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Insights, characterized by sudden discoveries following unsuccessful problem-
solving attempts, are fascinating phenomena. Dynamic systems perspectives 
argue that insight arises from self-organizing perceptual and motor processes. 
Entropy and fractal scaling are potential markers for emerging new and effective 
solutions. This study investigated whether specific features associated with 
self-organization in dynamical systems can distinguish between individuals 
who succeed and those who fail in solving insight tasks. To achieve this, we 
analyzed pupillary diameter fluctuations of children aged 6 to 12 during the 
8-coin task, a well-established insight task. The participants were divided into 
two groups: successful (n = 24) and unsuccessful (n = 43) task completion. 
Entropy, determinism, recurrence ratio, and the β scaling exponent were 
estimated using Recurrence Quantification and Power Spectrum Density 
analyses. The results indicated that the solver group exhibited more significant 
uncertainty and lower predictability in pupillary diameter fluctuations before 
finding the solution. Recurrence Quantification Analysis revealed changes that 
went unnoticed by mean and standard deviation measures. However, the β 
scaling exponent did not differentiate between the two groups. These findings 
suggest that entropy and determinism in pupillary diameter fluctuations can 
identify early differences in problem-solving success. Further research is 
needed to determine the exclusive role of perceptual and motor activity in 
generating insights and investigate these results’ generalizability to other tasks 
and populations.

KEYWORDS

insight problem solving, entropy, fractal scaling, self-organization, pupil diameter 
fluctuations, 8-coin task

OPEN ACCESS

EDITED BY

Eirini Mavritsaki,  
Birmingham City University, United Kingdom

REVIEWED BY

Anna Savinova,  
Yaroslavl State University, Russia
Theo Rhodes,  
State University of New York at Oswego, 
United States

*CORRESPONDENCE

Ramón D. Castillo  
 racastillo@utalca.cl

RECEIVED 21 December 2022
ACCEPTED 22 May 2023
PUBLISHED 23 June 2023

CITATION

Vásquez-Pinto S, Morales-Bader D, Cox RFA, 
Munoz-Rubke F and Castillo RD (2023) The 
nonlinearity of pupil diameter fluctuations in an 
insight task as criteria for detecting children 
who solve the problem from those who do not.
Front. Psychol. 14:1129355.
doi: 10.3389/fpsyg.2023.1129355

COPYRIGHT

© 2023 Vásquez-Pinto, Morales-Bader, Cox, 
Munoz-Rubke and Castillo. This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Original Research
PUBLISHED 23 June 2023
DOI 10.3389/fpsyg.2023.1129355

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2023.1129355&domain=pdf&date_stamp=2023-06-23
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1129355/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1129355/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1129355/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1129355/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1129355/full
https://orcid.org/0009-0007-8491-7375
https://orcid.org/0000-0003-1384-7588
https://orcid.org/0000-0002-2992-5352
https://orcid.org/0000-0002-4466-6440
https://orcid.org/0000-0002-8505-5179
mailto:racastillo@utalca.cl
https://doi.org/10.3389/fpsyg.2023.1129355
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2023.1129355


Vásquez-Pinto et al. 10.3389/fpsyg.2023.1129355

Frontiers in Psychology 02 frontiersin.org

Introduction

Insights are an intriguing phenomenon in problem-solving 
research. Insights occur when people suddenly discover the only 
possible solution after unsuccessfully trying to solve a problem while 
expressing astonishment (Chronicle et al., 2004; Chu and MacGregor, 
2011; Weisberg, 2015). So far, theoretical approaches that account for 
the occurrence of insights propose unconscious or automatic 
restructuring mechanisms and representations that operate through 
symbolic or algorithmic systems assembled to reduce error (Ohlsson, 
1992, 2011; Knoblich et al., 1999).

According to these approaches, the inadequate representation 
of a problem creates a space of solutions that cannot solve the task 
(Knoblich et  al., 1999). As a result, the repeated unsuccessful 
attempts create stagnation and the feeling that all possible solutions 
have been exhausted (Impasse; Ohlsson, 1992). One theory that 
integrates these elements is the Representational Change Theory 
(RCT), which argues that insight involves the conceptual and 
perceptual reformulation of the problem. Even when insight tasks 
may appear to require only a few simple steps for their solution, the 
real solution can be challenging to discover. According to RCT, 
incorrect representations of the problem can prevent us from 
identifying an efficient strategy and executing the correct actions. 
In order to overcome this difficulty, it is necessary to reorganize the 
problem representation using two mechanisms: relaxing self-
imposed restrictions (restriction relaxation) and breaking down the 
problem into simpler components that are easier to manage 
perceptually (chunk decomposition). By utilizing both of these 
mechanisms, the solver can increase the chance of finding the 
solution to the problem (Jones, 2003; Öllinger et al., 2013). This 
process takes place outside of a person’s consciousness, displaying 
a new space of solutions, and is often accompanied by positive 
emotions such as pleasure, surprise, and certainty, among others 
(Danek et al., 2014; Shen et al., 2016). It is important to note that 
RCT appeals to the use of symbols and representations and 
implicitly assumes top-down processes to explain the phenomenon 
of insight (for an alternative view, see Satisfactory Progress Theory; 
MacGregor et al., 2001; Ormerod et al., 2002).

In contrast, the group of Dixon and collaborators sought to 
approach insight from a perspective linked to dynamic systems. 
This view addresses several criticisms raised against the 
traditional cognitive model, such as the rigidity of the concept of 
representation and the model’s inability to account for the 
spontaneous emergence of new strategies or new patterns of 
response (Stephen and Dixon, 2009). According to this view, the 
mechanisms involved in insight are of a perceptual and motor 
nature. This approach offers an ecological view in which 
cognition is context-dependent. In that sense, Dixon and 
collaborators proposed that insight is a self-organizing behavior 
that emerges from the coupling of perceptual-motor processes 
during phase transitions (Dixon and Bangert, 2002; Dixon and 
Dohn, 2003; Stephen et  al., 2009; Stephen and Dixon, 2009; 
Dixon et al., 2010). Self-organization refers to the emergence of 
a new structure or pattern where the components, by themselves, 
cannot explain what emerges; and where there is no direction 
from either a central executive or an external agent (Ashby, 1962; 
Kelso, 1995; van Orden et  al., 2003; Smith, 2005; Castillo 
et al., 2010).

Dynamical features related to insight

According to Dixon and his colleagues, behavior, and cognition 
continuously self-organize themselves based on the fluctuations of 
information and the uncertainty of the environment (Kugler and 
Turvey, 1988; Bak, 1996; Jensen, 1998; van Orden et al., 2003; Holden, 
2005). This conjecture emerged after they observed two features in the 
dynamics of behavior linked to self-organizing physical and biological 
systems: a peak in entropy and a sharp manifestation of 1/f noise, both 
just before discovering a new and effective solution. These 
characteristics indicate the dynamic behavior of some complex 
systems as they move from one state to another (Kelso, 1995). 1/f 
noise, also known as pink noise, has a power spectrum proportional 
to the inverse of frequency and is often observed in systems that 
exhibit long-range correlations or self-similarity (Holden, 2005).

Dixon and Bangert (2002) reported that the emergence of insights 
in participants during the Gear System Task experiment was due to 
self-organizing patterns of behavior that emerged to dissipate entropy. 
The new strategy was the product of the interaction between the 
participant’s perceptual-motor system and the environment through 
force tracing, which introduced entropy. Entropy measures the 
amount of uncertainty or randomness in a signal. The more uncertain 
or random the signal is, the higher its entropy will be. Conversely, if 
the signal is predictable or orderly, its informational entropy will 
be lower. According to Dixon and collaborators, the cognitive system 
that is compelled to dissipate such entropy generates a new 
organization or structure that is more efficient in dissipative work (van 
Orden et al., 2003).

The transition from the force-tracing strategy to the alternation 
strategy was found in preschoolers, schoolers, young people, and 
adults (Dixon and Bangert, 2002; Dixon and Dohn, 2003). In these 
groups, the angular velocity of finger movements showed an abrupt 
increase and decrease in entropy before discovering the alternation 
strategy through the tracing strategy. Furthermore, the angular 
velocity adopted the shape of a power-law distribution, which is an 
asymmetrical distribution that shows the inverse relationship between 
the frequency of a phenomenon and its magnitude on a logarithmic 
scale (Stephen and Dixon, 2009). Dixon conducted other experiments 
in which uncertainty (randomness) was intentionally introduced to 
the gear-related tasks. As a result, more people could find a solution, 
and they did so more quickly. In the cases where the task was solved, 
sudden changes in the entropy of the angular velocity were observed. 
Furthermore, when analyzing the distribution of eye fixations, the 
results adopted the form of a power law distribution.

Power law distributions are the distribution of objects known as 
fractals, which themselves are recursive, self-similar patterns at 
different scales of observation with no mathematical end. In practical 
terms, fractals reproduce the same variability on different time scales. 
In other words, they are objects reproduced on more minor scales and 
where their relative size is inversely related to their frequency (Brown 
and Liebovitch, 2010). This type of invariant relation between size and 
frequency has been detected in various tasks such as time estimations, 
mental rotation, lexical decision, rhythmical aiming, motor-control 
tasks, perception of reversible figures, visual search and visual 
matching, implicit measures of stereotyping, prejudice, self-esteem 
and physical self-perception reports (Gilden, 2001; Aks and Sprott, 
2003; Delignières et al., 2004; Correll, 2008; Wijnants et al., 2009, 
2012a; Diniz et al., 2011; Castillo et al., 2015).
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While 1/f-pink noise is ubiquitous in many complex systems, it is 
not a universal feature of all signals. For example, pupil diameter 
fluctuations over time cannot behave like 1/f noise because the pupil 
does not expand and contract rapidly and sharply under normal 
conditions. Instead, these fluctuations are better described by 
Brownian noise, which resembles a random walk process characterized 
by small and gradual changes in size. There is compelling evidence 
that this type of signal exhibits Brownian noise instead of 1/f or pink 
noise (Moon et al., 2014; Kim and Yang, 2017). Since these two signals 
differ radically, the question remains whether, with Brownian noise 
time series, it is possible to detect significant differences such as those 
found in the studies mentioned above.

In summary, Dixon and colleagues proposed that behavior and 
cognition self-organize themselves based on the fluctuations of 
information and the uncertainty of the environment. This self-
organizing process involves dissipating entropy to generate a new 
organization or structure that is more efficient in dissipative work. The 
emergence of insights is due to self-organizing patterns of behavior 
that appear to dissipate entropy and is characterized by a peak in 
entropy and a sharp manifestation of 1/f noise. These features indicate 
the dynamic behavior of some complex systems as they move from 
one state to another and are observed in different cognitive and 
behavioral tasks. It is important to note that Dixon and his colleagues 
did not study dilated pupils. In contrast, other researchers who have 
analyzed fluctuations in pupillary diameter have observed that this 
signal produces a noise that can be classified as Brownian noise.

The gear system task as a pseudo-insight 
task and the 8-coins task as an insight task

Even though human behavior expresses these two features 
detected in complex dynamic systems during the resolution of the 
Gear system task, these results have not been immune to criticism. 
One important criticism is that the Gear System task lacks the 
characteristics of a real insight problem (Chronicle et al., 2004; Chu 
and MacGregor, 2011). The main difference between insight problems 
and other types of problems (e.g., analytical problems) is a phase 
known as an impasse. Although it is a matter of discussion (Fleck and 
Weisberg, 2013; Danek et al., 2014; Webb et al., 2016), several models 
point to the existence of a period of stagnation that precedes the 
occurrence of an insight (Wallas, 1926; Ohlsson, 1992; Öllinger et al., 
2014). Misrepresenting a problem would generate that impasse, 
usually associated with negative emotions (Fleck and Weisberg, 2004). 
The impasse is reflected in a cessation of the resolution activity and by 
repeating unsuccessful attempts (Beeftink et al., 2008). Because of this, 
solvers think they have tried all the solutions unsuccessfully. After 
that, a true insight, the only possible solution emerges abruptly due to 
a mental reorganization of the problem (Knoblich et al., 1999; Öllinger 
et al., 2013). In the Gear System task, no impasse occurs because, from 
the beginning, participants can solve the problem without significant 
difficulties, and different strategies might coexist without any mental 
reorganization. For this reason, the Gear System task is classified as a 
pseudo-insight task, limiting the applicability of Dixon’s findings to 
real insight tasks.

Given this criticism, in the current study, we explored whether the 
findings of Dixon and colleagues are generalizable to real insight tasks. 
More specifically, we  asked whether it is possible from entropy 

fluctuations and fractal scaling to differentiate children who solve an 
insight problem from those who do not. For this purpose, we used the 
8-coins task, considered a real insight problem task (Ormerod et al., 
2002; Gilhooly et al., 2010; Öllinger et al., 2013). This task consists of 
presenting eight black coins, which participants must reorganize with 
just two moves such that each coin touches three other coins. The 
solution involves overlapping two key pieces into two separate groups 
of three pieces each.

The 8-coin task was thoroughly studied by Öllinger et al. (2013), 
who manipulated the presence/absence of certain perceptual cues in 
the task. For example, in some conditions, the eight coins were located 
so that all touched each other (grouped) or only touched some other 
(ungrouped). Moreover, other conditions had one coin positioned on 
top of another (3D cue) or not (2D cue). These cues affected 
participants’ performance, showing higher solution rates in ungrouped 
3D configurations than in grouped 2D configurations (Öllinger 
et al., 2013).

Although the 8-coin task is a simple problem, the solution can 
be difficult for individuals. According to the Representational Change 
Theory (RCT), this would occur because an erroneous representation 
of the problem would prevent participants from performing 3D 
movements and thinking about strategies that involve separating the 
initial group of pieces. Hence, insight would appear as a product of the 
reorganization of said representation in terms of two mechanisms: 
restriction relaxation and chunk decomposition (Öllinger et al., 2013). 
The first is the solver’s relaxation of self-imposed restrictions (e.g., 
only performing 2D movements). The second would be to decompose 
the problem into simpler components, more manageable units 
perceptually (e.g., to split the eight-coin group into two four-coin 
groups). The deployment of both mechanisms would allow the 
participants to find the solution.

Pupillary diameter fluctuations as a signal 
closer to the insight phenomena

To study insight in the 8-coin task, we focused on a physiological 
signal that may be related to this event. We analyzed the pupillary 
diameter fluctuations of participants. It is well-known that the pupil 
constricts or dilates by reflex in response to environmental stimuli. For 
example, it contracts to luminous stimuli (Pupillary Light Response 
or PLR), or it constricts to a stimulus presented near fixation (Pupillary 
Near Response or PNR) (Mathôt, 2018). However, it is less known that 
the pupil diameter fluctuates according to the Psychosensory Pupil 
Response (PPR), in which pupil dilation is associated with cognitive 
activities such as mental effort (Hess and Polt, 1960, 1964); experience 
of surprise (Friedman et  al., 1973; Preuschoff et  al., 2011), 
disambiguation of stimuli (Suzuki et  al., 2018) and the change in 
expectation (Gilzenrat et al., 2010); core components of the insight 
experience (Chu and MacGregor, 2011). Moreover, a study 
demonstrated that increases in pupil diameter were associated with 
insight achievement, both in the form of “false insight” and “real 
insight” (Salvi et al., 2020). These authors registered the participants’ 
oculomotor activity while participants solved a battery of problems 
and discovered that microsaccades were related to resolution through 
mental analysis. Additionally, they found that increases in pupil 
diameter were related to problem-solving through insight (Salvi 
et al., 2020).
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Recurrence quantification analysis (RQA) 
and power spectrum density (PSD) applied 
to insight phenomena

Based on the analyses conducted by Dixon and colleagues, 
we  utilized two statistical techniques to examine pupil diameter 
fluctuations: Power Spectrum Density (PSD) for estimating power-law 
scaling (Hausdorff et al., 1995; Peng et al., 1995; Holden, 2005; Kello 
et al., 2007; Wijnants et al. 2012a,b); and Recurrence Quantification 
Analysis (RQA) for estimating entropy, recurrence ratio, and 
determinism (Marwan and Kurths, 2002; Shockley, 2005; Orsucci 
et al., 2006; Marwan et al. 2007; Bastos and Caiado, 2010; Castillo 
et al., 2015; Ngamga et al., 2016; Lira-Palma et al., 2018; Morales-
Bader et al., 2023).

PSD is a method of estimating the power spectrum of a signal 
from its time-domain representation, which characterizes its 
frequency content and helps to identify periodicities (Kello et  al., 
2007). This method decomposes the signal into different frequencies 
using a Fourier transformation. Low-frequency sine waves represent 
slow changes, high-frequency waves represent fast changes, high-
amplitude sine waves represent large changes, and low-amplitude sine 
waves represent small changes. By plotting the frequency and power 
of each sine wave on log/log scales, the paired amplitudes and 
frequencies exhibit a proportional relationship, forming a scaling 
relation. The slope of the regression line provides a rough estimate of 
the 1/f scaling exponent (Castillo et al., 2010). By analyzing the slope 
of the scaling exponent of the power spectral analysis, the Beta (𝛃) 
scaling exponents of the simulated time series of White, Pink (1/f), 
and Brownian noise can be estimated (Figures 1A–C, respectively). 
Panels D, E, and F depict three logarithmic scale plots in which the 
time series have been submitted to Power Spectral Analysis. The white 
noise series has a slope of 0, the pink noise series has a slope of −1, 
and the Brownian noise series has a slope of −2.04 (𝛃 ≈ −2). These 
results are presented in logarithmic scale plots.

RQA is a non-linear, multidimensional statistical analysis used to 
discover attractors in time series whose signal is irregular, 
multidimensional, and non-stationary (Riley and Turvey, 2002; 
Marwan et al., 2007; Wijnants et al., 2012b). RQA has the advantage 
that from a single time series subjected to a time-delay treatment, it is 
possible to estimate the value of other variables to reconstruct the 
dynamic behavior of a system (Takens, 1981). RQA makes no 
assumptions about the distribution or size of the data. Measures 
extracted with RQA are estimated from recurrence plots (RPs), which 
are graphical representations of a matrix of recurrence that highlights 
aspects that cannot be detected in the original data set. This matrix is 
the autocorrelation of the same signal with some delay. Figures 1G–I 
show three Recurrence Plots (RPs). These plots represent each time 
series with itself (on the X and Y axis) (Webber and Zbilut, 2005). 
With this procedure, it is possible to identify points where the series 
tends to return (recurrence), informing the “preference” of the systems 
to state in a specific trajectory. Several quantitative and reliable 
measures can be estimated from RPs, such as the degree of the system’s 
entropy (ENT), the recurrence ratio (RR), and the proportion of 
determinism (DET) (Marwan et al., 2007). ENT estimates the degree 
of disorder expressed by a system based on the Shannon equation. 
Mathematically, ENT is the probability distribution of the diagonal 
line lengths. RR represents the likelihood of a particular state 
recurring. Finally, DET is related to the system’s predictability 

(Stephen and Dixon, 2009). RR is mathematically defined as the 
density of recurrence points in a plot. DET is calculated as the 
percentage of recurrence points that form diagonal lines in the 
recurrence plot with the minimum length.

The white noise series (Figure 1G) is characterized by a system 
that moves randomly without any preferred trajectory, resulting in the 
absence of recurrences. On the other hand, the 1/f-pink noise 
(Figure 1H) and Brownian noise series (Figure 1I) demonstrate a 
preference for specific trajectories, which can be observed as marked 
patterns of recurrences. To establish the degree of entropy and other 
derived measures, the observed pattern in the RP must undergo a 
series of analyses. However, before implementing these calculations, 
three parameters must be estimated: the delay, embedded dimensions, 
and the radius (Shockley, 2005). For the simulated 2048-point time 
series of White, Pink (1/f), and Brownian noises, these parameters 
were 1, 3, and 0.6, respectively. The values obtained from the 
Recurrence Plots (RPs) exhibit differences in entropy, recurrence ratio, 
and determinism. The simulated series of White noise shows the 
lowest values, pink noise shows intermediate values, and Brownian 
noise has the highest values. White noise is the most random, with a 
low preference for a particular trajectory in phase space (RR) and a 
low ability of the initial states to predict future states (DET). On the 
other extreme, Brownian noise displays a higher level of order or 
structure, with a marked preference for a particular trajectory in phase 
space and high levels of predictability due to the semi-periodic nature 
of the system (Marwan et al., 2007).

In sum, the present study aimed to test Dixon’s hypotheses on the 
8-coins task, which has a unique correct solution and no alternative 
strategies. We  analyzed participants’ pupillary fluctuations as a 
physiological signal to study differences between subjects who solved 
and did not solve the task. Given that visual neurocognitive systems 
modulate pupillary fluctuations, we hypothesized that children who 
solved the task would exhibit entropy changes just before finding the 
solution. This pattern would be absent in those who did not solve the 
task. Additionally, as previously reported by Dixon and colleagues, 
successful problem-solvers would exhibit a fractal structure similar 
to 1/f-pink noise. However, previous studies on pupillary dilation 
during cognitive tasks suggest that the temporal structure should 
be closer to Brownian noise. Therefore, by exploring these different 
possibilities of temporal structures, we aim to shed light on pupillary 
fluctuations and their relationship to problem-solving 
cognitive processes.

Method

Participants

We recruited 76 children between the ages of 6 and 12 (M = 9.39; 
SD = 1.53) from public schools in Talca City. However, we excluded 
nine participants from the sample because they solved the task too 
quickly or withdrew from the study within 120 s of starting the task. 
Before starting the experiment, we obtained informed consent from 
the parents or caregivers (IRB FONDECYT 1161533) and provided 
an informed assent document to the children. The experiment only 
began once the children explicitly agreed to participate. Our final 
sample consisted of 67 children (36 boys, 31 girls) randomly assigned 
to the four experimental conditions (See Figure 2). No significant 
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differences in average age across the four conditions were found [F (3, 
63) = 0.914, p = 0.439].

We used G-Power to estimate the required sample size (Faul et al., 
2007). We employed a 2 × 2 experimental design, which included four 
groups (3D vs. 2D x grouped vs. ungrouped). Each group was 
measured 56 times (windows) on their dependent variables, with an 
effect size of 0.30, an alpha error of 0.05, and a power of 0.80. The total 
number of participants suggested was 64 (16 participants per group). 
Subsequently, we  estimated the post-hoc sample size required to 
compare two groups of children (non-solvers and solvers) using an 
effect size of 0.30, an alpha error of 0.05, a power of 0.80, and 56 
measurements of their dependent variables. The estimated sample 
revealed that we needed 20 children (10 per group) to achieve the 
desired statistical power.

Materials and methods

We used the 8-coin task as an insight task (Öllinger et  al., 
2013). This task contained eight circular pieces (or “coins”) of 

40 mm in diameter and 2 mm high. These were placed on a 7 cm 
x 31 cm x 31 cm (“ABITARE, LIGHTING,” 220v) platform. The 
surface was divided into 36 cells of 4 cm2 each (Figure 2B). One 
of four possible 8-coin configurations was presented (Figure 2, 
Panels C to F) with approximately 10 degrees of inclination 
relative to the participant. These four configurations resulted from 
combining two factors with two levels each (grouping and 
dimensionality). Grouping refers to configurations where the 
eight coins could be grouped in one big segment (Panel C and D) 
or separated into subsets (Panel E and F). Dimensionality refers 
to configurations that could present a 3D cue (coin overlapping 
other; Panel D and F) or where this cue is absent (Panel C and E). 
These factors combined formed four conditions: Grouped-2D, 
Ungrouped-3D, Grouped-3D, and Ungrouped-3D. An 
eye-tracking system was used to record eye activity (Tobii Eye 
Tracker X2-60; Figure 2A). This system consists of glasses that 
record eye movements (i.e., fixations, attention, and pupil 
behavior) and a tablet that receives and records this information 
in real-time. From each child’s task recording, a video of his/her 
eye movements was obtained by the Tobii Studio software.

FIGURE 1

Time-series simulation of white noise (A), pink noise (B), and Brownian noise (C) with 2048 samples. Estimation of Power Spectral Density (PSD) using 
the Welch method for white noise (D), pink noise (E), and Brownian noise (F). Recurrence Plot of the Recurrence Quantification Analysis (RQA) for 
white noise (G), pink noise (H), and Brownian noise (I). For the RQA, a delay of 1, embedding dimensions of 3, and a threshold of 0.6 were used.
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Procedure

Each participant was evaluated in an isolated laboratory room 
with two experimenters (E1 and E2). E1 (located next to the child) was 
in charge of positioning the eye-tracking glasses, giving instructions, 
rearranging the pieces whenever an attempt was unsuccessful, and 
providing feedback (i.e., briefly explaining why the attempt did not 
accomplish the solution). E2 (located behind the child) was 
responsible for recording a video with the information captured by the 
eye-tracking glasses and monitoring that each child was looking at the 
board when solving the task. Once the eye-tracking glasses were 

calibrated, the experiment began with E2 starting the recording and 
E1 reading the following instruction:

“In this task, there are 8 circular coins. Please, count them: one, 
two, three… and eight coins. As you can see, all coins are identical. 
Your task is to move only two coins so that each coin touches the 
other three coins. Note how they are distributed on the platform; 
some touch two other coins, some touch three, and so on. You can 
move any coin you want. Remember that your task is to move only 
two coins, so each coin touches another three coins. You must 
move the coins whenever you have a solution in mind. Remember 

FIGURE 2

(A) Sketched picture of a participant using eye-tracking glasses (Tobii Eye Tracker X2-60) during the insight problem-solving task. (B) Picture of the 
grouped coins with 2D cues distributed on the platform. (C) At right, configuration with grouped coins and 2D cue. (D) Configuration with grouped 
coins and 3D cue. (E) Configuration with ungrouped coins and 2D cue. (F) Configuration with ungrouped coins and 3D cue. In all four configurations, 
at the right, the arrows indicate the coins that must be moved and where they must be placed to solve the task successfully.
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that you can move two coins per attempt. You must inform the 
experimenter when you think you have found the solution”.

After each unsuccessful attempt, participants were instructed to 
avert their gaze from the platform and look in a different direction. At 
this moment, E1 resets the coins to their initial configuration and 
begins the next attempt. This procedure was repeated until the task 
was solved, or until a minimum of 20 min had passed (after which 
participants had the option to discontinue), or a maximum of 40 min. 
If the children had not found the solution after 20 min, once they had 
completed the attempt, they were asked if they wanted to continue. If 
they decided to continue, the task continued for 20 more minutes. The 
time range of 20 to 40 min was established based on a pilot sample in 
which coins of various sizes and materials (metal, wood, and poker 
chips) were tested on different surfaces. While this time frame was 
initially determined preliminarily, it was consistently applied to all 
children in the study. It should be noted that there were no instances 
of children voluntarily giving up before the 20-min mark, nor were 
there any cases of children wanting to continue beyond the 40-min 
limit if they had not yet solved the problem. Regardless of the result, 
each child received a didactic toy as a reward for their participation.

Data processing

Pupil diameter fluctuations were extracted from the eye with the 
most information from each participant. A Hampel Filter was applied 
to remove atypical data (records with pupil diameters ±3 SD). Then 
some data lost due to blinking or loss of eye tracking were interpolated 
with the Akima interpolation method, as one of the suggestions of 
Dan et al. (2020) for this type of data. When the window of missing 
values was equal to or less than 2 s (100 data points), an interpolation 
was performed; otherwise, those missing values were assumed missing 
and deleted. Finally, the data were normalized using a MinMax 
normalization between 0 and 1 to compare subjects with different 
pupil sizes on the same scale. Figure 3 shows the data preprocessing 
at each step.

Data analysis

RQA and PSD analyses

A windowed recurrence quantification analysis (RQA) was 
performed. Each window comprised 500 data points, corresponding 
to approximately 100 s of the task. The windows were moved in steps 
of 100 data points in each step. For example, the first window went 
from 0 to 500 data points, the second from 100 to 600, and so on. 
Since subjects took different times to finish the task or give up, to 
analyze equivalent time instants and compare the same moments 
between subjects, we took the last 120 s of each subject. These last 120 s 
are equivalent to the last 56 windows of the RQA. The Python library 
PyRQA (Rawald et al., 2017) was used to perform the RQA.

The RQA has three main parameters to be estimated. The first is 
the lag, estimated with the average mutual information (AMI) 
technique, selecting the lag where the function decays to 1/e of its 
value at zero. Since we are working with windows of 500 data points 
and steps of 100 data points, the lag was estimated for the same 

windows and all subjects. A lag of 6 was chosen, corresponding to the 
mode of the lag of all windows for all subjects. The second parameter 
is the embedded dimensions, which depend on the lag. The false 
nearest neighbor’s method was used to estimate this parameter. For 
the selected lag or delay (d = 6), embedded dimensions of 6 were 
chosen, corresponding to the mode of the smallest fraction of false 
neighbors in each window among all subjects. The AMI method is 
implemented in the R library NonlinearTseries (Garcia and Sawitzki, 
2015), whereas the false nearest neighbor’s method is implemented in 
the R library tseriesChaos (Fabio Di Narzo, 2019). Finally, we estimate 
the threshold, which defines the minimum threshold for two points 
considered close or recurrent in the phase space. A general guideline 
is to select a value that allows the recurrence percentage to be low but 
not so low as to produce a floor effect (Pellecchia and Shockley, 2005; 
Webber and Zbilut, 2005). For this, we analyzed different values until 
we obtained an average recurrence percentage between all windows 
and subjects that fell around 10%. Our chosen threshold value was 
0.02. As for other parameters, the minimum number of points 
considered as a diagonal or vertical line was 25. Because pupil 
diameter fluctuations do not usually vary so much in such a short 
time, this minimum length was chosen to avoid a ceiling effect in the 
determinism measure or a floor effect in the entropy measure.

From the RQA, we  selected three measures to be  analyzed 
between the two groups: recurrence ratio, determinism, and entropy. 
The recurrence ratio indicates the probability that a specific state will 
recur. It corresponds to the density of points on a recurrence plot. 
We expect to see similar recurrences among participants since it was 
one of the calibration measures for the threshold parameter. However, 
differences between groups may occur if they suddenly become more 
or less recurrent for a significant period. Determinism is, in some 
cases, related to the predictability of the system. It is the percentage of 
points that form a diagonal line on a recurrence plot. Differences 
between groups would indicate differences in the variability and 
predictability of fluctuations. Entropy (Shannon entropy) is related to 
the complexity of the deterministic structure of the system. It 
corresponds to the probability that a diagonal line of the recurrence 
plot has precisely its length. It is a measure related to determinism but 
gives us more details about the complexity of the variability of the 
data. For a more detailed description, the interested reader can review 
the appendix, which contains a mathematical description of the RQA 
and its measures mentioned here (Supplementary Appendix A).

To evaluate the temporal structure of the pupil diameter 
fluctuations (i.e., whether it is closer to Brownian or 1/f pink noise), 
we  performed a Power Spectral Density (PSD) using Welch’s 
method with a sampling frequency of 50hz. This analysis was 
performed for all subjects in the same windows used in the RQA 
(500 data points and steps of 100). For pink noise, if plotted on a 
log–log scale, the logarithmic power function follows a straight line 
with slope − 1. In contrast, the Brown noise is a line with a slope of 
−2. White noise has a slope of 0 (Stadnitski, 2012). Thus, the slope 
of the spectral power was estimated in a log–log scale for each 
subject and each window. A brief mathematical description of the 
PSD and the Welch method is described in the appendix 
(Supplementary Appendix A).

In addition, to explore whether it is possible to detect differences 
with traditional measures of central tendency, we calculated the group 
average in each window and the average of the standard deviation of 
each group and window.
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For each measure mentioned (recurrence ratio, determinism, 
entropy, spectral power density estimate, average per window, and 
standard deviation per window), a two-way mixed ANOVA was 
performed, with the measure as the dependent variable, solving and 
the non-solving group as the between-subjects and the windows as the 
within-subjects. Post-hoc tests were performed, if appropriate, with 
the Bonferroni test.

Performance analysis

One of our study’s primary aims was to replicate prior 
investigations’ findings using our adapted version of the 8-coin task. 
This task enabled us to be in line with insight theories. The separate 
presentation of coins facilitates chunk decomposition, which is 
impeded when coins are presented together. Additionally, presenting 
3D cues, where one coin is placed on top of another and slightly 
misaligned, promotes constraint relaxation. When coin configurations 
are presented separately and with 3D cues, it enhances the probability 
of finding the correct solution. Therefore, our 2-by-2 design should 
impact the proportion of correct responses, time to complete the task, 
and the number of attempts made by participants.

Regarding performance, three dependent variables were selected: 
the task result (the participant solved or did not solve the problem), 
the total time spent completing the task (in seconds), and the number 
of attempts before desisting or solving the problem. These variables 
were analyzed by a 2-by-2 factorial ANCOVA, in which grouping 
(grouped versus ungrouped) and dimensionality (presence of a 3D cue 

versus only 2D cue) were the between-subjects factors. The children’s 
age was selected as a covariate.

Results

Performance

The results showed that ungrouped coins led to a higher 
proportion of correct responses (M = 0.515) compared to grouped 
coins (M = 0.224), [F (1, 62) = 8.345, p = 0.005, ηp

2 = 0.12]. Similarly, the 
use of 3D cues resulted in a higher proportion of correct responses 
(M = 0.476) compared to 2D cues (M = 0.263), [F (1, 62) = 4.59, 
p = 0.036, ηp

2 = 0.07]. However, no interaction effect was observed 
between grouping and dimensionality [F (1, 62) = 1.579; p = 0.214].

The analysis also revealed that children took less time to solve the 
problem with ungrouped coins (M = 715.87 s) compared to grouped 
coins (M = 1132.15 s), [F (1, 62) = 14.175, p = 0.0001, ηp

2 = 0.192]. There 
were no significant effects of dimensionality [F (1, 62) = 2.834; p = 0.10] 
or grouping-dimensionality interaction [F (1, 62) = 1.5831; p = 0.213] 
on solution time.

The number of attempts was not significantly affected by grouping 
[F (1, 62) = 2.54, p = 0.116], dimensionality [F (1, 62) = 0.685, p = 0.411], 
or dimensionality-grouping interaction [F (1, 62) = 0.348, p = 0.558].

The results showed significant associations between age and three 
variables: proportion of correct responses [F (1, 62) = 14.487, p = 0.000, 
ηp

2 = 0.189], solution time [F (1, 62) = 4.086, p = 0.048, ηp
2 = 0.062], and 

number of attempts [F (1, 62) = 4.536, p = 0.037, ηp
2 = 0.068]. 

FIGURE 3

Example of data preprocessing. (A) Shows the original raw data. The red dots represent the outliers detected by the Hampel filter. (B) Shows the data 
after applying the filter. (C) Shows the series with the missing data interpolated. The red dots correspond to the interpolated points. (D) shows the 
normalized time series.
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Specifically, as age increased, there was an increase in the proportion 
of correct responses (r = 0.423; p = 0.0001) and a decrease in solution 
time (r = −0.264; p = 0.031) and the number of attempts (r = −0.289; 
p = 0.018). Figure 4 displays the estimated means while controlling for 
the effect of age.

In sum, even after controlling for age statistically, grouping and 
dimensionality had independent effects on finding the correct solution 
and the solution time. Specifically, the proportion of correct responses 
increased, and solving times decreased when the coins were 
ungrouped or when 3D cues were utilized. However, no interaction 
effect was observed between clustering and dimensionality.

Our results provide evidence that our adapted version of the 
8-coins task produces results consistent with previous research. 
Specifically, our findings support the positive impact of using 3D cues 
and ungrouping the coins on task performance, which were observed 
not only in the proportion of correct responses but also in the time 
taken to complete the task and the number of attempts made.

Pupil diameter fluctuations

Two groups of children were formed depending on who solved 
the task. Forty-three children did not solve the task (64.2%) and spent 
an average of 20 min and 24 s (SD = ±5 min approximately) trying to 
find the solution until they gave up. In contrast, 24 children solved the 
task (35.8%), spending an average of 6 min and 22 s (SD = ±5 min 
approximately) to find the solution.

We calculated four measures, Entropy (ENT), recurrence ratio 
(RR), determinism (DET), and Beta scaling exponent (β), for each 
participant in the last 56 windows, each lasting around 10 s, with an 
8-s overlap with the next window. A mixed ANCOVA was used to 
analyze the data, with the group solvers versus no-solvers being the 
between-subjects factor and the 56 windows being the within-subjects 
factor. The model included children’s age as a covariate (refer to 
Figure 5).

Regarding ENT (Figure 5, Panel A), the solver group had a lower 
average than the non-solver group [F (1, 64) = 10.271; p = 0.002; 
ηp

2 = 0.138]. There was also a significant group-windows interaction 
effect [F (55, 3,520) = 2.960; p = 0.0000; ηp

2 = 0.044], indicating that 
children who solved the problem had lower ENT than those who did 
not, specifically in 24 windows, from 47 to 39 and from 25 to 11. The 
analysis did not reveal any effect of children’s age on ENT [F (1, 
64) = 1.068; p = 0.305] or windows [F (55, 3,520) = 1.064; p = 0.349] or 
any significant windows-age interaction [F (55, 3,520) = 1.135, 
p = 0.232]. These findings suggest that the amount of uncertainty or 
randomness in the physiological signal, pupil diameter, increases in 
the solver group before children find the solution.

In terms of DET (Figure 5, Panel C), only a significant group-
windows interaction effect was detected [F (55, 3,520) = 1.959; 
p = 0.000; ηp

2 = 0.030], indicating that the solver group had lower DET 
than the not-solver group in 5 windows, from window 22 to 18. The 
analysis also revealed that children’s age was associated with DET [F 
(1, 64) = 5.27, p = 0.025]. However, the analysis did not find any 
significant effects of groups [F (1, 64) = 1.031, p = 0.314], windows [F 
(55, 3,520) = 0.701, p = 0.954], or windows-age interaction [F (55, 
53,520) = 0.716, p = 0.943].

In terms of RR (Figure 5, Panel E), the solver group had a 
lower average than the non-solver group [F (1, 64) = 4.227; 
p = 0.044; ηp

2 = 0.062]. There were no differences among windows 
[F (55, 3,520) = 0.619, p = 0.988], and no significant windows-
groups or windows-age interaction effects [F (55, 3,520) = 1.201, 
p = 0.148 and F (55, 3,520) = 0.588, p = 0.993, respectively]. 
Children’s age had no significant effect on RR [F (1, 64) = 1.219, 
p = 0.274].

In Figure 5, Panel B, we examined the β scaling exponent and 
found that there were no significant effects related to children’s age [F 
(1, 64) = 3.280; p = 0.075], group [F (1, 64) = 0.29, p = 0.592], windows 
[F (55, 3,520) = 0.709, p = 0.949], windows-group interaction [F (55, 
3,520) = 1.148, p = 0.213], or windows-age interaction [F (1, 
64) = 0.756, p = 0.908]. Furthermore, it is worth noting that the beta 

FIGURE 4

Mean and standard error of task-solving ratio (A), duration or time to complete the task in seconds (B), and the number of attempts (C) for each coin 
grouping condition and each coin dimensionality condition. The age of the participants was controlled as a covariate. Although no significant 
interaction effects were observed, a subsequent analysis of simple effects, employing the Bonferroni test, revealed that when examining grouped 
coins, the solving rate was lower, and the duration was longer for 2D cue configurations compared to 3D cues configurations. The asterisk indicates 
significant differences.
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values observed in each window fell within a range of −1.7 to −2.0, 
close to the range associated with Brownian noise.

We also investigated whether nonlinear analysis can detect 
changes that traditional measures, such as the mean and standard 
deviation, are unable to detect. In Figure 5, Panels D and F, we analyzed 
the mean average and the average standard deviation of pupil 
diameter, respectively. For the mean average (Figure  5, Panel F), 
we found no interaction effect [Fs (55, 3,520) ≤ 1.215; ps ≥ 0.135], and 
there were no significant differences among windows [F (55, 
3,520) = 0.622, p = 0.987] or between groups [F (1, 64) = 0.008, 
p = 0.931]. The children’s age, as a covariate, had no effect [F (1, 
64) = 0.129, p = 0.720]. Regarding the average standard deviation of 
pupil diameter, we found that the solver group had a higher average 
than the non-solver group [F (1, 64) = 26.104; p = 0.000; ηp

2 = 0.290]. 
However, no interaction effects were observed [Fs (55, 3,520) ≤ 1.224; 
ps ≥ 0.125], and there were no significant differences among windows 
[F (55, 3,520) = 0.686, p = 0.963]. The children’s age, as a covariate, had 
no effect [F (1, 64) = 1.038, p = 0.312].

The findings suggest that the children who successfully solved the 
problem displayed higher entropy in their pupillary diameter 

fluctuations than those who did not. This difference was observed 
between 92 and 20 s before the end. The determinism also detected 
group differences between 86 and 76 s before the end. Conversely, RR, 
β scaling exponent, average standard deviation, and average mean of 
pupil diameter fluctuations did not differentiate the groups at 
any time.

In summary, the study analyzed the pupillary diameter 
fluctuations of children solving an insight problem-solving task. It 
divided them into two groups: children who solved the task (solver 
group) and those who did not (non-solver group). The analysis was 
focused on four nonlinear dynamics measures: Entropy (ENT), 
recurrence ratio (RR), determinism (DET), and β scaling exponent. 
The study found that seconds before finding the solution, the solver 
group had a lower average of ENT and DET than the non-solver 
group. These results indicate that the solver group had more 
uncertainty and less predictability than the non-solver group. The 
results suggest that RQA measures can detect changes that means and 
standard deviations fail to detect. Finally, two findings are noteworthy 
regarding the β scaling exponent. Firstly, it failed to detect any 
significant differences between the solver group and the non-solvers 

FIGURE 5

Comparisons of the last 120 s of those who did and did not solve the task on different metrics. These metrics were computed in overlapping windows 
of 500 data points, moving 100 data points at each step. (A) Shows the average entropy by group and window calculated in the RQA. (C,E) Shows the 
average determinism and recurrence rate (RQA metrics). (B) Shows the average Power Spectral Density slope estimate for each group in each window. 
(D) Shows the average per group of normalized pupillary diameter fluctuations in each window. (F) Shows the standard deviation by group and 
window. The vertical lines represent the standard error.
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group. Secondly, the values of the said exponent were closer to 
Brownian noise than to 1/f pink noise.

Discussion

The main goal of our study was to test if pupillary diameter 
fluctuations could distinguish between children who successfully 
solved the adapted 8-coins insight task and those who did not, using 
analyses associated with dynamical systems. Our key finding was that 
before solving the task, the pupils of the children who successfully 
solved the problem showed significant differences. In terms of entropy, 
such differences appeared between 102 and 86 s, and in between 58 
and 30 s. In terms of determinism these differences were seen between 
52 and 44 s compared to the unsuccessful group. After this period, 
pupil fluctuations between the two groups became similar again. 
Moreover, the recurrence ratio measure revealed that the pupillary 
diameter fluctuations of children who successfully solved the task had 
a lower probability of recurrence during all the measure trajectory 
than those who did not solve the task.

In contrast, the beta exponent of the PSD did not show any 
differences between the two groups. Additionally, the estimated 
exponents for each of the 56 windows indicated that the values 
fluctuated within the range of what is known as Brownian Noise. It is 
worth noting that when comparing both groups using conventional 
statistics (mean and standard deviation), we did not find apparent 
differences as we did with RQA measures (DET and ENT).

During the 8-coin task, each trial involves the child observing and 
manipulating coins on a surface to find the correct solution. These 
action-perception chains initially fail and introduce uncertainty into 
the system, which cannot be dissipated using the system’s existing 
structures. Consequently, the system is compelled to reorganize itself 
and find a new structure that can handle the uncertainty more 
efficiently. From this perspective, solving an insight problem reflects 
the emergence of a new structure capable of managing a high degree 
of uncertainty. Our results support this view, as the pupil diameter 
fluctuations associated with cognitive functioning, as suggested by 
Hess and Polt (1960, 1964) and Mathôt (2018), were linked to changes 
in entropy.

However, the most important finding occurs between seconds 58 
and 30 (Windows 25 and 11), where an entropy peak was appreciable 
in the group that solved the problem. During that time segment, the 
pupil of this group exhibited greater randomness, which was 
accompanied by less predictability in the measure put forward by 
Dixon and Bangert (2002), Dixon and Dohn (2003), Stephen et al. 
(2009), Stephen and Dixon (2009), and Dixon et  al. (2010). They 
proposed that changes in entropy are related to self-organization within 
the system and reflect a transition from one state to another (Kugler 
and Turvey, 1988). In the case of insight, the self-organization of a new 
cognitive structure leads to its emergence. External factors can 
introduce instability into a system, causing an increase in entropy. As 
entropy increases, the interaction between perceptual and motor 
mechanisms promotes adopting a new state that can cope with 
instability and uncertainty and restore order (Bak, 1996; Jensen, 1998). 
Thus, the emergence of insight depends on the continuous interaction 
of various motor and perceptual components with contextual elements 
and aspects of the 8-coin task. A new pattern or structure emerges at a 
certain level of disorder, making it possible to solve the task.

Regarding the PSD per window, the Beta scaling exponent (β) of 
the solvers and the non-solvers groups did not differ throughout the 
windows. In fact, β scaling exponent of both groups moved 
systematically in the Brownian noise spectrum, far from 1/f pink noise 
(Gilden et al., 1995). This kind of noise has been previously discovered 
in pupil diameter fluctuations (Moon et al., 2014; Kim and Yang, 2017).

Even when 1/f pink noise has been detected in different types of 
tasks such as visual attention (Kello et  al., 2007), time estimation 
(Gilden et al., 1995; Holden, 2005), rhythmical aiming (Wijnants et al., 
2012a,b), automatic response (Gilden, 1997; Beltz and Kello, 2006), 
mental rotation (Gilden, 2001) and problem-solving (Dixon et al., 
2010), the interpretation of such noise remains under discussion. 
Some researchers have argued that fractal patterns close to 1/f-noise 
in behavioral and physiological responses show that the boundaries of 
the system become less rigid, allowing various processes to operate at 
different timescales to exhibit similar patterns of variability for a 
period of time and eventually giving rise to the formation of a new, 
organized structure (Bak, 1996; Jensen, 1998; for an alternative 
interpretation, see Wagenmakers et  al., 2004, 2005; Bogartz and 
Staub, 2012).

After examining the results, a question that arises is why only 
entropy and determinism allowed us to find differences between 
groups. Fractal exponents are influenced by the interplay between 
internal and external constraints in a task (van Orden et al., 2003; 
Likens et al., 2015). Dixon et al. proposed that the appearance of 1/f 
noise is linked to agent-environment dynamics (Bak, 1996; 
Chemero, 2009). These fractal patterns would reflect the healthy 
functioning of organisms (Hausdorff et al., 1995; Goldberger et al., 
2002). Therefore, the fact that both groups exhibited β exponents 
close to Brownian noise could indicate a short-term coordinated 
activity between motor and perceptual processes rather than a long-
range correlation. Moreover, it could be  argued that pupillary 
diameter fluctuations have a less flexible functioning compared to 
other variables, such as angular velocity, in which individuals can 
demonstrate greater flexibility and dexterity as the task is 
practiced repeatedly.

This study showed that the pupil diameter fluctuations of both 
groups exhibited Brownian noise, and noticeable fluctuations of 
entropy and determinism were observed in the successful group. The 
reason for this discrepancy remains unclear, and it is possible that the 
8-coin task induced a different type of variability in pupil diameter 
fluctuations, which may reflect the unique cognitive demands of 
this task.

It is worth mentioning that conventional statistics (average and 
standard deviation) failed to detect significant differences between 
groups at specific windows. Therefore, the advantages of Recurrence 
Quantification Analysis (RQA) in these cases are evident (Marwan 
and Kurths, 2002; Shockley, 2005; Orsucci et al., 2006; Marwan et al., 
2007; Bastos and Caiado, 2010; Ngamga et  al., 2016). RQA is a 
powerful tool to identify complexity and temporal structure patterns 
in time series data, particularly when the underlying dynamics are 
poorly understood or when traditional statistical methods are not 
sensitive enough to detect subtle differences. In this sense, our study 
adds to the growing body of literature highlighting the value of RQA 
as a complementary approach to conventional statistics in analyzing 
complex time series data.

Overall, our findings partially support the direction proposed by 
Dixon and colleagues, suggesting that human beings (in this case, 
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children) may experience the self-organization of a novel and effective 
response pattern during the resolution of insight tasks. Specifically, 
our results indicate that participants who successfully solved the task 
exhibited distinct patterns of entropy and determinism in their pupil 
diameter fluctuations before finding the solution, consistent with the 
behavior expected from self-organizing systems.

However, it remains to be determined whether beta scalar exponents 
can reliably distinguish individuals who successfully solve the task from 
those who do not. Furthermore, it is unclear whether fractality is a 
characteristic that applies equally to all participants when solving insight 
tasks, or if it may vary depending on the specific nature of the problem. 
These questions warrant further investigation in future studies.
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