The assessment of frailty and malnutrition in vascular surgery
Banning, Louise Beatrice Daniëlle

DOI:
10.33612/diss.746590755

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Vascular surgery patients at risk for malnutrition are at an increased risk of developing postoperative complications

Louise B.D. Banning
Lies ter Beek
Mostafa el Moumni
Linda Visser
Clark. J. Zeebregts
Harriët Jager-Wittenaar
Robert A. Pol

Abstract

Background
Malnutrition is an important risk factor for adverse postoperative outcomes such as infection and delayed wound healing, often resulting in longer hospital stay and higher readmission and mortality rates. The aim of this study is to assess the relationship between the risk for malnutrition prior to elective vascular surgery and postoperative complications.

Methods
In this observational cross-sectional study, elective vascular surgery patients were included from January 2015 until November 2018. Included were percutaneous, carotid, endovascular, peripheral bypass, abdominal, lower extremity amputation, and other interventions. The patients were assessed for risk for malnutrition using the Patient-Generated Subjective Global Assessment Short Form (PG-SGA SF), whereby <4 points was defined as low risk, 4–8 points as medium risk, and ≥9 points as high risk for malnutrition. Postoperative complications were registered using the Comprehensive Complication Index. Univariate and multivariate analyses were performed to evaluate the relationship between risk for malnutrition and postoperative complications.

Results
Of 468 patients, 113 (24.1%) were found to be at risk for malnutrition (PG-SGA SF ≥4 points). Occurrence of postoperative complications (23.9% in the low risk vs. 51.9% in the high risk group, \(P = 0.006 \)), length of hospital stay (5.5 ± 4.3 days in the low risk vs. 8.2 ± 5.1 in the high risk group, \(P = 0.005 \)), 30-day readmission (4.7% in the low risk vs. 19.2% in the high risk group, \(P = 0.009 \)), and Comprehensive Complication Index (median score of 0 in the low risk vs. 8.7 in the high risk group, \(P = 0.018 \)) varied significantly between the 3 PG-SGA SF groups. After multivariate analysis, the medium risk for malnutrition group had a 1.39 (95% confidence interval 1.05–1.84) times higher Comprehensive Complication Index than the low risk for malnutrition group (\(P = 0.02 \)).

Conclusions
Electively operated vascular surgery patients at risk for malnutrition are more likely to develop postoperative complications. This finding suggests that improving the nutritional status of vascular surgery patients prior to surgery has the potential to reduce the risk of complications.
Introduction
Malnutrition is an important risk factor for adverse postoperative outcomes such as infection and delayed wound healing, often resulting in longer hospital stay and higher readmission and mortality rates. This is particularly the case in cardiac, hepatobiliary, and colorectal surgery, where malnutrition has been associated with an increased risk of developing postoperative complications. But also in critical limb ischemia patients severe malnutrition has been demonstrated to be a risk factor for death at 30 days postoperatively. According to the European Society for Clinical Nutrition and Metabolism (ESPEN), malnutrition is defined as: "A state resulting from lack of intake or uptake of nutrition that leads to altered body composition (decreased fat-free mass) and body cell mass leading to diminished physical and mental function and impaired clinical outcome from disease". Several screening tools, with varying degrees of complexity and a broad spectrum of health parameters, can be used to assess malnutrition in hospital patients, ranging from recent unintentional weight loss to more comprehensive, multidimensional instruments. In many of these tools, the body mass index (BMI) plays an important role, where an elevated BMI is inversely proportional with malnutrition. As such, decreased fat-free mass, an important hallmark for malnutrition, is overlooked in patients with a high BMI. In the vascular surgery population over 60% of the patients are classified as overweight/obese (according to BMI) and therefore, although unduly, do not meet the criteria for risk for malnutrition. Thus, although aforementioned tools could be used to recognize present malnutrition, they do not adequately quantify risk for malnutrition. The Patient-Generated Subjective Global Assessment Short Form (PG-SGA SF) is a tool that takes the presence of nutrition impact symptoms (i.e., factors hindering food intake) into account. The PG-SGA SF not only recognizes patients with malnutrition, but also patients at risk for malnutrition. By identifying patients at risk and by optimizing predictive variables preoperatively, further deterioration of nutritional status and subsequent malnutrition may be prevented. In general surgery, cardiac, and vascular surgery patients, the prevalence of risk for malnutrition ranges from 19% to 24%. Evidence for a relationship between risk for malnutrition and the occurrence of postoperative complications in elective vascular surgery patients is still lacking. The aim of this study is to assess the relationship between the risk for malnutrition (prior to elective vascular surgery) and postoperative complications.

Materials and Methods
Study design
For this prospective, observational, cross-sectional study, we included all elective vascular surgery patients at the University Medical Center Groningen (UMCG), from January 2015 until November 2018, who gave oral consent and were able to complete the PG-SGA SF. There were no exclusion criteria. The majority of patients underwent surgery within 3 months after their last outpatient visit, during which the measurements for this study were performed. This study was granted dispensation for the Dutch law on scientific
medical research on human beings (WMO) obligation by the Medical Ethical Committee of the UMCG (reference 2016/322). Patient data were processed and electronically stored in accordance with the Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. Data were analyzed anonymously.

Baseline variables
Collected data included age (in years), sex, BMI, smoking (yes/no), alcohol consumption (yes/no), hypertension (yes/no), comorbidities (Charlson Comorbidity Index), type of surgery (percutaneous, carotid, endovascular, peripheral bypass, abdominal, lower extremity amputation, and other interventions), American Society of Anaesthesiologists’ physical status classification system score (ASA score), hospital length of stay (days), 30-day mortality (yes/no), and 30-day readmission to the hospital (yes/no). The Charlson Comorbidity Index is a weighted score that predicts 1-year mortality for patients based on co-existing morbidities and age. Percutaneous interventions were classified as simple interventions (angioplasty and simple stents), endovascular interventions including endovascular aneurysm repair (EVAR), thoracic TEVAR, fenestrated EVAR, and branched EVAR.

Assessment of risk for malnutrition
To assess the risk for malnutrition, patients completed the PG-SGA SF Dutch version 3.7 independently. This is a simple and validated screening tool that has been demonstrated to be accurate in discriminating between patients at risk for malnutrition, and can be completed in less than 5 min. It includes 4 boxes: Box 1 addresses the history of weight loss (0–5 points); Box 2 evaluates changes in food intake in the past month (0–4 points); Box 3 addresses presence of nutrition impact symptoms in the past 2 weeks (0–24 points); and Box 4 evaluates activities and function in the past month (0–3 points). In accordance with the PG-SGA triage system, a total PG-SGA SF score of 0–3 points was categorized as low risk, 4–8 points as medium risk, and ≥9 points as high risk for malnutrition.

Postoperative complications
Postoperative complications were registered and analyzed using the Comprehensive Complication Index, a tool that encompasses all postoperative complications per hospital stay with regard to their severity according to the Clavien–Dindo classification of surgical complications; it consists of 5 complication grades, including 4 subgrades. The Comprehensive Complication Index takes the quantity of appearance of each complication into account, summing all the postoperative complications weighted according to their severity: ranging from 0 (no complications) to 100 (death).

Statistical methods
Categorical variables were presented as numbers and percentages. Distribution was assessed by way of a Q–Q plot or histogram. Continuous variables were presented
Association between risk for malnutrition and postoperative complications in vascular surgery patients

as mean ± standard deviation for normally distributed variables and as median with interquartile range (IQR) for skewed or ordinal variables. Differences between continuous variables were tested with the analysis of variance for normally distributed data and the Kruskal–Wallis test for variables with skewed distribution. Differences between categorical variables were analyzed with the chi-squared test. Two-tailed P-values were used and significance was set at P < 0.05. To analyze the relationship between risk for malnutrition and the Comprehensive Complication Index, a linear regression model with backward selection was used. Since the Comprehensive Complication Index had a skewed distribution, the variable was transformed using the natural logarithm (ln-transformation). After the analysis, the resulting coefficient was transformed back to the geometric mean. Besides the univariate unadjusted analysis, a multivariate adjusted analysis was performed with the confounders age, sex, BMI, hypertension, ASA score, and type of surgery. These variables were selected based on literature and subject matter knowledge. All statistical analyses were performed with the Statistical Package for the Social Sciences (IBM SPSS Version 23.0; SPSS Inc., Chicago, IL, USA).

Results

Participants and descriptive data
A total of 468 patients with a mean age of 67.8 ± 9.9 years were included, of which 335 were men (71.6%). Baseline characteristics are listed in Table 1, with the patients stratified for risk for malnutrition. Three hundred fifty-five patients (75.9%) were found to be at low risk for malnutrition, 86 patients (18.4%) were estimated as medium risk, and 27 patients (5.8%) at high risk for malnutrition. In total, 113 patients (24.1%) were at medium-high risk for malnutrition. In the high risk for malnutrition group, there were significantly more women than in the low and medium risk groups (P = 0.001). Also, in the medium and high risk for malnutrition groups the median ASA score was significantly higher (respectively 3 [IQR 2–3] and 3 [IQR 3–3]) in comparison with the low risk group (2 [IQR 2–3], P < 0.001). The Charlson Comorbidity Index did not differ significantly between the groups (P = 0.212).
Table 1. Baseline characteristics categorized per risk for malnutrition group

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low risk (PG-SGA SF 0-3 points)</th>
<th>Medium risk (PG-SGA SF 4-8 points)</th>
<th>High risk (PG-SGA SF ≥9 points)</th>
<th>Total</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>355 (75.9%)</td>
<td>86 (18.4%)</td>
<td>27 (5.8%)</td>
<td>468 (100%)</td>
<td>-</td>
</tr>
<tr>
<td>Age (years)</td>
<td>67.8 ± 10.4</td>
<td>66.3 ± 11.9</td>
<td>66.0 ± 12.0</td>
<td>67.4 ± 10.4</td>
<td>0.374</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>268 (75.5%)</td>
<td>54 (62.8%)</td>
<td>13 (48.1%)</td>
<td>335 (71.6%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Female</td>
<td>87 (24.5%)</td>
<td>32 (37.2%)</td>
<td>14 (51.9%)</td>
<td>133 (28.4%)</td>
<td></td>
</tr>
<tr>
<td>BMI<sup>b</sup></td>
<td>27.1 ± 4.8</td>
<td>26.6 ± 5.1</td>
<td>25.2 ± 5.9</td>
<td>26.9 ± 5.0</td>
<td>0.127</td>
</tr>
<tr>
<td>Smoking<sup>c</sup></td>
<td>229 (66.2%)</td>
<td>63 (75.9%)</td>
<td>18 (78.3%)</td>
<td>310 (68.6%)</td>
<td>0.136</td>
</tr>
<tr>
<td>Using alcohol</td>
<td>145 (50.0%)</td>
<td>30 (41.7%)</td>
<td>10 (41.7%)</td>
<td>185 (47.9%)</td>
<td>0.367</td>
</tr>
<tr>
<td>Hypertension</td>
<td>222 (64.7%)</td>
<td>60 (71.4%)</td>
<td>19 (73.1%)</td>
<td>301 (66.4%)</td>
<td>0.386</td>
</tr>
<tr>
<td>Comorbidities<sup>d</sup>, median (IQR<sup>e</sup>)</td>
<td>4 (4-6)</td>
<td>5 (4-6)</td>
<td>5 (3-5)</td>
<td>4 (4-6)</td>
<td>0.212</td>
</tr>
</tbody>
</table>

Table 2 shows median box scores of the PG-SGA SF categorized per risk for the malnutrition group. The median PG-SGA SF score of all patients was 1 (IQR 0–3), with scores ranging from 0 to 18. The median score for history of weight loss (Box 1) was 0 (IQR 0–0); changes in food intake (Box 2) was 0 (IQR 0–0); for nutrition impact symptoms (Box 3) was 0 (IQR 0–1); and for activities and function (Box 4) was also 0 (IQR 0–1).
Association between risk for malnutrition and postoperative complications in vascular surgery patients

Table 2. Box scores PG-SGA SF categorized per risk for malnutrition group

<table>
<thead>
<tr>
<th>PG-SGA SF group</th>
<th>Low risk N=355 (PG-SGA SF 0-3 points)</th>
<th>Medium risk N=86 (PG-SGA SF 4-9 points)</th>
<th>High risk N=27 (PG-SGA SF ≥9 points)</th>
<th>Total N=468</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median (IQR)</td>
<td>Median (IQR)</td>
<td>Median (IQR)</td>
<td>Median (IQR)</td>
</tr>
<tr>
<td>Box 1</td>
<td>Weight history</td>
<td>0 (0-0)</td>
<td>0 (0-1)</td>
<td>1 (0-3)</td>
</tr>
<tr>
<td>Box 2</td>
<td>Food intake</td>
<td>0 (0-0)</td>
<td>0.5 (0-1)</td>
<td>1 (1-3)</td>
</tr>
<tr>
<td>Box 3</td>
<td>Symptoms</td>
<td>0 (0-0)</td>
<td>3 (0.75-3.75)</td>
<td>6 (4-7)</td>
</tr>
<tr>
<td>Box 4</td>
<td>Activity/function</td>
<td>0 (0-1)</td>
<td>1 (1-3)</td>
<td>2 (2-3)</td>
</tr>
<tr>
<td>Total score</td>
<td></td>
<td>0 (0-1)</td>
<td>5 (4-6)</td>
<td>11 (10-14)</td>
</tr>
</tbody>
</table>

b Interquartile range

Relationship between risk for malnutrition and post-operative complications

The data on risk for malnutrition and postoperative complications are shown in Table 3. One hundred twenty-one patients (25.9%) had one or more postoperative complications. In the high risk for malnutrition group, 14 patients (51.6%) developed one or more postoperative complications (P = 0.006). The length of hospital stay significantly differed between the groups, varying from 5.5 ± 4.3 days in the low risk for malnutrition group to 8.2 ± 5.1 days in the high risk for malnutrition group (P = 0.005). Also, the 30-day readmission significantly differed, with 16 patients (4.7%) in the low risk and 5 patients (19.2%) in the high risk for malnutrition group (P = 0.009).
Chapter 3

Table 3. Post-operative complications categorized per risk for malnutrition group

<table>
<thead>
<tr>
<th>PG-SGA SF(^a) group</th>
<th>Low risk N=355</th>
<th>Medium risk N=86</th>
<th>High risk N=27</th>
<th>Total N=468</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(PG-SGA SF 0-3 points)</td>
<td>(PG-SGA SF 4-9 points)</td>
<td>(PG-SGA SF ≥9 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occurrence of ≥1 post-operative complication</td>
<td>85 (23.9%)</td>
<td>22 (25.6%)</td>
<td>14 (51.9%)</td>
<td>121 (25.9%)</td>
<td>0.006</td>
</tr>
<tr>
<td>Length of hospital stay (days)</td>
<td>5.5 ± 4.3</td>
<td>6.3 ± 5.3</td>
<td>8.2 ± 5.1</td>
<td>5.7 ± 4.6</td>
<td>0.005</td>
</tr>
<tr>
<td>Comprehensive Complication Index(^b), median (IQR(^c))</td>
<td>0 (0-0)</td>
<td>0 (0-8.7)</td>
<td>8.7 (0-20.9)</td>
<td>0 (0-8.7)</td>
<td>0.018</td>
</tr>
<tr>
<td>30-day readmission</td>
<td>16 (4.7%)</td>
<td>6 (4.7%)</td>
<td>5 (19.2%)</td>
<td>27 (6.0%)</td>
<td>0.009</td>
</tr>
<tr>
<td>30-day mortality</td>
<td>4 (1.1%)</td>
<td>4 (4.7%)</td>
<td>0 (0.0%)</td>
<td>8 (1.7%)</td>
<td>0.060</td>
</tr>
</tbody>
</table>

Nominal data are given as N(%). Normally distributed continuous data as mean ± SD. Ordinal and skewed continuous data as median (IQR).

\(^a\) Scored Patient-Generated Subjective Global Assessment Short Form (© FD Ottery 2005, 2006, 2015)

\(^b\) According to the Comprehensive Complication Index, which takes all complications after a procedure and their respective severity into account (range 0-100)

\(^c\) Interquartile range

Figure 1. Boxplot of Comprehensive Complication Index, categorized per risk for malnutrition group

The overall median Comprehensive Complication Index was 0 (IQR 0–8.7). As shown in Table 3 and Figure 1, patients at low risk for malnutrition had a median Comprehensive Complication Index of 0 (IQR 0–0) and in the medium and high risk group these numbers were respectively 0 (IQR 0–8.7) and 8.7 (IQR 0–20.9) (P = 0.018). Table 4 shows the linear regression analysis of the relationships between risk for malnutrition and postoperative complications.
complications. The medium risk for the malnutrition group had a 1.35 (95% confidence interval [CI] 1.01–1.80) times higher Comprehensive Complication Index than the low risk for malnutrition group (reference group), and a 1.39 (95% CI 1.05–1.84) times higher Comprehensive Complication Index than the low risk for the malnutrition group when adjusted for the confounders age, sex, BMI, hypertension, ASA, and type of surgery. Both effects were statistically significant, that is, P = 0.044 and P = 0.02, respectively. There was no statistically significant difference in Comprehensive Complication Index between the high and low risk for the malnutrition group in both the unadjusted (P = 0.28) and adjusted analyses (P = 0.374).

In Table 5, the multivariate linear regression analysis, comprising only major vascular procedures, is presented and shows that after adjusting for confounders, the medium risk for the malnutrition group had a significantly (P = 0.032) higher Comprehensive Complication Index than the low risk for the malnutrition group.

Table 4a Linear regression analysis of the relationship between risk for malnutrition and the Comprehensive Complication Index

<table>
<thead>
<tr>
<th>Risk for malnutrition category</th>
<th>Unadjusted</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\beta)</td>
<td>95% CI</td>
</tr>
<tr>
<td>Low risk for malnutrition</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>(PG-SGA SF 0-3 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium risk for malnutrition</td>
<td>1.35</td>
<td>1.01 – 1.80</td>
</tr>
<tr>
<td>(PG-SGA SF 4-8 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High risk for malnutrition</td>
<td>0.82</td>
<td>0.60 – 1.39</td>
</tr>
<tr>
<td>(PG-SGA SF ≥9 points)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Transformed back; \(\beta \) Adjusted for age, sex, BMI, hypertension, ASA, and type of surgery

Table 4b Linear regression analysis of the relationship between risk for malnutrition and the Comprehensive Complication Index - only major vascular procedures*

<table>
<thead>
<tr>
<th>Risk for malnutrition category</th>
<th>Unadjusted</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\beta)</td>
<td>95% CI</td>
</tr>
<tr>
<td>Low risk for malnutrition</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>(PG-SGA SF 0-3 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium risk for malnutrition</td>
<td>1.37</td>
<td>1.00-1.87</td>
</tr>
<tr>
<td>(PG-SGA SF 4-8 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High risk for malnutrition</td>
<td>0.85</td>
<td>0.58-1.24</td>
</tr>
<tr>
<td>(PG-SGA SF ≥9 points)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Excluding patients undergoing arteriovenous access surgery, percutaneous transluminal angioplasty interventions (including coil embolization), and minor amputations (forefoot amputation, digits and wound revisions); \(\beta \) Transformed back; \(\beta \) Adjusted for age, sex, BMI, hypertension, ASA, and type of surgery
Discussion
This study shows that electively operated vascular surgery patients with a medium risk for malnutrition are more prone to develop postoperative complications than patients with low risk for malnutrition. In the univariate analysis, the occurrence of postoperative complications, the length of hospital stay, and the Comprehensive Complication Index varied significantly between the different risks for malnutrition groups. In the multivariate analysis, the patients with medium risk for malnutrition had a 1.39 times higher Comprehensive Complication Index than the patients with low risk for malnutrition. As such, at medium risk for malnutrition patients are at a higher risk of developing more complications and/or more severe complications.

In the busy outpatient setting, methodically quantifying the nutritional status of a patient, for example, by measuring fat-free mass and/or muscle strength, has proven to be difficult. As a result, nutritional status is often evaluated using body weight and/or BMI and/or albuminemia, both of which have been shown to be inadequate predictors. The nutritional screening instrument used in this study was found to be among the few instruments covering all domains of ESPEN’s conceptual definition of malnutrition. Specifically, the PG-SGA SF captures changes in weight and in food intake and identifies nutrition-related impairments that can lead to future malnutrition. Herewith, the PG-SGA SF more effectively assesses the risk for malnutrition than other tools covering fewer domains (which are more suited to assessing present malnutrition). As such, with the PG-SGA SF’s enhanced risk assessment capability, the implementation of preventive measures—by dieticians as well as physicians, nurses, and physiotherapists for instance—can be better facilitated, as opposed to reactive interventions when patients are already malnourished.

A previous study showed that the co-occurrence of physical frailty and malnutrition was associated with a much greater increase in adverse health outcomes than malnutrition alone, suggesting that frail patients with poor nutritional status are particularly suitable candidates for preventive interventions. Moreover, preoperative rehabilitation programs including endurance, strength, and high-intensity training schedules have resulted in improved postoperative clinical outcomes. In sum, combined exercise and nutritional interventions are most likely to lead to positive results in terms of postoperative outcomes.

The prevalence of risk for malnutrition that we found in our study, respectively 24.1%, was comparable with the numbers that were found in prior studies among hospitalized patients, ranging from 15–32%. In general, malnutrition upon hospital admission is associated with prolonged length of stay and higher mortality rates. Moreover, particularly in the case of surgical patients, the dampened immune response and impaired wound healing increases the risk of (postoperative) infections. Fortunately, various studies have shown that malnutrition is reversible with the suitable nutritional intervention; this process often requires the use of oral nutritional supplements in addition to dietary counseling. In vascular surgery patients, a study investigating the effect of preventive nutritional measures on postoperative outcomes is currently
lacking. Adequate nutritional screening can help detect patients at risk for malnutrition, thereby identifying candidates for preventive measures—potentially a combination of both nutrition and exercise interventions. Notably, in severely malnourished patients, early and adequate nutritional consultation has the potential to reduce the length of hospital stay by an average of 3.2 days. Among cancer patients, nutritional treatment significantly reduced the risk of adverse events such as vomiting and gastrointestinal obstruction. Additionally, preventive nutritional interventions were associated with improved functional and cognitive status in elderly at risk for malnutrition. These findings, supported by our results, suggest that similar interventions might also be helpful to vascular surgery patients at risk for malnutrition, potentially reducing surgical complications and hospital length of stay, and improving functional and cognitive outcomes.

This study has some limitations that need to be addressed. First, we estimated the risk for (future) malnutrition and we did not measure present nutritional status. However, by assessing the risk, we discovered that even the presence of risk factors for future malnutrition leads to a higher risk of complications. Second, the PG-SGA SF was not previously validated within the vascular surgery setting, but a gold standard is currently lacking. Our findings suggest that preoperative screening for nutritional risk is a step in the right direction for improved individual patient care, and that, also in the vascular surgery setting, the PG-SGA SF is a valuable tool for this end. Third, the PG-SGA SF is a questionnaire that is completed by the patient individually; because of various coping strategies and/or potential cognitive impairments, problems may be under- or over-reported leading to subsequent under- or overestimation of the nutritional impairments. Fourth, the number of patients in the 3 malnutrition risk groups was not equal, where particularly in the high risk for malnutrition group the number of patients was relatively low. Because of this skewed distribution, the statistical power was limited potentially leading to an underestimation of the effect and the significance of the relationship between high risk for malnutrition and postoperative complications in the multivariate linear regression analysis. Fifth, this observational cross-sectional study took place at a tertiary referral center that provides specialized care; this may have led to inclusion of patients whose data are somewhat less generalizable to other groups or cohorts of vascular surgery patients. Finally, we chose to include all the elective surgical procedures, ranging from percutaneous interventions to open abdominal surgery. The effect of risk for malnutrition could have been more substantial in specific intervention categories. Nevertheless, after an additional analysis with only the major vascular procedures, the association between patients at medium risk for malnutrition and the risk for postoperative complications remained significant.

In conclusion, electively operated vascular surgery patients with an estimated medium risk for malnutrition are more likely to develop postoperative complications. This finding suggests that preventive measures improving the nutritional status prior to surgery has the potential to reduce the risk of complications. Future intervention studies are necessary to determine whether preventive strategies will lead to better surgical outcomes.
Chapter 3

References

Association between risk for malnutrition and postoperative complications in vascular surgery patients

Association between risk for malnutrition and postoperative complications in vascular surgery patients
Part II

The assessment of frailty in vascular surgery