Demand for money and shortages in Ethiopia

Elmer Sterken

To cite this article: Elmer Sterken (2004) Demand for money and shortages in Ethiopia, Applied Economics Letters, 11:12, 759-769, DOI: 10.1080/1350485042000245511

To link to this article: https://doi.org/10.1080/1350485042000245511

Published online: 16 Aug 2006.
Demand for money and shortages in Ethiopia

ELMER STERKEN
Department of Economics, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands

The paper discusses the long-run monetary conditions in Ethiopia in the last three decades. These decades can be characterized by large political changes, leading to shocks on income and population growth, and two serious periods of drought. Both affected inflation and real demand for $M_1$ through shortages of food. Shortage due to drops in rainfall might have long-run monetary consequences. Despite regime shifts we find support for stability of Ethiopian narrow money demand.

1. INTRODUCTION

In developed countries demand for money is usually explained by income, inflation, and portfolio motives. The quest for a stable, predictable money demand function is in most cases supported by extensive data sets and a detailed knowledge about institutional settings. Almost the opposite is true for developing countries. Data sets are scarce and knowledge of the performance of these countries, like some of the African economies, is poor. On the other hand the demand for knowledge regarding monetary conditions in developing countries is large. Some of them are trying to reform the financial system and to introduce market-based economies. Especially in countries that try to reform a centrally-planned economy into a market-based system, the fear for inflation is large. In those cases knowledge of monetary conditions is absolute precondition for a successful liberalization process. This is the main motivation of the present study on monetary conditions in Ethiopia in the period 1966–1994.

This study models monetary conditions in the multivariate Johansen-framework and allows for endogeneity of variables, that would otherwise be exogenous in single equation models of Ethiopian money demand. In case the explanatory variables are endogenous single equation techniques lead to inefficient estimates and a loss of information. Apart from the standard determinants of money demand the focus is on specific circumstances that characterise the Ethiopian economy in the last decades, namely (1) changes in political regimes, and (2) climatological changes. Both are discussed hereafter in more detail. This study analyses whether these changes in regimes and effects of periods of drought are relevant to the issue of stability of Ethiopian money demand. A stable relationship between money and income can help further economic development through price stabilization.

This study fits into recent empirical research on money demand for African economies. Here a number of studies are referred to with a methodology similar to the one used in this paper: Domowitz and Elbadawi (1987) for Sudan, Adam (1992) for Kenya, Adam (1995) for Zambia and Moser (1994)1 for Nigeria. These studies tend to find stability of money demand, a unit income elasticity, serious effects of inflation and sometimes of currency problems, represented by the black market premium.

The paper proceeds as follows. Section II gives a review of the macroeconomic development of the Ethiopian economy. It presents the major time series used. Section III reviews the theory of money demand and its particular aspects for developing countries facing shortage. Section IV turns to the econometric specification of the long-run model, its properties and the corresponding short-run Vector Error Correction Model Section V sums up with conclusions.

1 Moser (1994) is of special interest for this study since Moser discusses the consequences of severe agroclimatic circumstances for inflation.
II. ETHIOPIAN ECONOMY

The recent history of the Ethiopian economy can be characterized by serious peaks and depressions, due to shocks in politics and climate. First the political conditions are discussed. This study reviews the period 1966–1994, which can be split up into three political subperiods:

1. 1966–1974: the feudal regime of Haile Selassie, which can be characterized by a US oriented market system.
2. 1975–1991: the communist regime of Mengistu, which can be characterized by a planned economy. Financial markets were abolished, the exchange rate was fixed, capital controls were absolute, price regulation was pursued, etc.
3. 1991–1994: the Tigrayan regime. A coalition of ethnic political parties formed a government in 1991 with a strong influence by the Tigrayan party. This government adopted IMF-led stabilization and structural adjustment plans, opened the country for trade and tried to implement a market-based system.

There is a second cause of possible breaks in Ethiopian economic trends. As in some other African countries the climate is in Ethiopia important determinant of economic life. High temperatures and sometimes a shortage of (drinking) water depress food production. Ethiopia is tortured by two periods of drought in the sample: 1975 and 1985. These dry periods lead to shortage of foods. As is discussed hereafter agroclimatic conditions may affect food prices and therefore inflation.

So, there are three possible break points in the sample, based on both political and climatological conditions: 1974–1975, 1985–1986 and 1991–1992. Table 1 lists averages of some key indicators of the economic conditions during the three regimes. The first two rows indicate monetization, measured by the two definitions of the money stock ($M_1$ narrow money and $M_2$ broad money) over income (GNP). In terms of GNP growth (given by $\ddot{y} = \Delta \log GNP$, the growth rate of GNP in the third row), inflation ($\ddot{p} = \Delta \log P$ in the fourth row) and shortage, measured as the ratio of food-prices over non-food prices, (see for an explanation hereafter; $S$ in the fifth row) the feudal period performs best in the sample.

Knowing the general conditions during the three sub-regimes the study turns to a more detailed description of some key variables of the monetary conditions of the Ethiopian economy. Figure 1 gives the time series plots of the variables used in the econometric model. The upper left panel plots the key variable of the study: the log of real per capita $M_1$ holdings. The plot shows two serious peaks in the time series of per capita $M_1$ that coincide with the regime breaks: an increase short after 1975 and a permanent increase after 1985.

The upper right-hand panel of Fig. 1 shows the log of real per capita GNP in the period 1966–1994. One can see that dry periods and changes in political regime after real per capita income rather seriously. On average one cannot observe real growth of per capita income over the last three decades.

Next a discussion of shortage is turned to. In general, dry periods lead to a shortage of foods and probably to a price increase in food prices. Moser (1994) analyses the effects of agroclimatic conditions on inflation in Nigeria. He concludes that a 10% drop in rainfall below the average rainfall level leads to a 7% increase in the general price level. Because official rainfall data are hard to obtain for Ethiopia the food prices in Addis Ababa were selected from the Quarterly Bulletin of the National Bank of Ethiopia. Food takes a weighting share of about 56% of the general price index. After that the price index of non-foods was computed and the ratio of food prices

![Table 1. Macroeconomic conditions in the three regimes](image-url)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Feudal</th>
<th>Communist</th>
<th>Tigrayan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_1/GNP$</td>
<td>40.28</td>
<td>80.62</td>
<td>123.26</td>
</tr>
<tr>
<td>$M_2/GNP$</td>
<td>56.73</td>
<td>112.89</td>
<td>171.54</td>
</tr>
<tr>
<td>$\ddot{y}$</td>
<td>0.70</td>
<td>0.37</td>
<td>-0.09</td>
</tr>
<tr>
<td>$\ddot{p}$</td>
<td>2.89</td>
<td>7.66</td>
<td>12.82</td>
</tr>
<tr>
<td>$S$</td>
<td>1.04</td>
<td>1.29</td>
<td>1.37</td>
</tr>
</tbody>
</table>

$y$: growth rate of real GNP (%), $p$: annual inflation (%), $S$: shortage.

---

1. Quarterly data were constructed using annual observations from the World Bank Indicator-source on nominal GNP for those quarters where no quarterly data were available. The algorithm used is the Boot-Feibes-Lisman routine (see Boot et al., 1967). GNP and GDP of Ethiopia in the World Bank Indicator data set show a correlation of 0.989 for the sample 1966–1994, so the study refrains from using GDP.

2. $M_1$ is included in the analysis and the demand for $M_2$ is not studied for two reasons. First, a theoretical model that is based on the shopping time model is developed. This model, which will be discussed hereafter, is a basic model to describe the transactions demand for money. It does not directly focus on portfolio motives that might be relevant to the demand for money. The second reason for focusing on $M_1$ rather than $M_2$ is the relative quantity of secondary liquidity in the Ethiopian economy. Quasi money is about half of the primary liquidity, as can be seen from Table 1. $M_1$ is not disaggregated further into demand for currency and demand deposits separately, because both currency and demand deposits are in active use in transactions and one does not want to complicate the model any further. Moreover, such a disaggregation would lower the applicability of the results in monetary policy. Per capita definitions are used for two reasons. First, a microeconomic framework is used to explain money demand per capita in the next section and one wants to be as close as possible to this theoretical model. Second, in Ethiopia population growth certainly varies substantially, which might trouble econometric models in neglecting it. In western economies population growth is not so relevant to include in a money demand model, since the rate of population growth is rather constant.

3. Material data are available for Nigeria. In this study, the general price index is for 69% dependent on the food price index.
over non-foods taken as the index of shortage (see also Polański, 1990, who uses this index to measure repressed inflation for Poland). Note that this index is a true index of a possible relative shortage of food, since there is no inflation effect in the index any longer. However, the index is not uncontroversial. Suppose that there are official food price controls. The price of food actually paid for is equal to the price used to compute the CPI. An increase in the index would then imply an actual decrease in the price of non-foods and not imply shortage. Moreover, the price decrease of non-foods would imply a relative abundance. It might also be the case that an increase in food prices could be a policy instrument to increase food production. This might be the case after the last political reform (say after 1991). There are two empirical arguments, which might be raised against these observations. The
first is that the price-index number of non-foods shows almost no decreases, with two exceptions: 1983 and 1986 with slightly negative numbers. Second, there is no evidence that prices and production show a very strong positive short-run correlation. This contradicts the idea that price increases could go hand-in-hand with decreases in shortage.

The left-hand middle panel of Fig. 1 represents the log of the shortage indicator $s = \log S$. One can see that before 1975 the indicator does not point at shortages. In 1975 the food price gets a permanent shock. This regime shift coincides with the transition from the feudal to the communist period. The second dry period of 1985 leads to a food price increase with a more transitory character. The Ethiopian economy receives a lot of aid starting from the fourth quarter of 1984. From that quarter onwards aid is almost doubled compared to the levels before the fourth quarter of 1984. So in the years after 1986 international food transports apparently improved the standard of living by lowering the relative price of food. In 1991 the civil war led again to a rather steep increase of food prices relative to non-foods. In recent times shortage has not been banned yet, as can be seen from the data after 1991. The fact that the index indicates a rather high level after 1991 compared to the pre-1980 levels may seem rather confusing. This fact illustrates the possible weakness of a shortage indicator based on prices in an economy in disequilibrium. It might be so that price rationing may not be relevant for the foods market in Ethiopia, but that there might have been quantity rationing as well. One has by no means a possibility to measure notional quantity rationing on the foods market though.

In studying money demand it is important to consider real money balances as a portfolio item and therefore include a yield on an alternative asset. Since a capital market is absent and the time series of official interest rates are uninformative, indicators of alternative yields must be used. In such a case one might use real assets, foreign currency or black market indicators. Here one uses an the price development of an important real asset, coffee as an alternative yield for money. Coffee is seen as an important black market product (see Dercon and Ayalew, 1995). As there is a serious black market premium on the Birr, coffee smuggling is common practice in Ethiopia. Although coffee prices probably adjusted rapidly to world coffee prices, domestic factors still play a role. Coffee prices might therefore be informative, as coffee fulfils the role of alternative asset on the one hand and black market activity on the other. The right-hand middle panel of Fig. 1 gives the log of the real export price index of coffee ($P_{co} = \log(P_{coffee}/P)$).

Next the study turns to the exchange rate. Here one needs to distinguish official and black market activity. The major change in official exchange rate policy can be observed in the fourth quarter of 1992: the Birr devaluated from 2.1 to 5 Birr per US dollar. Black market activities in Ethiopian Dollars (until 21 September 1976) and Birr (afterwards) have been important at various times. Until 1975 the black market rate fluctuated between 2.5 and 3.5 Ethiopian dollars per US dollar. Early 1975 the political change led to larger premiums. Anticipating the devaluation on 1 October 1992 the black market rate boomed in September 1992. In order to assess the impact of the black market rate the black market premium is included ($bm = BMER/E$; see the lower left-hand panel of Fig. 1).

Finally one turns to annual inflation; that averaged 7.1% in the period 1967–1995. This is a remarkably low figure for a developing country. If the price level rises the real value of money holdings declines. The capital loss is equal to $(M_{t-1}/P_t) - (M_{t-1}/P_{t-1}) = m_t - m_{t-1}$. Using $p_t = (P_t - P_{t-1}/P_{t-1})$ one can express the so-called capital loss rate on $M_{t-1}/P_{t-1}$ by (see Calvo and Leiderman, 1992): $CL_t = p_t/(1 + p_t)$. This rate is given in the lower right panel of Fig. 1. The figure shows that there is no obvious negative correlation between real money holdings and the capital loss rate.

III. MONEY DEMAND AND SHORTAGE

A microeconomic money demand model is presented that includes shortage of goods. The model improves upon the general model by taking into account specific constraints of (previously) centrally planned economies. This point of view is valid for the Ethiopian economy, since a large part of the sample relates to the communist regime. The model is based on the microeconomic shopping-time model of Saving (1971) or McCallum and Goodfriend (1987). Although aggregation problems might come to the fore there seem to be no a priori grounds for not using a microeconomic foundation of money demand.

Suppose a centrally planned economy has an official market and a black market. With the existence of financial and real assets utility maximization becomes an intertemporal optimisation problem for a representative household.

$$\max U = \sum_{t=0}^{\infty} g^t u(c_{t+1}t_{t+1})$$

---

5 Coffee prices are converted from annual figures into quarterly figures using the algorithm developed by Boot et al. (1967). It is remarkable to notice a downward trend after 1979 until 1992.

6 The World Currency Yearbook (until 1983 Pick’s Currency Yearbook) gives the black market rates of US Dollars.

7 The study refrains from corporate demand for money. Secondary liquidity is relatively small in a large part of the sample. If there is forced holdings of domestic financial assets, it is likely that firms would hold time and savings deposits.
Money and shortages in Ethiopia

where \( c_t \) and \( l_t \) are the household’s real consumption of good \( x \) and leisure during period \( t \), and \( \beta = 1/(1 + \delta) \), with \( 0 < \delta < 1 \) representing the household’s rate of time preference. \( U \) is strictly quasi-concave and, as non-satiation is supposed, continuously increasing in both \( c_t \) and \( l_t \).

Purchase of the consumption good \( x \) requires shopping time, \( n_t \). It is assumed that labour is supplied inelastically, so total non-work time can be normalized to 1. As the household divides its total non-work time between leisure and shopping, \( l_t = 1 - n_t \). Shopping-time is assumed to be a function of consumption, real shortage in the official sector during period \( t \), \( S_t \), and real money balances, \( m_t \):

\[
n_t = \phi(c_t, S_t, m_t) \tag{2}
\]

The first two first-order partial derivatives are positive and the third negative. Money balances facilitate shopping. Whenever shortage increases households will have to hold additional money balances to keep their real balances at a constant level. On the one hand these additional balances have the function of hunting money in the official market, on the other hand they are needed as the price premium on the black market increases.

Households might want to invest wealth into other assets (such as coffee, see Dercon and Ayalew, 1995) with a real value of \( h_t = (B_t/P_t, \text{ with } B_t > 0) \). The assets \( h_t \) can be purchased at a price \( 1/(1 + r^*_t) \) in period \( t \) and can be exchanged at their nominal price in period \( t + 1 \). The household is subject to the following real budget constraint:

\[
y_t + m_{t-1} \frac{1}{1 + p_t} + b_{t-1} \frac{1 + r^*_t}{1 + p_t} = c_t + m_t + b_t \tag{3}
\]

where \( y_t \) represents total household real income out of labour income. Maximalization of utility given the real budget constraint leads to the following first-order condition:

\[
u_2(c_t, 1 - \phi(.)\phi_2(c_t, S_t, m_t))
\]

\[
= \frac{r^*_t}{1 + r^*_t} \left[ u_1(c_t, 1 - \phi(.) + u_2(c_t, 1 - \phi(.)\phi_1(c_t, S_t, m_t)) \right] \tag{4}
\]

where \( u_t \) denotes the partial derivative of the utility function with respect to argument \( i \), and \( \Phi_j \) is the partial derivative for the shopping-time function with respect to argument \( j \). For plausible utility and shopping functions the effect of \( c_t \) on money demand will be positive. An increase in shortage \( S_t \) can be neutralized on both sides only through an increase in real money holdings through its impact on \( \Phi(.) \), an increase in the interest rate, \( c_t \) and \( S_t \) being equal, increases the right-hand side of the equilibrium condition. A decrease in real money holdings lowers the marginal utilities, but the sign is ambiguous through its impact on \( \Phi(.) \). Here it is assumed that, as in McCullum and Goodfriend (1987), the impact of real money holdings will be negative.

This microeconomic analysis shows that the traditional income (\( y \)) based transactions motive in the money demand function might be extended with a variable that indicates money holdings due to shortages (\( S \)). Moreover the model shows that the yield on alternative assets can be included (here the real price of coffee \( p_{co} \) is used). Since a macroeconomic money demand model is estimated aggregation and macroeconomic conditions that might influence money demand have to be discussed. The model is formulated in real per capita variables (see also Fair, 1987). There might be aggregation effects, which would require the inclusion of population effects (measured by the variable \( POP \)). Moreover there might be the effects of capital loss and money illusion, which would require a separate inclusion of inflation in the model. Finally, the demand for domestic currency might be determined by exchange rate considerations (for instance by the black market premium \( bm \)). This leads to the following general macroeconomic model of money demand:

\[
m = f(y, S, p_{co}, POP, CL, bm) \tag{5}
\]

One has the following a priori expectations on the signs of the variables. Real per capita income increases probably have a disproportionate effect on real per capita money holdings, as is shown in money demand models for former socialist countries. It might be so that black market activities trouble the precise measurement of income. Shortage of goods increases per capita money demand, as money demand is a device to offset searching costs. An increase in the real coffee price will have a negative impact on money holdings. Inflation will erode money holdings. The same holds for increases in the black market premium.

IV. ECONOMETRIC SPECIFICATION

The monetary conditions in Ethiopia in the period 1966–1994 are estimated using the following methodology. Since one is interested in the long-run properties the focus is on the long-run equilibrium relationship(s). Because a system of variables is estimated and a number of variables are included that might be endogenous, the Johansen framework is used. First, the stationarity properties of the individual time series are tested for. As will become apparent hereafter it is found that the log of real per capita \( M_t \) holdings \( (m) \), the log of real per capita income \( (y) \), the log of the shortage indicator \( (s = \log S) \) and the log of the real coffee price \( (p_{co}) \) are all variables of order 1(1). The capital loss rate \( (CL) \) and the black market premium \( (bm) \) are found to be stationary.

Next a cointegration framework is used in the style proposed by Johansen (1988, 1995). The possibly endogenous key variables are 1(1) series: \( m, y, s \) and \( p_{co} \). An unrestricted VAR is estimated, where the focus is on the appropriate number of lags and normality of residuals (although
Lütkepohl (1991) shows that the Johansen procedure does not strictly depend on the normality assumption. Stationary variables are not included in the VAR, although this is allowed in the Johansen procedure. Including a stationary series would imply one additional cointegration vector per definition. In order to avoid problems in identifying which of the possibly multiple vectors might represent the stationary series some (stationary) variables are included as exogenous variables in the VAR. Population growth, the capital loss rate and the black market rate are included as exogenous variables. This is a limitation of the model, since it is unlikely that monetary variables like the black market premium of the capital loss rate are strong exogenous variables. The core of the argument though is that one wants to restrict the initial dimension of the VAR.

Next the cointegration rank is tested for. A rank order 1 is found. After that weak exogeneity is tested for. If the wrong rank is selected the weak exogeneity statistic is generated. After that weak exogeneity is tested for. If the results for the black market premium are reinvestigated using the Phillips-Perron test, because the ADF-test is close to the 5% significance level of rejecting the null of nonstationarity. The Phillips-Perron test results confirm the stationarity of the series.

Investigating the long-run relationship

In order to characterize the long-run equilibrium relations between the variables mentioned one starts with the following basic closed VAR model with Gaussian errors (see also Fisher and Vega, 1993).\footnote{In case of one regime shift Hubrich (1999) shows that the Phillips-Perron test with a step-dummy variable is a good alternative of the (A)DF-test.}

\[ X_t = \mu + \sum_{i=1}^{k} A_i X_{t-i} + \Psi D_t + u_t, \quad t = 1, \ldots, T \]  

where \( X_t \) is the vector of the \( n \) variables of the system, assuming \( X_t \) to be \( I(d) \) with \( d \leq 1 \). \( A_i \) coefficient matrices, \( D_t \) a vector of deterministic terms and exogenous variables and \( u_t \) residuals following a normal distribution \( \mathcal{N}(0, \Sigma) \). A reparametrization of this VAR(\( k \)) results in an error-correction form:

\[ \Delta X_t = \mu + \Pi X_{t-1} + \sum_{i=1}^{k-1} \Gamma_i \Delta X_{t-i} + \Psi D_t + u_t, \quad t = 1, \ldots, T \]  

Here, \( \Pi \) is an \((n, n)\) coefficient matrix which contains information about long-run relationships between the variables in the data vector. \( \Pi \) can be factorized according to the number \( r(0 \leq r \leq n) \) of linearly independent cointegration vectors:

\[ \Pi = \alpha \beta' \]  

where \( \alpha \) is the \((n, r)\)-matrix of adjustment coefficients and \( \beta' \) the \((r, n)\)-matrix of cointegration vectors. The matrix \( \Pi \) has rank \( r \). Johansen (1988) distinguishes three possible cases:

- The matrix \( \Pi \) has full rank \( n \), indicating that the vector process \( X_t \) is stationary;
- Rank \((\Pi) = 0\), i.e. the model reduces to a traditional VAR-model in first differences;
- Rank(\(\Pi\)) = \( r < n \), implying \( r \) cointegration equilibrium vectors.

The hypothesis of cointegration implies that \( \beta' X_t \) and \( \Delta X_t \) are stationary, while \( X_t \) needs not to be stationary. The long-run relationships correspond to those combinations of variables which have \( I(0) \) residuals.\footnote{The software package CATS was strictly followed (see Hansen and Juselius, 1995).}

The application of the Johansen procedure results in a maximum likelihood estimation of the parameters of the model. The eigenvalues of the system are ordered, starting
with the largest eigenvalue. The number of eigenvalues \( \lambda_i \) significantly different from zero indicates the rank of \( \Pi: r \). A likelihood ratio test is carried out to test the hypothesis: 
\[ H_0: \text{Rank}(\Pi) = r \text{ against } H_1: \text{Rank}(\Pi) = r + 1. \]
A testing sequence is carried out for \( r = 1, 2, \ldots \) and continues until the null hypothesis is not rejected anymore. The test statistic is equal to 
\[ -T \log(1 - \lambda_{r+1}). \]

In implementing the Johansen cointegration technique a number of crucial empirical decisions have to be made. The first decision concerns the lag-length in the VAR, for which the Schwartz Bayesian Information Criterion is used as an a priori sign and a check on normality and autoregressive properties of the estimated residuals ex post. Second, as addressed by Johansen (1992) one can use the so-called Pantula principle to determine simultaneously the choice for deterministic components in the cointegration space and/or short-run model and testing for the rank condition.

First, the unrestricted initial VAR is estimated, including \( m, y, s \) and \( p_{co} \) as endogenous variables and \( \log(POP) \), \( bm \) and \( CL \) as exogenous variables. \( bm \) is not included as an endogenous variable, although this might be attractive from a theoretical point-of-view, because of its stationarity. Moreover, by including the real coffee price there is an alternative yield variable in the model. Finally, as shown below, the black market premium parameters are not of major statistical significance in the VAR.

The model uses a VAR with three lagged observations (as indicated by the Schwartz-criterion (see Table 3). Based on experimenting following the Pantula principle a constant and a trend in the cointegration space are included (since using logs excluding the constant would lead to interpretation problems). Table 3 gives some basic statistics of the VAR-model. The fit is represented by the \( \bar{R}^2 \), the information criterion by the Schwartz statistic and the normality of the estimated residuals by the Jarque-Bera statistic. The latter statistic shows that normality of the \( m \) and \( s \)-residuals can be assumed, but that reject normality has to be rejected for the \( y \) and \( p_{co} \)-residuals at the 5% significance level. Moreover the residuals were tested on autoregressive conditional heteroscedasticity (ARCH(3)) using a Lagrange Multiplier test statistic. This test shows that for the shortage equation, the null hypothesis of absence of ARCH (3) was rejected.

The unrestricted model yields one possible cointegration vector according to Table 4. The implied cointegration vector is:

\[ Coint_t = m - 1.39 y - 0.28 s + 0.72 p_{co} - 0.04 t + 6.13 \quad (9) \]

where \( t \) represents a trend. Given the rank of the system stationarity of the time series and weak exogeneity is again tested for. As Hubrich (1999) illustrates testing for stationarity of the data in the unrestricted VAR is more informative than applying the single equation techniques, since the null hypothesis is, in contrast with the ADF, stationarity in the VAR. Table 5 gives the results. It again

<table>
<thead>
<tr>
<th>Table 2. Unit-root tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>( m = \log(M_t / (POP_t P_t)) )</td>
</tr>
<tr>
<td>( y = \log(GNP / (POP_t P_t)) )</td>
</tr>
<tr>
<td>( s = \log(P_t / P_{co}) )</td>
</tr>
<tr>
<td>( p_{co} = \log(P_{coffee} / P_t) )</td>
</tr>
<tr>
<td>( bm = \log(BMER / E) )</td>
</tr>
<tr>
<td>( CL = p/(p + 1) )</td>
</tr>
</tbody>
</table>

Sample: 1966.IV–1994.IV. \( c \): intercept included, \( t \): trend included. \( i \): maximum lag order.

---

11The Trace test is not discussed.
12There are basically three alternatives for the appropriate choice of the deterministic components:
1. Model A: including a constant in the cointegration space;
2. Model B: including a constant in the short-run model (allowing for the presence of linear trends in the levels of the data);
3. Model C: including a trend in the cointegration space.

Model A is clearly the most restricted, followed by model B. The Pantula principle suggests to test for the rank of the long-run model by estimating the three model versions sequentially from the most restricted to the least restricted one. The decision rule is then to pick the model the first time the null hypothesis is not rejected using the trace test.

13Information criteria are used to warn for potentially overparameterizing the model. The Schwarz criterion is defined by \( SC = \log \hat{\sigma} + K(\log T)/T \) for \( K \) regressors and a sample length \( T \). \( \hat{\sigma} \) is the unadjusted residual variance.
appears that all time series are nonstationary. Testing for weak exogeneity reveals that, given the cointegration rank being equal to 1, real per capita money holdings and shortage can be interpreted as weak exogenous variables, but real income and the real coffee price and endogenous. This implies that a single equation estimation of money demand would have led to inefficient estimates and one needs to proceed in a Vector Error Correction Model to describe short-run dynamics of the system.

Stability of the long-run model

The key issue of this paper is the quest for a stable narrow money demand function in Ethiopia. Section II illustrated the possibility of breaks due to changes in political regime or the impact of food shortages in dry periods. Since the whole sample was used to estimate the long-run model, the stability issue is basically an issue of stability of the cointegration model. It is known that the Johansen-procedure is sensitive to the choice of the sample. In order to assess the stability of the estimated parameters the recursive eigenvalues were computed. In case stability of the eigenvalues that characterize the cointegration space is found, stability of the parameter estimates of the cointegration vector is established. There are several other methods to test for stability of cointegration vectors. For a detailed discussion refer to Hansen (1992) and Quintos and Phillips (1993).

So in order to address the stability of the cointegration vector the stability of the eigenvalues of recursive estimation of the model are analysed. The estimation can start in the third quarter of 1973. The first estimates are however somewhat unreliable in this case due to a lack of observations (about 25 instead of 100). Figure 2 plots the recursive estimates of the largest eigenvalue of the system. After 1979 the first eigenvalue is twice as big as the second largest, which supports the finding that the rank of the cointegration space is equal to one.

In terms of the regime switches instability of the system in 1974–1975 is observed. This might be due to a lack of valid observations to estimate the model at that time. After 1979 the largest eigenvalue fluctuates around 0.3, indicating stability of the system. One can observe a slight jump after the second dry period and a slight hump in 1992, another year of regime shift. The overall performance of the model in the last 15 years is stable however.

A second way of discussing the stability of the model is to plot the cointegration vector Coint1 (see for instance Hendry, 1995 and Hubrich, 1999). Although visual inspection of the cointegration vector in Fig. 3 seems to indicate nonstationarity testing for stationarity gives a clear acceptance of the null hypothesis (ADF = 4.73).

Now the long-run cointegration vector is established, one can give an interpretation of the findings. An income
elasticy of 1.39 is found. Testing of a restriction to a unit elasticity is rejected: $\chi^2 = 9.24$. This rather large income elasticity is sometimes found for centrally planned economies (see Hartwig, 1987; Charenya and Ghatak, 1990 and Chawluk and Cross, 1994). Suppose that due to black market activities income is underestimated, one might observe elasticities of this kind. Second, a modest influence of the shortage indicator is found. The fact that the elasticity is not so large might be due to the fact that the price indicator is not a good proxy of shortages, especially at the end of the sample. What are the policy implications of these results? The rather high income elasticity gives a foundation of the high monetization ratios of $M_1$ and $M_2$. Apparently those amounts of money are used in transactions. The low shortage elasticity indicates that, although neglecting shortage would lead to too strong implications of having high monetization, the monetary impact of shortage is not to be overestimated.

**Short-run properties**

Although the main focus of the paper is on the long-run it is natural to discuss the short-run properties of the system. In the estimation of the unrestricted VAR-model it was observed that three lags need to be included to describe the dynamics of the variables. Moreover there is one cointegration vector, the four key variables are nonstationary in the VAR and one can accept weak exogeneity of real per capita money holdings and shortage, while real income and the real coffee price are endogenous variables. The short-run unrestricted VAR can be reduced by including restrictions on the parameters to be estimated. In this case one wants a reduction of the complexity of the model. Another solution is to present the VAR that includes the cointegration vector in a Vector Error Correction Model. Remember that a reduction to a single-equation model of money demand would require weak exogeneity of income, shortage and the coffee price index, which is an hypothesis that has to be rejected. Therefore the VECM estimates are first presented in Table 6.

From the table one can make the following observations. The first observation is that the feedback of the cointegration relationship is significant in the real per capita income and the real coffee price equation. Second, short-run money demand depends mainly on changes in shortage, population growth and inflation mainly. Remarkable is the negative effect of shortage on money demand. Real income, the real coffee price and the black market premium do not have a short-run impact on money demand. Second, the black market premium plays a marginal role in the model. Short-run inflationary effects are important though. The role of shortage is also limited in the short run. Finally the model seems to be rather invariant to changes in population growth.

The problem with such a large system as the one reported in Table 6 is a proper interpretation. Hendry (1995) advocates to construct a parsimonious VAR (PVAR) to enhance interpretability. A reduction of our model would imply a reduction to a model that describes the short-run dynamics of real income and the real coffee price and not real demand for $M_1$. This analysis goes beyond the scope of our paper though.\footnote{A final point one can make to address the stability of the short-run coefficients is an investigation into the stability of the coefficients over regime shifts. To that purpose the assumption is made that one can focus on the conditional density of $n_t$ given the other variables and test for a single equation model. Given the endogeneity of $y$ and $p_{co}$, one loses efficiency of the coefficient estimates. In order to stay as close as possible to the multivariate model the long-run cointegration vector is included in this experimental model. So a model was estimated in first difference with real per capita money demand as the endogenous variable including up to three lags for all determinants as shown in the VECM. The model was reduced to significant parameter estimates only. The final model specification is estimated recursively. From the recursive parameter plots it can be seen that the specification of the model shows some instability during the first break in 1975, but stability thereafter.}

### Table 6. Vector error correction model (1966:4–1994:4)

<table>
<thead>
<tr>
<th></th>
<th>$\Delta m$</th>
<th>$\Delta y$</th>
<th>$\Delta S$</th>
<th>$\Delta p_{co}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Coint_1$</td>
<td>$-0.05$</td>
<td>$0.04^*$</td>
<td>$-0.00$</td>
<td>$0.04^*$</td>
</tr>
<tr>
<td>$\Delta m_{-1}$</td>
<td>$0.08$</td>
<td>$-0.29^*$</td>
<td>$-0.01$</td>
<td>$-0.28^*$</td>
</tr>
<tr>
<td>$\Delta m_{-2}$</td>
<td>$-0.53^*$</td>
<td>$-0.03$</td>
<td>$0.03$</td>
<td>$-0.02$</td>
</tr>
<tr>
<td>$\Delta m_{-3}$</td>
<td>$0.17$</td>
<td>$0.01$</td>
<td>$0.05$</td>
<td>$-0.22$</td>
</tr>
<tr>
<td>$\Delta y_{-1}$</td>
<td>$-0.34$</td>
<td>$0.60^*$</td>
<td>$0.00$</td>
<td>$-1.65^*$</td>
</tr>
<tr>
<td>$\Delta y_{-2}$</td>
<td>$0.44$</td>
<td>$-0.29$</td>
<td>$-0.09$</td>
<td>$1.85^*$</td>
</tr>
<tr>
<td>$\Delta y_{-3}$</td>
<td>$-0.31$</td>
<td>$0.29$</td>
<td>$0.01$</td>
<td>$-0.39^*$</td>
</tr>
<tr>
<td>$\Delta S_{-1}$</td>
<td>$-0.02$</td>
<td>$-0.24$</td>
<td>$0.43^*$</td>
<td>$-0.18$</td>
</tr>
<tr>
<td>$\Delta S_{-2}$</td>
<td>$-0.85^*$</td>
<td>$0.46$</td>
<td>$0.00$</td>
<td>$-0.45$</td>
</tr>
<tr>
<td>$\Delta S_{-3}$</td>
<td>$-0.25$</td>
<td>$0.15$</td>
<td>$0.15$</td>
<td>$0.32$</td>
</tr>
<tr>
<td>$\Delta pco_{-1}$</td>
<td>$0.12$</td>
<td>$-0.05$</td>
<td>$-0.03$</td>
<td>$2.24^*$</td>
</tr>
<tr>
<td>$\Delta pco_{-2}$</td>
<td>$0.01$</td>
<td>$0.18$</td>
<td>$0.03$</td>
<td>$-1.95^*$</td>
</tr>
<tr>
<td>$\Delta pco_{-3}$</td>
<td>$-0.17$</td>
<td>$-0.14$</td>
<td>$0.00$</td>
<td>$0.67^*$</td>
</tr>
<tr>
<td>$\Delta log POP_{-1}$</td>
<td>$2.08$</td>
<td>$-1.90$</td>
<td>$-2.80$</td>
<td>$-2.64^*$</td>
</tr>
<tr>
<td>$\Delta log POP_{-2}$</td>
<td>$-15.00^*$</td>
<td>$-3.48$</td>
<td>$0.67$</td>
<td>$-6.21$</td>
</tr>
<tr>
<td>$\Delta log POP_{-3}$</td>
<td>$15.35$</td>
<td>$2.62$</td>
<td>$-1.46$</td>
<td>$5.80$</td>
</tr>
<tr>
<td>$bm_{-1}$</td>
<td>$0.02$</td>
<td>$0.00$</td>
<td>$0.01$</td>
<td>$0.01$</td>
</tr>
<tr>
<td>$bm_{-2}$</td>
<td>$-0.01$</td>
<td>$0.01$</td>
<td>$-0.01$</td>
<td>$0.01$</td>
</tr>
<tr>
<td>$bm_{-3}$</td>
<td>$0.00$</td>
<td>$0.00$</td>
<td>$0.02^*$</td>
<td>$0.00$</td>
</tr>
<tr>
<td>$CL_{-1}$</td>
<td>$-0.01^*$</td>
<td>$-0.01^*$</td>
<td>$0.01^*$</td>
<td>$1.56^*$</td>
</tr>
<tr>
<td>$CL_{-2}$</td>
<td>$0.00$</td>
<td>$0.02^*$</td>
<td>$0.00$</td>
<td>$0.01^*$</td>
</tr>
<tr>
<td>$CL_{-3}$</td>
<td>$-0.01^*$</td>
<td>$-0.01^*$</td>
<td>$0.00$</td>
<td>$-0.01^*$</td>
</tr>
<tr>
<td>$R^2$</td>
<td>$0.37$</td>
<td>$0.31$</td>
<td>$0.26$</td>
<td>$0.85$</td>
</tr>
<tr>
<td>Schwarz SC</td>
<td>$-5.65$</td>
<td>$-9.16$</td>
<td>$-7.67$</td>
<td>$-6.94^*$</td>
</tr>
</tbody>
</table>

* indicates significance at the 95% confidence interval.

V. SUMMARY AND CONCLUSIONS

This study estimated a money demand equation for the Ethiopian economy over the period 1966–1994 using...
quarterly data. This period is characterized by both climatological disasters and political breaks: two changes of the political regime in 1974 and 1991 as well as two serious periods of drought in 1975 and 1985. The main goal of the paper is to study the stability of monetary conditions over the sample. Real demand was considered for narrow money, real income, shortage and a real alternative yields as the central endogenous variables in the model. Moreover the possible effects of population growth, inflation (capital loss rate) and the black market premium were included as exogenous variables in the model.

An unrestricted VAR was estimated from which one can derive and identify a long-run equilibrium condition, relating real per capita money demand, real per capita GNP, shortage and the real export price of coffee. The VAR was tested on its properties. It was concluded that the true endogenous variables in the model are real income and the real coffee price, while real money holdings and shortage are weak exogenous variables. The stability of the long-run cointegration vector was tested. It was concluded that the model shows some instability during the first break in 1974–1975. This instability is probably due to a lack of data used to estimate the model. Finally the short-run outcomes were addressed which again show some instability halfway through the 1970s but not at the end of the sample.

Interpreting the long-run cointegration vector it was found that the income elasticity exceeds the unit elasticity. This result has been obtained for other former centrally planned economies and might point at black market activities. Once the economy will be reformed it is likely that the income elasticity drops to unity. A one percentage point increase in food prices over non-food prices leads to a 0.2 percentage point increase in real per capita money holdings. In order to accommodate this increase in demand for money balances the monetary authorities could consider an increase in the supply of money during a period of food shortage. Since inflation is rather low in the sample period in Ethiopia it seems that the increases in money holdings are necessary to achieve a better allocation of goods among consumers.

It was concluded that other factors might influence real money holdings. In the long run an alternative yield (the real coffee price) is relevant. In the short-run inflation has a negative effect on real money holdings. Moreover some effects of population growth on real per capita money demand were found. There is no serious evidence of a hard influence of the parallel exchange market on monetary conditions.

The model presented in this paper can be a first step as an instrument to monitor monetary conditions in Ethiopia. Monetary authorities should be aware of changes in the relevant transactions variable in case of shortage. On the other hand the stability of the relationship between income, money, shortage and the real coffee price can be used to pursue a monetary policy focused on domestic intermediate monetary targets. In Ethiopia, with a limited amount of international capital mobility, monetary authorities can achieve both internal and external price stability using either money supply or the short-term interest rate to achieve both goals. A stable money demand relationship, like the one presented above, is a prerequisite to pursue such a policy. In such a case money can serve as an intermediate targeting variable.

ACKNOWLEDGEMENTS
The author thanks the Economic Research and Planning Department of the National Bank of Ethiopia for its hospitality. Stefan Dercon kindly provided the coffee price index.

REFERENCES
Money and shortages in Ethiopia


APPENDIX: DATA DESCRIPTION

The following sources were used:

- \( M_1 \): Narrow money, International Financial Statistics, CD-ROM produced by the IMF.
- \( POP \): Population. Annual figures from the *World Bank Indicators* CD-ROM. Quarterly figures produced using the Boot-Feibes-Lisman algorithm.
- \( GNP \): Gross national product. Annual figures from the *World Bank Indicators* CD-ROM. Quarterly figures produced using the Boot-Feibes-Lisman algorithm.
- \( P_{cof} \): Export-price index of coffee. Figures provided by Dercon (see Dercon and Ayalew, 1995).
- \( E \): Official exchange rate, International Financial Statistics, CD-ROM produced by the IMF.