

where σj .successfulActivation is the number of activations in which a strat-
egy σj produced a trial vector with better fitness than the target vector, and
σj .totalActivation is the number of total activations.

As we will demonstrate in Sect. 4, a strategy selection criterion based on
P1 is likely to facilitate fast convergence; the drawback is a high probability
of getting stuck onto a local optimum if the function is multimodal. This is
because the strategies that are exploitative are more likely to score higher on
P1 than the exploratory strategies because small exploitative increments on the
solutions are more likely to yield better solutions. To prevent the domination
of exploitative strategies in the ensemble, the performance measure should be
improved to promote also exploratory strategies. We measure the exploratory
value of a strategy by its capability to produce diverse individuals with better
fitness values. Such performance evaluation criteria would also encourage the
diversity in the population; thus, it may be less susceptible to early convergence.

Methods used in multi-objective optimization, such as non-dominated sort-
ing, can be used to select the strategies that have diverse trial vectors generation
rate and high ratio of success [22]. On the other hand, these methods can increase
the complexity of the algorithm. Thus, to avoid further complexity, we provide
a performance measure P2 for a single selection criterion to combine these two
aspects implicitly in Eq. (8), where we calculate the average differences between



624 A. Yaman et al.

target and trial vectors for the last γ activations in which the trial generation
was successful.

P2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1∑TAσj

a=TAσj
−γ+1 ψ

(a)
σj

· ∑TAσj

a=TAσj
−γ+1 Δa

σj
· ψ

(a)
σj , if TAσj

≥ γ;

1∑TAσj

a=1 ψ
(a)
σj

· ∑TAσj

a=1 Δa
σj

· ψ
(a)
σj , otherwise.

(8)

Δ(a)
σj

=
D∑

d=1

| x
(a)
i,d − u

(a)
i,d | (9)

ψ(a)
σj

=
{

1, if f(x(a)
i ) < f(u(a)

i );
0, otherwise.

(10)

where Δ
(a)
σj , defined by the distance metric given in Eq. (9), is the sum of the

absolute differences along each dimension between target and trial vectors, and
TAσj

represents σj .totalActivation. The parameter γ is introduced into this
measure to sum only the differences in the most recent history of activations,
to have a self-adaptive property. If γ is a large number then the measure may
promote exploratory strategies that may have a few successful activations with
large diversity.

Maximizing the Number of Successful Strategies. For an efficient search,
the strategies that are classified as successful should be kept in the ensemble
as long as they remain successful. To identify the performance of a strategy,
strategies are tested for a certain time. The testing phase consumes resources,
namely function evaluations (FEs). Since the strategies activated during the
testing phase may not be necessarily good, the resources consumed in this phase
should be minimized.

To distinguish the successful and unsuccessful strategies, the average perfor-
mance values of all strategies τ is used. If the performance value of a strategy
Pσj

< τ , then it is considered to be unsuccessful. To collect necessary evidence
on the performance of a strategy, a maturation threshold δ is used such that
if a strategy does not exceed δ then it is neither classified as successful nor
unsuccessful.

3.1 Strategy Population Adaptation Schemes

We propose three mechanisms for strategy population adaptation: sampling-
based, clone-best, and clone-multiple population adaptation schemes. These pop-
ulation adaptation schemes provide the logic for initiating new strategies into the
ensemble, and removing existing strategies from the ensemble. The population
adaptation methods are implemented in Line 21 of Algorithm 1.



Multi-strategy Differential Evolution 625

Sampling-Based Population Adaptation. The sampling-based adaptation
scheme initiates new strategies based on random sampling. The sampling func-
tion given in Algorithm 2 is used to reinitialize a mature unsuccessful strategy.

Clone-Best Population Adaptation. The clone-best adaptation scheme
implements a clonal reproduction mechanism to replace unsuccessful strategies.
The clone-best scheme is inspired by the clonal selection principle of the immune
system theory [23,24]. The main idea is to replace an unsuccessful strategy with
a clone of the best performing strategy with a small perturbation.

Algorithm 3. Strategy reinitialization by clone-best
1: function Clone(σg

j )
2: if rand(0, 1) < φ then
3: if rand(0, 1) < η then
4: σg

clone.type ← S[randomIndex]
5: else
6: σg

clone.type ← σg
j .type

7: end if
8: σg

clone.F ← σg
j .F + η · N (0, 1)

9: σg
clone.CR ← σg

j .CR + η · N (0, 1)
10: else
11: σclone ← InitializeRandomStrategy()
12: end if
13: return σclone

14: end function

Algorithm 3 shows the function that is used to clone a strategy. In clone-
best, the function takes σg

best as an argument, where σg
best is the best strategy

in the current generation g. With probability φ, the type, (F and CR) of an
unsuccessful strategy is replaced by the type (F , and CR) of the best strategy
in the ensemble, with a small perturbation with scale factor η ∈ (0, 1]. In our
experiments, we use η = 0.1. If the parameter boundaries are exceeded, they are
reinitialized by a value close to the boundaries. If rand(0, 1) ≥ φ the strategy is
reinitialized using the uniform sampling scheme given in Algorithm 2.

Clone-Multiple Population Adaptation. The clone-multiple adaptation is
an extension of the clone-best adaptation where m successful strategies are kept
in a separate set referred to as memory strategies (Σ). If the limit of Σ is not
exceeded, the scheme aims to find more successful strategies to add to Σ by
going through the cloning, selection, maturation and promotion phases. These
phases are described below:

1. Clonal expansion: n best strategies from Σ are selected and assigned into
the best strategy set B. Each strategy in B is cloned (with a small pertur-
bation) proportional to their performance. The higher the performance of a



626 A. Yaman et al.

strategy, the higher the number of clones generated. Algorithm 3, without
φ parameter (or φ = 1), is used for generating each clone for each σg

j ∈ B.
Generated clones are added to a temporary candidate clone set T .

2. Clonal selection: h (h ≤ n) candidate clones from T are selected based on
their similarity to the strategies in B; and v(v ≤ h) strategies are generated
randomly. The selected and randomly generated individuals are then added
to the clone set C, that has size h + v. The similarity-based clone selection
and the random strategy generation criteria are executed as follows:

– h individuals are selected as follows: for each σi ∈ T, i = 1, 2, . . . , size(T )
and sigmaj ∈ B, j = 1, 2, . . . , n, dσi

=
∑n

j=1 dist(σi, σj) is calculated.
The h candidate clones with smallest dσi

are added to the clone set C.
The dist(σi, σj) computes the Euclidean distance between the parameters
(F and CR) of σi and σj ;

– v random strategies are generated using Algorithm 2.
3. Maturation: each strategy in C is tested for δ FEs.
4. Promotion: strategies in C that are successful (i.e., that satisfy the perfor-

mance threshold) are added to the memory set Σ. The same classification
criterion for finding unsuccessful/successful strategies is used for finding suc-
cessful strategies in C.

The logic behind the clone-multiple population adaptation scheme is such
that it reduces the trial and error of newly generated strategies, by cloning
successful strategies that are kept in a separate set. It also aims to find strategies
that are likely to perform well by making a similarity-based selection. Mutations
during the cloning phase allow for exploration of different strategies with different
parameter settings.

4 Experimental Setup and Results

In this section, we present our experimental results on the CEC2013 benchmark
functions [25]. The objective of our experiments is threefold. First, we show the
effect of the two strategy performance measures P1 and P2 proposed in Sect. 3
on MsDE, with three population adaptation schemes. Second, we illustrate how
the strategy adaptation dynamics compare between the sampling, clone-best and
clone-multiple based population adaptation schemes during an evolutionary run.
Finally, we compare the MsDE with basic DE and SaDE.

The types of the strategies and parameters of the algorithms are the same
for all the experiments, unless otherwise specified. We employ four types of
DE strategies referred to as “DE/rand/1/bin”, “DE/rand/2/bin”, “DE/rand-to-
best/2/bin”, and “DE/current-to-rand/1”. The suffix “bin” refers to the binomial
crossover. Note that “DE/current-to-rand/1” does not include a crossover opera-
tor. These strategies are selected on the basis of previous comparisons performed
in the literature; furthermore, they are also used in SaDE [5]. Asynchronous
selection is used for the selection operator.

All the experiments were performed using NP = 100 candidate solutions
and m = 50 strategies. The algorithms were run for at most 5000 × D function



Multi-strategy Differential Evolution 627

evaluations (FEs), where D is the dimension of the problem. If the error between
the best solution found and the global optimum is less than or equal to 1e−8, we
terminate the algorithm. Each algorithm was executed for 25 independent runs;
the mean and standard deviation of minimum error f(xbest) − f(x∗) achieved
are presented.

The three strategy adaptation schemes (sampling-based, clone-best and
clone-multiple) are referred to as MsDE-Sam, MsDE-CB, and MsDE-CM, respec-
tively. For MsDE-CB, the probability for cloning the best strategy φ is set to 0.7.
For MsDE-CM, the number of selected best strategies n is set to 10, the max
number of clones per strategy is set to 10 for the best strategy and reduced by
1 per each lower ranked strategy, the number of similar selected strategies is set
to h = 7, and the number of randomly initialized strategies is set to v = 3; thus
the number of strategies adds up to a total number of 10. For all algorithms,
the maturation threshold and the history threshold γ are set to 5 FEs and 10
activations, respectively.

Comparing the Performance Measures. In Table 1, we compare the two
different performance measures P1 and P2 for each kind of population adapta-
tion scheme on the CEC2013 functions in 10 dimensions. The suffixes “−P1”
and “−P2” indicate the performance measure used with a specific kind of pop-
ulation adaptation scheme. The best results for each performance measure for
each algorithm setting is highlighted in bold. The results that do not have sig-
nificant difference were not highlighted. The global best result for each function
is marked by the symbol “*”.

We observed that all three population adaptation schemes perform signifi-
cantly better using P2 on almost all benchmark functions. Since P1 promotes
the strategies based solely on the ratio of producing successful trial vectors, it
is likely to promote exploitative strategies that can cause early convergence, or
stalling the progress with small improvements. Performance measure P2, on the
other hand, promotes strategies that can produce diverse trial vectors success-
fully. The rest of the experiments are performed using P2.

Strategy Ensemble Adaptation Dynamics. Next, we examine how the
strategies adapt over time. In Fig. 1, we provide the results on f2 (first column)
and f6 (second column) in 30 dimensions.

Each sub-figure in Fig. 1 shows how the distribution of strategies changes
during an evolutionary run. Each line in the figures represents the number of
strategies of a given type in the strategy population, at a given generation. Only
the strategies that are mature and above the success threshold are counted.
We observe that in MsDE-Sam (a) and (d), there is a baseline pool of random
strategies that explores new strategies. The ratio of these pool is about %30 of
the whole population. In MsDE-CB (b) and (e), this ratio is about %20; and
in MsDE-CM (c) and (f), we observe that the random strategy pool is almost
nonexistent, and there is usually one type of strategy that is dominant at each
time. MsDE-Sam scheme constantly explores different strategies by keeping a



628 A. Yaman et al.

3000(a)
0

40

3000(d)
0

40

3000(b)
0

50

3000(e)
0

50

1800(c)
0

20

40

1800(f)
0

50

DE/rand/1/bin
DE/rand-to-best/2/bin
DE/rand/2/bin
DE/current-to-rand/1

Fig. 1. The distribution of strategies in the strategy population during an evolutionary
run. The first and second columns show the results for f2 and f6 in 30 dimensions, while
the rows show the results of MsDE-Sam, MsDE-CB, and MsDE-CM, respectively.

small set of random strategies which can consume resources (number of func-
tion evaluations). On the other hand, MsDE-CB and MsDE-CM aims to exploit
already found successful strategies by reintroducing them into the ensemble by
reproduction.

Comparing with Other Algorithms. Finally, we test MsDE-Sam, MsDE-
CB, MsDE-CM, basic DE and SaDE [5] on the CEC2013 benchmark functions
in 30 dimensions. The parameters F and CR of the basic DE set are as 0.5 and
0.3 respectively. The results are given in Table 2. The global best result for each
function is highlighted in bold.

To assess the statistical significance of the results, we perform the Wilcoxon
rank-sum test [26] based on the results provided in Table 2. The Wilcoxon rank-
sum test is a non-parametric test that does not assume normality condition
[14,26]. It is a pairwise test that aims to detect the significant difference between
two different means that are the results of two algorithms. We reject the null-
hypothesis, that is the behavior of the two algorithms are the same, if the p-value
is smaller than α = 0.05. We compare the MsDE-CM with the other algorithms
using the best function error values of 25 independent runs for each benchmark
function. The results are given in Table 2 next to the columns of the specified
algorithms (except MsDE-CM, which is taken as the reference algorithm), where
“=”, “+” and “−” indicate no significant difference, significant difference in
favor of MsDE-CM, and significant difference in favor of the specified algorithm.



Multi-strategy Differential Evolution 629

T
a
b
le

1
.
T

h
e

ex
p
er

im
en

t
re

su
lt

s
w

it
h

p
er

fo
rm

a
n
ce

m
ea

su
re

s
P
1

a
n
d

P
2

o
n

th
e

C
E

C
2
0
1
3

b
en

ch
m

a
rk

p
ro

b
le

m
s

in
1
0

d
im

en
si

o
n
s.

f
i

M
sD

E
-S

a
m
-P

1
M

sD
E
-S

a
m
-P

2
M

sD
E
-C

B
-P

1
M

sD
E
-C

B
-P

2
M

sD
E
-C

M
-P

1
M

sD
E
-C

M
-P

2

f
1

8
.4
7
E
-0

9
±

1
.9
2
E
-0

9
8
.7
4
E
-0

9
±

1
.1
5
E
-0

9
9
.0
4
E
-0

9
±

1
.3
1
E
-0

4
8
.5
2
E
-0

9
±

1
.6
3
E
-0

9
8
.4
9
E
-0

9
±

2
.3
1
E
-0

2
8
.7
7
E
-0

9
±

5
.3
7
E
-0

9

f
2

1
.2
7
E
+
0
3

±
4
.2
0
E
+
0
3

8
.3

7
E
+

0
2

±
3
.2

0
E
+

0
3

1
.7
9
E
+
0
5

±
3
.3
4
E
+
0
5

9
.4

2
E
-0

9
±

3
.5

2
E
-0

5
*

1
.0
0
E
+
0
5

±
3
.5
0
E
+
0
6

8
.1

6
E
-0

9
±

1
.1

5
E
-0

6
*

f
3

5
.7
7
E
+
0
5

±
1
.0
3
E
+
0
7

2
.0

8
E
+

0
1

±
3
.9

9
E
+

0
5

1
.7
2
E
+
0
7

±
4
.9
9
E
+
0
8

4
.9

5
E
-0

3
±

1
.2

8
E
+

0
0
*

3
.4
4
E
+
0
7

±
1
.0
6
E
+
0
9

1
.6

2
E
-0

1
±

1
.2

5
E
+

0
0

f
4

8
.1
9
E
-0

3
±

9
.2
8
E
-0

1
2
.5

1
E
-0

3
±

5
.3

2
E
-0

2
5
.4
5
E
+
0
2

±
4
.5
2
E
+
0
3

8
.8

3
E
-0

9
±

1
.3

1
E
-0

9
*

5
.3
6
E
+
0
1

±
6
.6
9
E
+
0
3

8
.6

6
E
-0

9
±

9
.7

6
E
-0

9
*

f
5

9
.2
7
E
-0

9
±

1
.0
7
E
-0

9
8
.6
5
E
-0

9
±

1
.1
1
E
-0

9
9
.7
0
E
-0

9
±

7
.5
6
E
-0

2
9
.5
0
E
-0

9
±

6
.9
2
E
-0

8
9
.0
2
E
-0

9
±

8
.7
9
E
-0

2
8
.9
7
E
-0

9
±

1
.1
6
E
-0

7

f
6

9
.5

3
E
-0

9
±

4
.9

7
E
+

0
0
*

9
.8
1
E
+
0
0

±
4
.8
1
E
+
0
0

1
.0
1
E
+
0
1

±
8
.3
1
E
+
0
0

8
.0

6
E
+

0
0

±
3
.6

7
E
+

0
0

9
.8
2
E
+
0
0

±
2
.6
6
E
+
0
1

8
.6

7
E
-0

9
±

2
.7

2
E
+

0
0
*

f
7

1
.6
3
E
+
0
1

±
1
.6
1
E
+
0
1

1
.5

3
E
+

0
0

±
8
.3

6
E
+

0
0

6
.1
3
E
+
0
1

±
2
.8
0
E
+
0
1

2
.0

4
E
+

0
1

±
1
.2

1
E
+

0
1

3
.1
3
E
+
0
1

±
4
.4
9
E
+
0
1

1
.2

1
E
-0

3
±

5
.5

2
E
-0

2
*

f
8

2
.0
4
E
+
0
1

±
7
.7
4
E
-0

2
2
.0
4
E
+
0
1

±
9
.5
8
E
-0

2
2
.0
4
E
+
0
1

±
8
.6
7
E
-0

2
3
.4

4
E
+

0
0

±
7
.0

8
E
-0

2
2
.0
4
E
+
0
1

±
1
.2
2
E
-0

1
2
.0

4
E
+

0
1

±
9
.1

5
E
-0

2
*

f
9

3
.7
8
E
+
0
0

±
1
.2
7
E
+
0
0

2
.9

2
E
+

0
0

±
9
.4

2
E
-0

1
6
.6
0
E
+
0
0

±
1
.3
9
E
+
0
0

4
.4

3
E
-0

2
±

1
.2

8
E
+

0
0
*

7
.4
1
E
+
0
0

±
1
.7
0
E
+
0
0

1
.9

6
E
+

0
0

±
1
.2

0
E
+

0
0

f
1
0

2
.7
8
E
-0

1
±

2
.7
1
E
-0

1
1
.4

0
E
-0

1
±

6
.7

2
E
-0

2
8
.8

9
E
-0

1
±

2
.7

3
E
+

0
0

1
.9
9
E
+
0
0

±
4
.6
8
E
-0

2
8
.8
2
E
-0

1
±

1
.6
2
E
+
0
1

5
.8

8
E
-0

8
±

2
.9

9
E
-0

2
*

f
1
1

2
.9
8
E
+
0
0

±
3
.5
2
E
+
0
0

9
.3

4
E
-0

9
±

6
.4

7
E
-0

1
*

1
.3
9
E
+
0
1

±
1
.1
4
E
+
0
1

1
.0

9
E
+

0
1

±
2
.3

6
E
+

0
0

6
.5
9
E
+
0
0

±
1
.4
1
E
+
0
1

9
.1

5
E
-0

9
±

4
.9

7
E
-0

1
*

f
1
2

1
.5
9
E
+
0
1

±
8
.3
7
E
+
0
0

1
.0

9
E
+

0
1

±
5
.3

3
E
+

0
0

3
.2
8
E
+
0
1

±
1
.7
9
E
+
0
1

2
.4

4
E
+

0
1

±
5
.0

4
E
+

0
0

1
.8
8
E
+
0
1

±
1
.7
3
E
+
0
1

3
.9

8
E
+

0
0

±
2
.5

8
E
+

0
0
*

f
1
3

2
.6
5
E
+
0
1

±
9
.9
8
E
+
0
0

1
.5

8
E
+

0
1

±
7
.4

6
E
+

0
0

4
.6
6
E
+
0
1

±
2
.7
5
E
+
0
1

4
.3

3
E
+

0
1

±
1
.0

9
E
+

0
1

3
.5
7
E
+
0
1

±
2
.5
2
E
+
0
1

5
.0

5
E
+

0
0

±
5
.0

9
E
+

0
0
*

f
1
4

1
.5
1
E
+
0
1

±
3
.8
0
E
+
0
1

3
.5

4
E
+

0
0

±
6
.9

6
E
+

0
0

6
.1

7
E
+

0
1

±
1
.9

1
E
+

0
2

7
.6
8
E
+
0
2

±
1
.0
8
E
+
0
2

6
.4
8
E
+
0
1

±
2
.5
3
E
+
0
2

3
.1

2
E
-0

1
±

3
.8

6
E
+

0
0
*

f
1
5

7
.9
6
E
+
0
2

±
2
.5
3
E
+
0
2

7
.0

2
E
+

0
2

±
2
.7

4
E
+

0
2

8
.1
9
E
+
0
2

±
3
.4
1
E
+
0
2

4
.2

4
E
-0

2
±

2
.1

1
E
+

0
2
*

9
.4
2
E
+
0
2

±
4
.0
2
E
+
0
2

7
.8

3
E
+

0
2

±
2
.6

5
E
+

0
2

f
1
6

9
.4

9
E
-0

1
±

3
.2

7
E
-0

1
1
.0
7
E
+
0
0

±
3
.0
0
E
-0

1
4
.9

1
E
-0

1
±

2
.1

1
E
-0

1
*

1
.2
2
E
+
0
1

±
5
.8
9
E
-0

1
1
.0

7
E
+

0
0

±
4
.4

5
E
-0

1
1
.0
8
E
+
0
0

±
6
.9
4
E
-0

1

f
1
7

1
.0
4
E
+
0
1

±
3
.6
4
E
+
0
0

1
.0

2
E
+

0
1

±
9
.6

4
E
-0

2
*

3
.1
5
E
+
0
1

±
1
.3
1
E
+
0
1

1
.9

8
E
+

0
1

±
1
.2

1
E
+

0
0

1
.4
4
E
+
0
1

±
6
.6
1
E
+
0
0

1
.0

3
E
+

0
1

±
6
.0

7
E
-0

1

f
1
8

2
.0

9
E
+

0
1

±
4
.7

5
E
+

0
0

2
.1
4
E
+
0
1

±
5
.7
1
E
+
0
0

4
.0
2
E
+
0
1

±
1
.9
7
E
+
0
1

7
.4

2
E
-0

1
±

4
.0

9
E
+

0
0
*

3
.0
4
E
+
0
1

±
1
.3
2
E
+
0
1

1
.6

0
E
+

0
1

±
2
.6

3
E
+

0
0

f
1
9

6
.0
0
E
-0

1
±

2
.5
2
E
-0

1
3
.6

8
E
-0

1
±

1
.3

9
E
-0

1
*

1
.4

5
E
+

0
0

±
1
.2

8
E
+

0
0

3
.3
0
E
+
0
0

±
2
.3
0
E
-0

1
1
.0
2
E
+
0
0

±
6
.4
6
E
-0

1
5
.1

3
E
-0

1
±

1
.7

0
E
-0

1

f
2
0

2
.4

3
E
+

0
0

±
5
.8

1
E
-0

1
2
.7
8
E
+
0
0

±
5
.0
5
E
-0

1
3
.8

9
E
+

0
0

±
5
.1

7
E
-0

1
4
.0
0
E
+
0
2

±
6
.0
5
E
-0

1
3
.5
5
E
+
0
0

±
6
.3
0
E
-0

1
2
.4

0
E
+

0
0

±
5
.1

3
E
-0

1
*

f
2
1

4
.0
0
E
+
0
2

±
6
.2
8
E
+
0
1

4
.0
0
E
+
0
2

±
5
.5
4
E
+
0
1

4
.0
0
E
+
0
2

±
2
.3
1
E
-0

1
8
.4

4
E
+

0
1

±
2
.3

2
E
-1

3
*

4
.0
0
E
+
0
2

±
8
.7
3
E
+
0
1

4
.0
0
E
+
0
2

±
7
.0
8
E
+
0
1

f
2
2

7
.5
4
E
+
0
1

±
8
.5
3
E
+
0
1

3
.1

2
E
+

0
1

±
7
.2

6
E
+

0
1
*

1
.6

8
E
+

0
2

±
2
.3

5
E
+

0
2

9
.3
3
E
+
0
2

±
1
.6
9
E
+
0
2

3
.2
0
E
+
0
2

±
2
.7
9
E
+
0
2

4
.9

9
E
+

0
1

±
5
.0

9
E
+

0
1

f
2
3

9
.8
9
E
+
0
2

±
3
.1
1
E
+
0
2

8
.3

3
E
+

0
2

±
2
.4

0
E
+

0
2

7
.9
2
E
+
0
2

±
3
.2
8
E
+
0
2

2
.0

6
E
+

0
2

±
2
.6

6
E
+

0
2
*

1
.2
1
E
+
0
3

±
3
.4
5
E
+
0
2

8
.6

7
E
+

0
2

±
3
.0

7
E
+

0
2

f
2
4

2
.1
2
E
+
0
2

±
2
.6
4
E
+
0
1

2
.0

9
E
+

0
2

±
2
.5

6
E
+

0
1

2
.2
1
E
+
0
2

±
2
.4
9
E
+
0
1

2
.0

0
E
+

0
2

±
2
.0

6
E
+

0
1

2
.1
8
E
+
0
2

±
3
.5
2
E
+
0
1

2
.0

0
E
+

0
2

±
1
.6

2
E
+

0
1
*

f
2
5

2
.1
1
E
+
0
2

±
2
.1
8
E
+
0
1

2
.0

2
E
+

0
2

±
2
.2

8
E
+

0
1

2
.2
0
E
+
0
2

±
2
.1
7
E
+
0
1

1
.1

9
E
+

0
2

±
1
.7

4
E
+

0
1
*

2
.1
8
E
+
0
2

±
1
.9
8
E
+
0
1

2
.0

0
E
+

0
2

±
1
.7

8
E
+

0
1

f
2
6

1
.5

6
E
+

0
2

±
4
.1

0
E
+

0
1

2
.0
0
E
+
0
2

±
3
.8
8
E
+
0
1

1
.3

2
E
+

0
2

±
3
.6

5
E
+

0
1

3
.0
0
E
+
0
2

±
3
.2
1
E
+
0
1

1
.5
1
E
+
0
2

±
3
.5
4
E
+
0
1

1
.0

6
E
+

0
2

±
2
.6

7
E
+

0
1
*

f
2
7

4
.0
0
E
+
0
2

±
8
.7
4
E
+
0
1

3
.0

0
E
+

0
2

±
7
.3

5
E
+

0
1

4
.5
8
E
+
0
2

±
9
.4
1
E
+
0
1

3
.0

0
E
+

0
2

±
2
.7

6
E
+

0
1
*

4
.4
1
E
+
0
2

±
1
.0
9
E
+
0
2

3
.0

0
E
+

0
2

±
2
.0

0
E
+

0
1

f
2
8

3
.0
0
E
+
0
2

±
1
.4
3
E
+
0
2

3
.0

0
E
+

0
2

±
6
.6

3
E
+

0
1
*

3
.0

0
E
+

0
2

±
2
.1

5
E
+

0
2

3
.0
0
E
+
0
2

±
9
.8
0
E
+
0
1

3
.0

0
E
+

0
2

±
1
.8

6
E
+

0
2

3
.0
0
E
+
0
2

±
4
.0
0
E
+
0
1



630 A. Yaman et al.

T
a
b
le

2
.
T

h
e

ex
p
er

im
en

t
re

su
lt

s
o
f
th

e
se

le
ct

ed
a
lg

o
ri

th
m

s
o
n

th
e

C
E

C
2
0
1
3

b
en

ch
m

a
rk

p
ro

b
le

m
s

in
3
0

d
im

en
si

o
n
s.

f
i

M
sD

E
-S

a
m

M
sD

E
-C

B
M

sD
E
-C

M
D
E

S
a
D
E

f
1

9
.5
6
E
-0

9
±

7
.8
8
E
-1

0
=

9
.2
6
E
-0

9
±

9
.5
8
E
-1

0
=

9
.5
4
E
-0

9
±

6
.0
5
E
-1

0
9
.2
4
E
-0

9
±

5
.5
1
E
-1

0
=

9
.1
4
E
-0

9
±

1
.1
4
E
-0

9
=

f
2

1
.4
0
E
+
0
5

±
1
.3
2
E
+
0
5

=
1
.7
1
E
+
0
5

±
1
.1
5
E
+
0
5

=
1
.1

9
E
+

0
5

±
1
.9

1
E
+

0
5

2
.2
1
E
+
0
8

±
4
.5
3
E
+
0
7

+
1
.7
6
E
+
0
5

±
1
.4
5
E
+
0
5

=

f
3

1
.1
5
E
+
0
5

±
4
.0
6
E
+
0
6

=
6
.0
1
E
+
0
6

±
1
.3
7
E
+
0
7

+
8
.6

0
E
+

0
4

±
1
.5

9
E
+

0
6

1
.5
6
E
+
0
9

±
8
.5
6
E
+
0
8

+
1
.4
3
E
+
0
5

±
1
.7
2
E
+
0
6

=

f
4

1
.2

2
E
+

0
1

±
3
.6

3
E
+

0
1

−
1
.7
3
E
+
0
2

±
3
.7
4
E
+
0
2

+
4
.4
0
E
+
0
1

±
6
.0
8
E
+
0
1

1
.1
6
E
+
0
5

±
1
.6
4
E
+
0
4

+
3
.5
2
E
+
0
3

±
2
.4
2
E
+
0
3

+

f
5

9
.5
8
E
-0

9
±

4
.9
7
E
-1

0
=

9
.6
4
E
-0

9
±

7
.4
6
E
-1

0
=

9
.7
1
E
-0

9
±

3
.7
1
E
-1

0
9
.5
8
E
-0

9
±

5
.5
6
E
-1

0
=

9
.6
0
E
-0

9
±

6
.5
1
E
-1

0
=

f
6

9
.6
7
E
+
0
0

±
5
.0
7
E
+
0
0

=
9
.4
1
E
+
0
0

±
6
.6
7
E
+
0
0

=
9
.1

7
E
+

0
0

±
1
.7

2
E
+

0
1

2
.6
3
E
+
0
1

±
3
.3
3
E
-0

1
+

1
.2
2
E
+
0
1

±
1
.2
5
E
+
0
1

+

f
7

1
.4
6
E
+
0
1

±
1
.0
3
E
+
0
1

−
7
.2
3
E
+
0
1

±
1
.6
4
E
+
0
1

+
2
.8
7
E
+
0
1

±
1
.4
0
E
+
0
1

1
.4
6
E
+
0
2

±
1
.4
8
E
+
0
1

+
1
.2

2
E
+

0
1

±
6
.6

2
E
+

0
0

−
f
8

2
.1

0
E
+

0
1

±
6
.7

2
E
-0

2
−

2
.1
0
E
+
0
1

±
4
.3
3
E
-0

2
−

2
.1
0
E
+
0
1

±
6
.3
7
E
-0

2
2
.1
0
E
+
0
1

±
5
.5
3
E
-0

2
−

2
.1
0
E
+
0
1

±
5
.5
0
E
-0

2
−

f
9

1
.7

3
E
+

0
1

±
3
.0

8
E
+

0
0

−
2
.7
2
E
+
0
1

±
4
.7
3
E
+
0
0

+
2
.2
4
E
+
0
1

±
5
.7
4
E
+
0
0

3
.9
4
E
+
0
1

±
1
.1
4
E
+
0
0

+
1
.9
1
E
+
0
1

±
2
.3
2
E
+
0
0

−
f
1
0

3
.4
5
E
-0

2
±

2
.6
4
E
-0

2
=

5
.1
7
E
-0

2
±

3
.9
4
E
-0

2
=

3
.4

5
E
-0

2
±

2
.5

6
E
-0

2
1
.2
7
E
+
0
2

±
3
.6
2
E
+
0
1

+
4
.9
3
E
-0

2
±

4
.0
1
E
-0

2
=

f
1
1

8
.9
5
E
+
0
0

±
4
.5
4
E
+
0
0

−
2
.9
8
E
+
0
1

±
1
.1
6
E
+
0
1

+
1
.6
9
E
+
0
1

±
8
.3
6
E
+
0
0

6
.8
3
E
+
0
1

±
5
.5
5
E
+
0
0

+
1
.8

1
E
-0

5
±

5
.5

7
E
+

0
0

−
f
1
2

4
.5
8
E
+
0
1

±
9
.6
3
E
+
0
0

+
7
.1
6
E
+
0
1

±
2
.2
5
E
+
0
1

+
3
.1

8
E
+

0
1

±
8
.8

7
E
+

0
0

2
.0
3
E
+
0
2

±
1
.0
6
E
+
0
1

+
3
.4
8
E
+
0
1

±
6
.3
4
E
+
0
0

+

f
1
3

8
.7
7
E
+
0
1

±
2
.3
1
E
+
0
1

+
1
.5
4
E
+
0
2

±
4
.1
5
E
+
0
1

+
6
.8

6
E
+

0
1

±
2
.3

7
E
+

0
1

2
.1
0
E
+
0
2

±
1
.5
0
E
+
0
1

+
6
.9
4
E
+
0
1

±
2
.6
4
E
+
0
1

=

f
1
4

2
.9

0
E
+

0
1

±
3
.2

6
E
+

0
1

−
9
.9
9
E
+
0
2

±
4
.8
7
E
+
0
2

+
6
.1
1
E
+
0
1

±
1
.2
5
E
+
0
2

3
.9
3
E
+
0
3

±
2
.3
3
E
+
0
2

+
1
.8
1
E
+
0
3

±
6
.3
7
E
+
0
2

+

f
1
5

6
.4
1
E
+
0
3

±
1
.1
5
E
+
0
3

+
3
.6
3
E
+
0
3

±
5
.7
8
E
+
0
2

=
3
.6
8
E
+
0
3

±
1
.4
9
E
+
0
3

7
.7
8
E
+
0
3

±
3
.1
0
E
+
0
2

+
3
.4

2
E
+

0
3

±
5
.6

0
E
+

0
2

=

f
1
6

2
.5
9
E
+
0
0

±
2
.3
0
E
-0

1
+

2
.0

3
E
-0

1
±

8
.1

7
E
-0

1
−

2
.3
3
E
+
0
0

±
9
.5
8
E
-0

1
2
.7
1
E
+
0
0

±
3
.0
2
E
-0

1
+

2
.5
1
E
+
0
0

±
3
.6
6
E
-0

1
=

f
1
7

3
.3

4
E
+

0
1

±
1
.6

1
E
+

0
0

−
6
.0
1
E
+
0
1

±
1
.1
1
E
+
0
1

+
3
.5
7
E
+
0
1

±
4
.1
8
E
+
0
0

1
.0
0
E
+
0
2

±
6
.0
1
E
+
0
0

+
5
.8
0
E
+
0
1

±
9
.3
2
E
+
0
0

+

f
1
8

1
.7
0
E
+
0
2

±
4
.1
0
E
+
0
1

+
8
.2
8
E
+
0
1

±
1
.7
6
E
+
0
1

+
5
.1

5
E
+

0
1

±
3
.8

2
E
+

0
1

2
.3
2
E
+
0
2

±
1
.0
5
E
+
0
1

+
5
.5
5
E
+
0
1

±
1
.1
5
E
+
0
1

=

f
1
9

2
.7
0
E
+
0
0

±
1
.0
4
E
+
0
0

+
4
.9
5
E
+
0
0

±
2
.6
4
E
+
0
0

+
2
.4

0
E
+

0
0

±
5
.2

4
E
-0

1
1
.1
0
E
+
0
1

±
6
.7
7
E
-0

1
+

2
.7
5
E
+
0
0

±
9
.4
7
E
-0

1
+

f
2
0

1
.1
4
E
+
0
1

±
5
.0
8
E
-0

1
+

1
.1
8
E
+
0
1

±
1
.3
4
E
+
0
0

+
1
.0

3
E
+

0
1

±
1
.1

2
E
+

0
0

1
.3
7
E
+
0
1

±
1
.7
1
E
-0

1
+

1
.0
4
E
+
0
1

±
7
.8
4
E
-0

1
=

f
2
1

3
.0

0
E
+

0
2

±
8
.3

2
E
+

0
1

=
3
.0
0
E
+
0
2

±
8
.7
7
E
+
0
1

=
3
.0
0
E
+
0
2

±
8
.0
4
E
+
0
1

3
.0
0
E
+
0
2

±
4
.2
6
E
+
0
1

=
3
.0
0
E
+
0
2

±
6
.7
8
E
+
0
1

+

f
2
2

1
.4

0
E
+

0
2

±
5
.6

2
E
+

0
1

−
1
.2
9
E
+
0
3

±
5
.4
1
E
+
0
2

+
1
.6
6
E
+
0
2

±
2
.0
1
E
+
0
2

4
.5
5
E
+
0
3

±
3
.3
3
E
+
0
2

+
1
.4
7
E
+
0
3

±
7
.8
8
E
+
0
2

+

f
2
3

6
.6
7
E
+
0
3

±
1
.2
4
E
+
0
3

+
4
.5
2
E
+
0
3

±
7
.4
8
E
+
0
2

=
3
.9
7
E
+
0
3

±
1
.1
4
E
+
0
3

8
.0
4
E
+
0
3

±
2
.9
5
E
+
0
2

+
3
.6

0
E
+

0
3

±
6
.4

2
E
+

0
2

=

f
2
4

2
.1
9
E
+
0
2

±
6
.4
3
E
+
0
0

=
2
.4
0
E
+
0
2

±
1
.1
5
E
+
0
1

+
2
.1
6
E
+
0
2

±
7
.2
3
E
+
0
0

3
.0
1
E
+
0
2

±
2
.6
2
E
+
0
0

+
2
.0

9
E
+

0
2

±
3
.2

8
E
+

0
0

−
f
2
5

2
.6

9
E
+

0
2

±
8
.1

4
E
+

0
0

=
2
.9
2
E
+
0
2

±
1
.1
1
E
+
0
1

+
2
.8
0
E
+
0
2

±
3
.0
2
E
+
0
1

3
.0
2
E
+
0
2

±
2
.6
3
E
+
0
0

+
2
.7
3
E
+
0
2

±
6
.3
9
E
+
0
0

=

f
2
6

2
.0
0
E
+
0
2

±
3
.5
8
E
-0

3
=

2
.0
0
E
+
0
2

±
7
.1
6
E
-0

3
=

2
.0

0
E
+

0
2

±
8
.8

9
E
-0

3
2
.7
9
E
+
0
2

±
3
.7
3
E
+
0
1

+
2
.0
0
E
+
0
2

±
9
.6
5
E
-0

3
=

f
2
7

4
.9
4
E
+
0
2

±
6
.5
6
E
+
0
1

=
8
.4
9
E
+
0
2

±
1
.2
7
E
+
0
2

+
5
.2
8
E
+
0
2

±
1
.0
3
E
+
0
2

1
.3
2
E
+
0
3

±
1
.9
1
E
+
0
1

+
4
.5

6
E
+

0
2

±
7
.1

1
E
+

0
1

=

f
2
8

3
.0

0
E
+

0
2

±
4
.1

4
E
-1

3
−

3
.0
0
E
+
0
2

±
1
.0
4
E
-1

0
−

3
.0
0
E
+
0
2

±
1
.0
2
E
-0

7
3
.0
0
E
+
0
2

±
1
.6
6
E
-0

8
+

3
.0
0
E
+
0
2

±
1
.8
7
E
-0

9
−



Multi-strategy Differential Evolution 631

The results show that MsDE-CM is significantly better than basic DE and
MsDE-CB, and on average better than SaDE and MsDE-Sam.

5 Conclusions

In this work, we propose the Multi-strategy Differential Evolution (MsDE) algo-
rithm to construct and maintain an ensemble set of strategies with various
parameters. MsDE is capable of self-adapting the type of strategy and its param-
eters F and CR. Different from the alternative approaches, MsDE represents the
ensemble strategy population as agents that interact with the candidate solu-
tions. The performance of the strategies is measured by a performance measure
which is used to self-adapt the ensemble population.

We propose two performance measures, and compare their efficiency in con-
structing an ensemble of successful strategies. Our results show that favoring
strategies that can produce diverse trial vectors successfully yields better than
favoring them based solely on their ratio of producing successful trial vectors.

We propose three approaches for self-adapting the strategy population. The
simplest approach is based on random sampling where new strategies are ran-
domly introduced into, and the ones that do not satisfy a performance criterion
are removed from the ensemble. Other two approaches use clonal selection mech-
anism to proliferate successful strategies in the ensemble. While, four different
types of strategies with their continuous F and CR parameters are aimed to be
optimized, the sampling based approach requires only a parameter for ensemble
size, and a threshold for defining a successful strategy based on its performance
metric. The clonal selection based algorithms introduce an additional parameter
for perturbing strategies. In this work, we used asynchronous selection operator.
Asynchronous selection can speed up the convergence and decrease the popula-
tion diversity. We would like to examine the effect of synchronous/asynchronous
update in the future work.

We compare the MsDE with basic DE and the SaDE algorithm with different
combinations strategy performance measure and population adaptation schemes.
Overall, our results show that the MsDE provides better results on CEC2013
benchmark functions. In future works, we will try to extend the MsDE approach
to other evolutionary algorithms.

Acknowledgments. We would like to thank Dr. Samaneh Khoshrou
from Eindhoven University of Technology for the informative discussion.
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 665347.



632 A. Yaman et al.

References

1. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning
(1989)

2. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

3. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an
updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

4. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and
experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010)

5. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput.
13(2), 398–417 (2009)

6. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)

7. Eiben, Á.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

8. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary
algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187
(2015)

9. Kramer, O.: Self-adaptive Heuristics for Evolutionary Computation, vol. 147.
Springer, Heidelberg (2008)

10. De Jong, K.A.: Analysis of the behavior of a class of genetic adaptive systems.
Ph.D. thesis (1975)

11. Yaman, A., Hallawa, A., Coler, M., Iacca, G.: Presenting the ECO: evolution-
ary computation ontology. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017.
LNCS, vol. 10199, pp. 603–619. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55849-3 39

12. Hallawa, A., Yaman, A., Iacca, G., Ascheid, G.: A framework for knowledge inte-
grated evolutionary algorithms. In: Squillero, G., Sim, K. (eds.) EvoApplications
2017. LNCS, vol. 10199, pp. 653–669. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-55849-3 42

13. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical App-
roach to Global Optimization. Springer Science & Business Media, Heidelberg
(2006)

14. Iacca, G., Caraffini, F., Neri, F.: Multi-strategy coevolving aging particle optimiza-
tion. Int. J. Neural Syst. 24(01), 1450008 (2014)

15. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Super-fit and
population size reduction in compact differential evolution. In: 2011 IEEE Work-
shop on Memetic Computing (MC), pp. 1–8, April 2011

16. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolu-
tion algorithm with ensemble of parameters and mutation strategies. Appl. Soft
Comput. 11(2), 1679–1696 (2011)

17. Mallipeddi, R., Iacca, G., Suganthan, P.N., Neri, F., Mininno, E.: Ensemble strate-
gies in compact differential evolution. In: 2011 IEEE Congress of Evolutionary
Computation (CEC), pp. 1972–1977, June 2011

18. Iacca, G., Neri, F., Caraffini, F., Suganthan, P.N.: A differential evolution frame-
work with ensemble of parameters and strategies and pool of local search algo-
rithms. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS,
vol. 8602, pp. 615–626. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45523-4 50

https://doi.org/10.1007/978-3-319-55849-3_39
https://doi.org/10.1007/978-3-319-55849-3_39
https://doi.org/10.1007/978-3-319-55849-3_42
https://doi.org/10.1007/978-3-319-55849-3_42
https://doi.org/10.1007/978-3-662-45523-4_50
https://doi.org/10.1007/978-3-662-45523-4_50


Multi-strategy Differential Evolution 633

19. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for
numerical optimization. In: The 2005 IEEE Congress on Evolutionary Compu-
tation, vol. 2, pp. 1785–1791. IEEE (2005)

20. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

21. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: a comparative study on numerical benchmark
problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

23. De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal
selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)

24. De Castro, L.N.: Fundamentals of Natural Computing: Basic Concepts, Algo-
rithms, and Applications. CRC Press (2006)

25. Liang, J., Qu, B., Suganthan, P., Hernández-Dı́az, A.G.: Problem definitions and
evaluation criteria for the CEC 2013 special session on real-parameter optimization.
Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China
and Nanyang Technological University, Singapore, Technical Report 201212, 3–18
(2013)

26. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80–83 (1945)


	Multi-strategy Differential Evolution
	1 Introduction
	2 Related Work
	2.1 Strategy and Parameter Control in DE

	3 Multi-strategy Differential Evolution (MsDE)
	3.1 Strategy Population Adaptation Schemes

	4 Experimental Setup and Results
	5 Conclusions
	References




