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1  | INTRODUC TION

The continuous generation of genetic variation for fitness is re-
garded as one of the main explanations for the predominance of 
sex in eukaryotes (Bell, 1982). Theoretical studies have shown that 
under some conditions, sex can be favoured over asexuality because 
it creates novel and/or rare genotypes (Bell, 1982; Otto, 2009). Such 
novel and rare genotypes are favoured under negative frequency-
dependent selection or in habitats with spatially heterogeneous 
or temporally fluctuating resources. For example, one component 
of the “parasite hypothesis for sex” implies negative frequency-
dependent selection, as it predicts that parasites evolve to track 
common host genotypes (Dagan, Liljeroos, Jokela, & Ben-Ami, 2013; 
Decaestecker et al., 2007; Morran, Schmidt, Gelarden, Parrish, & 
Lively, 2011). Similar ideas are available for selection imposed by re-
sources; that is rare genotypes are able to exploit resources where 
competition is low (reviewed by Scheu & Drossel, 2007).

Theories for the maintenance of sex generally assume genet-
ically uniform populations of asexuals, whereas in nature, many 
asexual animal and plant populations comprise genetically distinct 

clones (Bell, 1982; Ellstrand & Roose, 1987; Jokela, Dybdahl, & 
Lively, 1999; Parker, 1979). Indeed, high genetic diversity is the case 
in many asexual populations (Fontcuberta García-Cuenca, Dumas, & 
Schwander, 2016; Kearney et al., 2009; Moritz, Donnellan, Adams, 
& Baverstock, 1989; Neiman, Jokela, & Lively, 2005; Pannebakker, 
Zwaan, Beukeboom, & Van Alphen, 2004; Tully & Ferrière, 2008; 
Vorburger, Lancaster, & Sunnucks, 2003), but whether clonal diver-
sity is generally associated with phenotypic and ecological diversity 
remains unknown. Genetic diversity in asexuals can be due to lineage 
diversification after the transition to asexuality (owing to mutation 
accumulation) and because asexuals have different sexual ancestors; 
that is they arose via independent transitions to asexuality (Janko, 
Drozd, Flegr, & Pannell, 2008). Such independent transitions are 
especially likely to generate ecological differentiation (Bell, 1982; 
Janko et al., 2008; King, Jokela, & Lively, 2011). More generally, it 
will be difficult to explain the maintenance of sex via its effect on 
genetic diversity if sexual species compete with genetically diverse 
rather than genetically uniform asexuals (Judson, 1997).

In this study, we test whether genetic differentiation in asex-
ual Aptinothrips (Thysanoptera: Thripidae) grass thrips is neutral or 
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ecologically relevant. Aptinothrips is a system where asexuality has 
evolved several times independently and is associated with a large 
geographic distribution and extreme genetic diversity (van der Kooi 
& Schwander, 2014). We test whether thirteen genetically different 
clonal lineages of Aptinothrips rufus and Aptinothrips stylifer occupy dif-
ferent ecological niches by examining their performance on seven com-
mon host plant species. In a breeding experiment and using the number 
of offspring produced as a proxy for fitness, we show that different 
clonal lineages indeed feature different ecological niches.

2  | MATERIAL S AND METHODS

2.1 | Study species and breeding

Aptinothrips grass thrips are small (1–2 mm), wingless insects that feed 
on various species of Poaceae. For A. rufus, asexuality evolved at least 
twice independently (van der Kooi & Schwander, 2014) as inferred 
from phylogenies based on mitochondrial sequences. Asexual popula-
tions of this species can be found all over the world and exhibit very 
high levels of mitochondrial diversity, whereas sexual populations only 
occur in the Mediterranean region and exhibit a relatively low mito-
chondrial diversity (Fontcuberta García-Cuenca et al., 2016; van der 
Kooi & Schwander, 2014). The species A. stylifer evolved asexuality 
independently from A. rufus (van der Kooi & Schwander, 2014), and 
different populations also comprise a pool of genetically different in-
dividuals (see Results). Nine and four genetically different females of 
A. rufus and A. stylifer were isolated from three locations in Switzerland 
(Supporting Information). These individuals were used to establish thir-
teen iso-female lines (hereafter: clonal lineages); for each lineage, third-
generation individuals were used in the experiment.

2.2 | Experimental design

We tested the performance of asexual females on seven grass spe-
cies that are commonly found in natural habitats: meadow brome 
(Bromus erectus), alpine bluegrass (Poa alpina), common meadow-
grass (Poa pratensis), red fescue (Festuca rubra), sheep fescue (Festuca 
ovina), Timothy grass (Phleum pratense) and orchard grass (Dactylis 
glomerata). For each clonal lineage, 7–14 replicate individuals were 
tested on each host plant species; this yielded a total of 735 repli-
cates (see Supporting Information). The experiment was performed 
in July–August 2016; for logistic reasons, it was performed in two 
batches separated by 4 days.

2.3 | Data analysis

To test for ecological variation among species and clonal lineages of 
Aptinothrips, we used linear mixed models (LMMs) as implemented 
in the R package lme4 (Bates, Maechler, Bolker, & Walker, 2014) in R 
3.4.2. We tested whether thrips species, independent transitions to 
asexuality within A. rufus, clonal lineage, the grass species and their 
interactions affected the number of offspring. Batch was included as 
a random factor in the model. Significance was tested using a permu-
tation ANOVA (Supporting Information).

3  | RESULTS

We observed clear differences in the number of offspring produced 
by asexual Aptinothrips (Figure 1). There was an effect of thrips spe-
cies (df = 1, p < 0.01) and an effect of clade, that is, independent 
transitions to asexuality (df = 2, p < 0.01), on the number of offspring 
produced. In line with our hypothesis of ecological divergence, 

F IGURE  1 Number of offspring produced by different asexual 
Aptinothrips lineages on seven host plant species. Every panel 
depicts the asexual lineages of an independently evolved asexual 
clade (identified in van der Kooi and Schwander (2014)). For every 
lineage, the mean ± 95% confidence interval (assuming a normal 
distribution) is shown
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different clonal lineages are characterized by different ecologies, 
as revealed by significant clone-by-plant species interaction effects 
on clonal lineage performances (df = 72, p < 0.01). Ecological differ-
ences among clonal lineages are not solely explained by independent 
transitions to asexuality as clonal lineages within one A. rufus clade 
(clade B in Figure 1) also differ from each other (df = 12, p = 0.04); 
the small sample sizes in A. stylifer preclude performing a similar 
analysis.

4  | DISCUSSION

Many asexual populations comprise a large number of different 
clonal lineages (Bell, 1982; Parker, 1979), but whether genetically 
different clones feature different ecologies is largely unknown. In 
this study, we showed that different clonal Aptinothrips lineages 
feature different ecological niches (Figure 1). Ecological divergence 
of clonal lineages is pronounced both within and between inde-
pendently derived asexual clades. Although assessing the relative 
importance of independent transitions versus within clade diver-
gence requires deeper sampling, the multiple origins of asexuality 
in Aptinothrips (van der Kooi & Schwander, 2014) have increased the 
genetic diversity in asexuals and likely contribute to their extreme 
ecological success.

The facts that asexual Aptinothrips populations exhibit a higher 
genetic diversity than sexuals (Fontcuberta García-Cuenca et al., 
2016; van der Kooi & Schwander, 2014) and that this genetic diver-
sity translates to ecological divergence (this study) may explain why 
asexuals outcompete sexuals in mesocosm experiments (Lavanchy 
et al., 2016). Our findings further suggest that locations with differ-
ent grass species would select for different sets of clonal lineages. 
High grass species diversity is expected to promote and maintain 
clonal diversity in the thrips population, because more grass spe-
cies reflect more niches available for different clonal lineages. An 
interesting open question is whether temporal fluctuations in plant 
species frequency lead to fluctuating clone frequencies, as was pre-
viously found in the aphid Myzus persicae by Vorburger (2006).

A review of literature showed that clonal diversity is associated 
with ecological diversity in a suite of at least nine additional plant 
and animal species (Table 1). This includes aquatic and terrestrial 
asexual systems with very diverse ecologies. Taken together, these 
studies convincingly show that populations of clonal animals com-
prise ecologically relevant genetic variation and that clonal diversity 
should therefore not be disregarded in theory on the maintenance 
of sex in nature.

Asexuals are frequently more ecologically successful than re-
lated sexuals, which is often believed to be due to the reproductive 
assurance conferred by asexuality (e.g., Bell, 1982), but this may not 
be the sole explanation. For example, a recent large-scale compar-
ative study showed that asexuals have 2–3.5 times as many host 
species and occur in up to five times as many countries compared 
to their sexual counterparts, highlighting the (ecological) success of 
asexuality (van der Kooi, Matthey-Doret, & Schwander, 2017). Our 

current study shows that in addition to the reproductive advantage 
of asexuality, high genetic diversity can contribute to the success of 
asexuals.

To summarize, genetic diversity in asexual Aptinothrips lineages 
is associated with ecological diversity. Under such ecological dif-
ferentiation of clonal lineages, which appears to occur in a suite of 
asexual animal and plant systems (Table 1), natural selection may 
maintain clonal diversity rather than sex. Future theory on the main-
tenance of sex would benefit from incorporating clonal diversity, dif-
ferent clonal diversity-generating mechanisms and their ecological 
significance.
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