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Chapter 1

Introduction

Inferring network topologies of interacting units from temporal data is a stat-
istically challenging task in many scientific disciplines. The goal is to learn the
dependencies between the units from the data and to represent them in form of a
network. A topical example is the field of computational system biology, where
one of the major goals is to learn cellular networks, such as gene regularity tran-
scription networks (see, e.g., [18]) and protein signaling pathways (see, e.g., [51].)
Further examples include neural information flow networks [60] and ecological
networks [2].

One class of models that has been widely applied to deal with this challenge, is
the class of dynamic Bayesian network (DBN) models. The underling assumption
is that the regulatory processes are homogeneous, so that DBNs assume the
network interaction parameters to stay constant in time. For many real-world
applications, this homogeneity assumption is too restrictive and can lead to wrong
conclusions. To address this shortcoming, non-homogeneous dynamic Bayesian
networks (NH-DBNs) have been proposed in the literature. Section 1.3 of this
chapter gives an overview to different types of NH-DBNs and also discusses their
advantages and disadvantages.

1.1 Static and dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) are a popular class of models for learning
the dependencies between random variables from temporal data.1 Unlike in static
Bayesian networks (BNs), a dependency between two random variables X and
Y is typically interpreted in terms of a regulatory interaction with a time delay. A
directed edge from variable X to variable Y , symbolically X → Y , indicates that
the value of variable Y at any time point t depends on the realisation of X at the
previous time point t− 1. Therefore, in DBNs, since all interactions are subject to
a time lag the network does not have to be acyclic.

1DBNs extend standard static Bayesian networks (BNs) with the concept of time.
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1.2. Network inference 2

Typically, various variables X1, . . . , Xk have a regulatory effect on a target Y ,
and the relationship betweenX1, . . . , Xk and Y can be represented by a regression
model that takes the time lag into account. E.g., if the time lag is one time point,
the regression model takes the form:

yt = β0 + β1x1,t−1 + ...+ βkxk,t−1 + ut (t = 2, . . . , T ) (1.1)

where T is the number of time points, yt is the value of Y at time point t, xi,t−1 is
the value of covariate Xi at time point t− 1, β0, . . . , βk are regression coefficients,
and ut is the “unexplained” noise at time point t.

1.2 Network inference

In dynamic Bayesian network (DBN) applications there are usually N domain
variables Y1, . . . , YN and the goal is to infer the covariates of each variable Yi. As
the covariates can be learned for each Yi separately, DBN learning can be thought
of as learning the covariates for a set of target variables {Y1, . . . , YN}. There are
N regression tasks, and in the i-th regression model, Yi is the target variable
and the remaining N − 1 variables take the role of the potential covariates. The
goal is to infer a covariate set πi ⊂ {Y1, . . . , Yi−1, Yi+1, . . . , YN} for each Yi. From
the covariate sets π1, . . . , πN a network can be extracted. The network shows
all regulatory interactions among the variables Y1, . . . , YN . An edge Yj → Yi
indicates that Yj is a covariate of Yi, i.e. that Yj ∈ πi. In the terminology of
DBNs Yj is then called a regulator of Yi. All variables in πi are regulators of Yi
(i = 1, . . . , N ).

1.3 Non-homogeneous DBNs (NH-DBNs)

The conventional assumption in dynamic Bayesian network models (DBNs) is
that the regulatory relationships are homogeneous, so that the network para-
meters do not change in time. That is, the regression coefficients β0, . . . , βK in
Equation (1.1) stay constant across all time points (t = 2, . . . , T ). Thus DBNs infer
the network structure along with one single set of network parameters, and those
parameters then apply to the whole time series. This homogeneity assumption is
very restrictive and can lead to wrong results and conclusions. Therefore, DBNs
cannot deal with non-homogeneous regularity processes, which often arise in
systems biology. For example in a cellular network, the strength of the regulatory
interactions are often exposed to (unobserved) external factors, such as cellular,
environmental and/or experimental conditions (see, e.g., [8]), that influence the
interactions. This renders the traditional DBNs inappropriate for most of the
applications in systems biology. Therefore non-homogeneous dynamic Bayesian
network models (NH-DBNs) have been proposed (see, e.g., [37]). NH-DBNs are
a powerful statistical tool and do not make use of the homogeneity assumption.
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The concept of non-homogeneity leads to time varying network parameters
and/or time varying network structures. Therefore, NH-DBNs can be divided
into two conceptual groups: NH-DBNs that allow only the network parameters to
vary in time (see, e.g., [23]) and NH-DBNs that also allow the network structure
to be time-dependent, see, e.g., [49], [38] or [14]. A statistical problem is that gene
expression time series are often short so that NH-DBNs with time-dependent
network structures are over-flexible and lead to inflated inference uncertainties.
With regard to our biological applications throughout this thesis, we therefore
focus on NH-DBNs which only allow the network parameters to change.

NH-DBNs with time-varying network parameters have been implemented
with various allocation models to divide the data into disjoint data subsets:

• DBNs have been combined with free mixture models (MIX); see, e.g., [34]
or [26].

• DBNs have been combined with hidden Markov models (HMM); see, e.g.,
[62] or [22].

• DBNs have been combined with multiple changepoint processes (CPS). see,
e.g., [38] or [23].

The models infer the data segmentation, the joint network structure and the
segment- or component-specific interaction parameters altogether from the data.
In this thesis we focus on changepoint-divided (CPS) NH-DBNs, which have
become the most widely applied NH-DBNs.

1.3.1 Changepoint-divided NH-DBNs
Changepoint-divided (CPS) non homogeneous dynamic Bayesian networks (NH-
DBNs) models infer changepoints, which divide the data into disjunct segments.
The data within each segment are modeled with linear regression models. There
is a shared network structure among segments, and the segment-specific network
parameters are learned for each segment separately. In typical applications in
systems biology these NH-DBNs divide a short time series into even shorter
segments, containing only a few data points. Learning the network parameters
for each segment separately (conventional ‘uncoupled’ NH-DBN models) see,
e.g. [38], then inevitably leads to over flexibility and inflated inference uncer-
tainties. Moreover, they do not incorporate the reasonable prior assumption that
neighbouring segments are often more likely to have similar network interaction
parameters than distant segments.

To address these bottlenecks, more realistic models which allow for gradual
adaptations of the network interaction parameters, have been proposed. E.g., the
frequentistic models, proposed by [3], [36] and [35]. Those models make use of
L1-regularized regression models (‘LASSO’) for the network parameter inference,
and they employ a second L1 regularization term to penalize dissimilarities
between network parameters of neighbouring segments. In those frequentistic
models inference is based on penalized maximum likelihood approaches, and the
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fixed regularization parameter has to be optimized by cross-validation or in terms
of the Bayesian Information Criterion (“BIC”). Bayesian models with coupling
mechanisms between the segment-specific parameters have also been proposed.
In [25] it was proposed to globally couple the segment-specific parameters. The
key idea is to treat the segments as interchangeable units and to impose a shared
hyperprior onto the prior expectations of the segment-specific parameters. In a
complementary work ([24]) it was proposed to sequentially couple the parameters.
The fully (sequentially) coupled model was developed to keep the network
parameters of each segment similar to those of the previous segment. Here
the parameters within segment h obtain as prior expectations their posterior
expectations from the preceding segment h − 1, and the coupling strength i.e.,
the variance of the network parameter priors (the similarity of the regression
coefficients), is regulated by a coupling hyperparameter λ. This model can thus be
seen as a Bayesian counterpart of the frequentistic models, mentioned above. The
Bayesian models are inferred with Reversible Jump Markov Chain Monte Carlo
(RJMCMC) simulations [21], and a comparative evaluation study of network
reconstruction methods in [1] showed that the Bayesian models tend to reach
higher network reconstruction accuracies than the frequentistic models.

1.3.2 The concept of parameter coupling

Parameter coupling can lead to significantly improved network reconstruction
accuracies when the segment-specific parameters are similar, as shown in
[24] and [25]. However, recently we have found that coupling can become
counter-productive when the segment-specific parameters are dissimilar. The
reason for that is that neither the sequential nor the global coupling scheme has
an effective mechanism for uncoupling. When the segment-specific parameters
are dissimilar, coupled NH-DBNs can only reduce the coupling strengths by
making the parameter priors vague. This renders them significantly inferior to
NH-DBNs without any coupling mechanism. Moreover, the fully coupled model
suffers from another serious bottlenecks: The model couples all neighbouring
segments (h − 1, h) with the same coupling strength. That is, it possesses only
one single coupling hyperparameter λ which is shared among all segments h > 1
and all covariates.2 To shed more light onto this, we note that both coupling
mechanisms have been designed such that if a node A is regulated by a set of
other nodes, e.g. B → A← C, then both edges have to be coupled with the same
strength across all segments.3 For many real-world applications this is unrealistic.
E.g., the regulatory effect of B on A (i.e., the parameter associated with B → A)
can stay similar, while the regulatory effect of C on A can be subject to major
changes. To re-use a traffic flow analogy from [48]: The traffic flow on the roads

2The models from [3], [36] and [35] suffer from the same drawbacks. Those models also possess
only one single regularization (‘tuning’) parameter which determines the similarity of the network
parameters among segments. The coupling strength between segments can neither vary over time
nor is there any mechanism for uncoupling segments.

3We will therefore also refer to these models as fully coupled NH-DBNs.
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is different during rush hours and off-peak times. But rush hours usually do
not affect the traffic flow on all roads. Typically there are susceptible roads with
tailbacks during rush hours, while the traffic demand on other roads might stay
constant.

1.4 Another conceptual problem

In many applications in systems biology, we encounter data that are collected
under different experimental conditions. Instead of one single (long) time series,
which can be divided into segments with natural temporal order, there are K
(short) time series. These individual time series k = 1, . . . ,K have no natural or-
der and are exchangeable units. That is, the available data are then automatically
divided into K unordered components (=the individual time series), and there is
no need for inferring the segmentation. In this situation it is often unclear a priori
whether the network parameters are actually component-specific or whether they
are constant across components. If the parameters stay constant, all data could be
merged and be analyzed altogether with one single homogeneous DBN model.
If there are component-specific parameters, then the data should not be merged
and it would be better to analyze each time series separately. In the latter case, it
can be useful to adapt the global parameter coupling scheme from [25], so as to
encourage the network parameters to stay at least similar among components.
The bottleneck of both approaches is that either the parameters are assumed to
stay constant or that the parameters are assumed to be component-specific. In
real-world applications there can be both types of parameters. E.g., if a variable
Y is regulated by two other variables, symbolically X1 → Y ← X2, then the regu-
latory interactions X1 → Y might not be affected by the experimental conditions,
while the regulatoryX2 → Y might be influenced by the condition, e.g. forK = 2
in terms of a linear regression model, one might have:

E[Y |X1 = x1, X2 = x2] =
{
αx1 + βx2 if k = 1
αx1 + γx2 if k = 2

(1.2)

A homogeneous model is then inappropriate, since it would ignore that the
regression coefficients β and γ are different. A non-homogeneous model comes
with the drawback that the same regression coefficient α has to be learned two
times separately. This is disadvantageous when the data within each component
(k = 1, 2) are sparse and uninformative.

1.5 The aim of this thesis

To summarize what has been discussed in the previous sections, Figure 1.1 shows
a graphical overview of the various NH-DBN models. In this thesis, we put our
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focus on the sequential and global coupling scheme and show how the coupled
models can be improved, so as to address the above-mentioned drawbacks. We
propose four novel non-homogeneous dynamic Bayesian network (DBN) models,
which are more flexible and thus have the potential to capture the underlying
interactions more accurately than the earlier proposed models.

1.6 Outline of thesis contribution

This thesis is organized as follows:
In chapter 2, we propose two new NH-DBN models to fix the deficits of the

fully (sequentially) coupled NH-DBN model from [24]. The partially segment-
wise coupled model can be seen as a consensus model between the uncoupled
model and the fully coupled model. It has the uncoupled and a sequentially
coupled NH-DBN models as limiting cases: If it couples all segments, it effect-
ively becomes the fully coupled model. If it uncouples all segments, it effectively
becomes the conventional uncoupled model. Moreover, we propose the general-
ized coupled model, which is a generalization of the fully sequentially coupled
model. Like the fully sequentially coupled model, the new model does not have
any option to uncouple, but it possesses segment-specific coupling parameters
and allows for different coupling strengths between segments. We will demon-
strate that the partially segment-wise coupled model can lead to significantly
improved network reconstruction accuracies, while we do not see any significant
improvements for the generalized coupled model. In chapter 3 we therefore have
a closer look the generalized coupled model and refine it.

In chapter 3, we refine the generalized fully coupled model. In particular,
we impose a hyperprior onto the second hyperparameter of the coupling para-
meter prior to allow for more information-exchange among the segment-specific
coupling strengths.

In chapter 4, we present a novel partially edge-wise coupled model. Unlike
the partially coupled model from chapter 2, this model infers for each individual
edge whether the associated parameters should be coupled or stay uncoupled
across the segments.

In chapter 5, we introduce another consensus model, which we refer to as
a partially NH-DBN model. This model has been developed for the situation
described in Section 1.4. The new model aims to infer the best trade-off between
a homogeneous model (with constant parameters) and a non-homogeneous
model (with component-specific parameters). In this chapter we also propose a
Gaussian process based approach to deal with non-equidistant measurements.
The (non-homogeneous) dynamic Bayesian network models assume that the
domain variables have been measured at equidistant time points. For applications
where this assumption is violated, we propose to employ a Gaussian process to
predict the values at equidistant data points.

Chapter 6 presents a study, which is independent to those presented in the
previous chapters. In chapter 6 we perform a comparative evaluation study
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Figure 1.1: Overview of non-homogeneous dynamic Bayesian networks (NH-
DBNs). We consider NH-DBNs whose parameters vary in time, and we use a multiple
changepoint process (CPS) to segment the data into segments.

on popular non-homogeneous Poisson models for count data. For this study
the standard homogeneous Poisson model (HOM) and three non-homogeneous
variants, namely a Poisson changepoint model (CPS), a Poisson free mixture
model (MIX), and a Poisson hidden Markov model (HMM) are implemented in
both conceptual frameworks: a frequentist and a Bayesian framework. This yields
8 models in total, and the goal of this chapter is to shed some light onto their
relative merits and shortcomings. The first major objective is to cross-compare
the performances of the four models (HOM, CPS, MIX and HMM) independently
for both modelling frameworks (Bayesian and frequentist). Subsequently, a
pairwise comparison between the four Bayesian and the four frequentist models is
performed to elucidate to which extent the results of the two paradigms (‘Bayesian
versus frequentist’) differ. The evaluation study is performed on various synthetic
Poisson data sets as well as on real-world taxi pick-up counts, extracted from the
recently published New York City Taxi (NYCT) database.

Several parts of this thesis have previously been published in form of two
journal articles, one in press, and four conference papers. One more paper has
been submitted. The references are:

• Shafiee Kamalabad, M., Heberle A.M., Thedieck K. and Grzegorczyk, M.
(2018) (accepted and in press):
Partially non-homogeneous dynamic bayesian networks based on Bayesian
regression models with partitioned design matrices. Bioinformatics, http:
//dx.doi.org/10.1093/bioinformatics/bty917, (chapter 5, see
[59]).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2018):
Hierarchical Bayesian piecewise regression model with partially edge-wise
coupled parameters. Submitted to Journal of Computational and Graphical
Statistics (chapter 4).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2018):
Improving nonhomogeneous dynamic Bayesian networks with sequentially

http://dx.doi.org/10.1093/bioinformatics/bty917
http://dx.doi.org/10.1093/bioinformatics/bty917
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coupled parameters. Statistica Neerlandica, 72 (3), 281-305 (chapter 3, see
[58]).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2018):
Non-homogeneous dynamic Bayesian networks with edge-wise coupled
parameters. Proceedings of the International Workshop on Statistical Mod-
elling, vol. 1, 270-275, Bristol, England (chapter 4, see [57]).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2018):
A new partially Coupled Piece-Wise linear Regression Model for statistical
network Structure Inference. Proceedings of the International Computa-
tional Intelligence methods for Bioinformatics and Biostatistics, page 30,
Caparica, Portugal (chapter 2, see [56]).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2017):
A sequentially coupled non-homogeneous dynamic Bayesian network
model with segment-specific coupling strengths. Proceedings of the In-
ternational Workshop on Statistical Modelling, vol. 1, 173-178, Groningen,
Netherlands (chapter 3, see [55]).

• Shafiee Kamalabad, M. and Grzegorczyk, M. (2016): A non-homogeneous
dynamic Bayesian network model with partially sequentially coupled net-
work parameters. Proceedings of the International Workshop on Statistical
Modelling, vol. 1, 139-144, Rennes, France (chapter 2, see [54]).

• Grzegorczyk, M. and Shafiee Kamalabad, M. (2016):
Comparative evaluation of various frequentist and Bayesian non-
homogeneous Poisson counting models. Computational Statistics, 32 (1),
1-33. (chapter 6, see [28]).
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