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CHAPTER 8

SUMMARY

Enterococci already seemed to emerge as a leading cause of hospital-associated infections 

around 1970-80 [1]. Especially E. faecium rapidly evolved as a successful nosocomial pathogen 

[2], thereby causing infections in seriously ill patients, such as haemato-oncology patients 

[3, 4]. Moreover, the emergence of vancomycin-resistant-enterococci (VRE) is mainly due to 

successfully hospital associated (HA) E. faecium lineages (clade A1) that have acquired the 

vanA and/or vanB gene [5].

In this thesis we aimed to gain more insight in the evolution and epidemiology 

of E. faecium as described in Chapters 2, 3 and 6. These insights showed that several 

improvements are necessary for targeted (vancomycin resistant) E. faecium diagnostics, 

infection prevention, antimicrobial stewardship and typing methods. In Chapters 2 and 4-7 

E. faecium are studied and 

applied and have shown to be of value for patient care.

Chapter 1 contains a general introduction on this thesis. The origin of the enterococci 

are described as well as the rise of E. faecium as a nosocomial pathogen.

Chapter 2 continues to describe the background and evolution of E. faecium. E. faecium 

has acquired a collection of successful traits and easily adapted to several conditions, which 

has shaped this microorganism as the ultimate nosocomial pathogen of today. Based on 

these insights, implications and recommendations for infection control are given of which 

the most important are: 1) E. faecium is a highly tenacious microorganism by nature, which 

make them highly resistant to desiccation and starvation. This leads to prolonged survival in 

hospital environments. Enforced cleaning and disinfection procedures are needed combined 

with strict infection prevention measures to prevent further transmission. 2) Genetic 

capitalism of E. faecium

and clonal expansion. This enormous genome plasticity makes that continuous awareness 

and epidemiological surveillance is needed to detect successful circulating strains and 

resistances to newer antibiotics and disinfectants.

In Chapter 3 we studied the prevalence and molecular epidemiology of ESBL/plasmid 

E. faecium (including 

VRE) in hospitals in the Northern Dutch-German border region. In addition, stool community 

samples from the Northern Netherlands were screened for the same resistant pathogens. 

Dutch hospitals showed a prevalence for ESBL/pAmpC, VRE and ARE (ampicillin resistant/
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HA E. faecium) of 6.1%, 1.3% and 23.6% respectively, whereas the prevalence in the 

community was 2.75%, 0.25% and 1.5%, respectively. The German hospital had an ESBL/

pAmpC prevalence of 7.7% and 3.9% for VRE. Genetic relatedness by core genome multi-

locus sequence typing (cgMLST) was found between two ESBL- Escherichia coli (E.coli) 

isolates from Dutch and German cross-border hospitals and between VRE isolates from 

different hospitals within the same region.

In Chapter 4 of this thesis, we aimed to identify risk factors for the development of 

an E. faecium bloodstream infection (BSI) in patients with haematologic malignancies. 

E. faecium, a combination of 

neutropenia and an abdominal focus, age >58 years, prolonged hospital stay (>14 days) and 

an elevated (C-reactive protein) CRP level (>125mg/L). Pre-emptive glycopeptide treatment 

can be applied to those haematology patients who are at high risk of developing an E. 

faecium

stewardship in terms of prudent use of glycopeptides which is helpful in controlling further 

spread of VRE.

In Chapter 5 a PCR-based method, the Xpert vanA/vanB assay, was evaluated and 

optimized for the detection of vanB VRE carriage. To overcome false-positive results of 

vanB genes from gut anaerobes, the PCR was performed on overnight incubated enriched 

broth. This brain heart infusion (BHI) broth contained amoxicillin (16mg/L), amphotericin B 

(20mg/L), aztreonam (20mg/L) and colistin (20mg/L). The use of the Xpert vanA/vanB assay 

on these broths resulted in a decrease of CT values for the majority of true-positive cases 

compared to the CT value obtained from direct faecal samples. For true-negative cases, the 

opposite was observed as expected. Additionally, adjusted CT cut-off values were used: a CT 

T value of >30 for true negative cases. Samples 

with CT

for detecting vanB VRE of 96.9%, 100%, 100% and 99.5%, respectively.

In Chapter 6 various examples of diagnostic evasion mechanisms of highly-resistant 

microorganism (HRMOs) are given, each accompanied with practical laboratory detection 

advices. For VRE in particular, vanB VRE can easily remain undetected in routine diagnostics. 

In addition to the fact that fecal VRE carriage often is detected in very low amounts, 

vancomycin resistance in vanB VRE is not always expressed. VanB-type VRE isolates 

An important pitfall in VanA-type VRE is that isolates can be phenotypically susceptible 
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to vancomycin due to silenced vanA genes. These phenotypes of VRE can easily lead to 

uncontrolled outbreaks. We advise a combination of phenotypic (vancomycin disk diffusion, 

use of chromogenic agars) and molecular diagnostic (PCR) strategies in the detection of 

VRE.

The use of whole genome sequencing (WGS) to analyse VREfm outbreaks is described 

in Chapter 7. A total of 36 representative isolates of which sequence data were available 

from VREfm outbreaks that occurred in the University Medical Center Groningen (UMCG) in 

2014 were typed by cgMLST by extracting the alleles from the WGS data. Additionally, vanB-

carrying transposons of all sequenced isolates were characterised. CgMLST divided the 36 

isolates into seven cluster types (CT); CT16 (n=1), CT24 (n=11), CT60 (n=1), CT103 (n=11), 

CT104 (n=8), CT105 (n=1) and CT106 (n=3). In addition, four different vanB transposon types 

were found. Within VREfm isolates belonging to CT103, two different vanB transposons were 

found, suggesting different outbreak events. On the contrary, VREfm isolates belonging to 

CT104 and CT106 harboured an identical vanB transposon, suggesting a single outbreak 

event. Clearly performing a combination of cgMLST and transposon analyses allows to 

investigate both clonal spread as well as the spread of mobile genetic elements (MGEs) 

which will lead to a better insight and understanding of the complex transmission routes 

in VREfm outbreaks.

CONCLUSION AND DISCUSSION

This thesis describes the evolutionary success of E. faecium, the rise of E. faecium infections 

as well as the emergence of VREfm worldwide. Based on the epidemiology and evolutionary 

insights we have come with practical tools and advices on different levels to withstand the 

further spread of successful hospital lineages of E. faecium.

Evolution and epidemiology of Enterococcus faecium

Concluding from several epidemiological studies, E. faecium has rapidly evolved as a suc-

cessful nosocomial pathogen in the last two decades. As described in Chapter 2, evolutionary 

studies show that the emergence of E. faecium -

ing to subclade A1. The genome of E. faecium

of successful adaptive traits, also known as genetic capitalism, E. faecium lineages belonging 

to the hospital clade A1 has become the ultimate nosocomial pathogen. First, it became clear 
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that HA infections due to E. faecium rapidly emerged worldwide, largely replacing E. faecalis 

infections. Second, VREfm colonization as well as infections emerged as well. Regarding the 

evolutionary history of E. faecium, we foresee that the evolution of E. faecium will not stop. 

This pathogen will remain a challenge in hospitals in years to come, asking for a multi-facet 

approach and (cross-border) collaboration to optimize diagnostics, infection prevention and 

treatment of VREfm infections.

In Chapter 3 of this thesis a secondary aim of the study was addressed: comparing 

the prevalence of AREfm and VREfm in the community and in hospitalized patients. No 

HA VREfm was found in the community samples. In addition, the number of AREfm in 

the community was low and only six ARE (6/400; 1.5%) were found, three of them being 

insertion sequence (IS) 16 positive. IS E. 

faecium [8, 9]. In contrast, 23.6% of hospitalized patients were colonized with AREfm 

(105/445), all positive for IS16. This AREfm colonization was associated with antibiotic 

use. Normally, community associated (CA) clade B E. faecium strains predominate and 

outcompete clade A strains in the antibiotic free GI tract of humans in the community [10]. 

Although our study was not designed to detect clade B E. faecium strains, it does supports 

E. faecium strains mainly occurs in a hospital 

environment. Acquisition through the hospital environment [11, 12] and antibiotic-induced 

outgrowth are both important factors herein. Especially the use of cephalosporin seems 

to be associated with AREfm [13, 14]. However also CA E. faecium strains are intrinsically 

resistant to cephalosporins. This implicates that there are additional effects [15] besides the 

antimicrobial effect of cephalosporins on the microbiome. Indeed, it is shown that there is 

also an immune response of the GI tract due to cephalosporins which makes that particularly 

clade A1 E. faecium are able to colonize the GI tract preceding antibiotic use [16].

As a result of its genomic plasticity, VREfm already developed several phenotypes 

Chapter 6. This allows VREfm to evade diagnostics in order to 

become even more successful. The exact proportion of these evading phenotypes compared 

to wild-type phenotypes is not exactly known. For example, reported proportions of low-

level vanB VRE carriage can range from 24.5% to 55% [17, 18]. Proportions of vancomycin 

vanA-positive, vancomycin-susceptible isolates can 

range from 15% in clinical and screening isolates in an outbreak setting [19] to 47% reported 

in sterile site isolates [20]. The therapeutic consequences of these evading phenotypes 

during antibiotic therapy are not exactly clear and depend on the chosen empirical therapy, 

but failure of therapy seems very likely in some of these phenotypes [21, 22].

8
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Tailor made Entercoccus faecium tools and advices

Antibiotic stewardship is a key factor in preventing antibiotic resistance. In order to prevent 

the further spread of VRE, one of the therapeutic tools is the stringent use of glycopeptides. 

In Chapter 4 of this thesis we aimed to develop a prognostic model in order to determine 

which haematology patients are at high risk of an E. faecium bloodstream infection (BSI) and 

in which empirical glycopeptide therapy should be given. Previous E. faecium colonization, 

risk factors were advanced age, prolonged hospitalization and elevated CRP-level. We are 

aware that our study was a single centre study and that some of the risk factors found may be 

E. faecium colonization has found to be 

study no patients were found with VREfm BSI, though this prognostic model could be used 

to predict VREfm BSI in our institute as well. In fact, another study developed a similar clinical 

model to predict which haematology patients would develop VRE BSIs guiding the empirical 

anti-VRE therapy [24]. Previous colonization, neutropenia and mucositis were also included in 

E. faecium in positive blood 

cultures has become possible [25] in routine diagnostics, also in our centre. This reduced the 

turnaround-time and had a major impact on antimicrobial stewardship [26]. However, our 

model is still of use in the critical period before positive blood cultures.

The ability to evade diagnostics may be considered as a success factor in the emergence 

of VREfm lineages. In Chapters 2 and 6 known evading VRE phenotypes are described, 

clinical challenges. For this it is important to combine state of the art phenotypic and 

molecular laboratory diagnostics. For the latter, rapid and accurate molecular diagnostics 

would be ideal. The Antibacterial Resistance Leadership Group (ARLG) invests in innovations 

in new diagnostics [27]. For example, rapid molecular diagnostic (RMD) platforms to detect 

genes conferring to resistance/susceptibility to Acinetobacter spp. has recently been 

evaluated [28]. Still, in general, studies are needed to assess how these new diagnostics 

should be implemented, how they perform and whether they are cost-effective. Detection 

of VRE can be a challenge since microbiological laboratories should be aware of resistance 

mechanisms that are not detected by routine diagnostics. Reporting of alarming evading 

recommendations. Second, laboratories should have the diagnostic tools available. 

Laboratories often have their own diagnostic arsenal with major differences between 
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laboratories. This does not necessarily have to lead to diagnostic evasion, but laboratories 

that do not have access to state of the art diagnostic tools are at risk. For example, low-

income countries might not always have access to molecular diagnostic tools.

In Chapter 5 vanB 

VRE, including those that can evade diagnostics because they express low vancomycin 

MICs. An important goal of VRE diagnostics is that it can produce rapid and reliable results 

for clinical decision making [29]. Direct PCR on faecal samples can often result in false-

negative results for vanB due to the presence of vanB genes from anaerobic bacteria residing 

in the gut [30, 31]. In this study, we adjusted the manufactures‘ guidelines concerning the cut-

off CT-values for positivity of their PCR assay. We used a cut-off CT

by PCR on enriched broths. For broths with CT-values between 25-30, we recommend to 

T-values of >30 appeared to be true-negative. Our study showed 

that this is a useful tool in outbreak situations, since clear infection prevention measures 

can be taken based on these results. As noted above, laboratories need to evaluate the 

performance of their diagnostic tools and adjust their algorithms if necessary. Indeed, also 

for our tool there are still some improvements that can be made. First, metronidazole could 

be added to the broth to also inhibit the amoxicillin-resistant anaerobic bacteria. Second, the 

Xpert vanA/B cartridges are quite expensive and could lead to enormous costs in case of an 

ongoing VRE outbreak. It would be worthwhile to explore the alternatives and, for example, 

to develop an in-house PCR.

In VRE outbreak situations, rapid and accurate typing is required to investigate the genetic 

relatedness between patients’ isolates. In Chapter 7, cgMLST was used to type VREfm 

outbreak isolates by extracting the data from WGS. Additionally, detailed characterisation 

of van-carrying transposons (mainly vanB) was performed to determine possible horizontal 

gene transfer. CgMLST provided a high discriminatory power in the epidemiological analysis 

of VREfm. Furthermore, transposon analysis was shown to have an additional value in the 

outbreak investigation and to be essential in cases where outbreaks are caused by the 

movement of particular MGEs. Since the acquisition of van genes can occur by different 

pathways, e.g by de novo acquisition from anaerobic gut microbiota [32] or through the 

exchange of large chromosomal fragments between VREfm and VSEfm [33], combining 

cgMLST and transposon analyses in VRE outbreaks is essential. Hereby both clonal spread 

as well as concomitant spread of MGEs is assessed which will lead to a better insight 

and understanding of the highly complex transmission routes during VREfm outbreaks. 

We are aware of the costs of WGS and the fact that not every laboratory has the ability to 

8
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implement it. Therefore, regional collaboration is crucial. Not only to share knowledge to 

combat resistance, but also to share experience on typing methods. In the end, this will be 

increased use of WGS worldwide and the improving sequencing technologies and analysis 

tools, the cost will decrease [34]. Furthermore, the use of WGS in outbreaks can lead to more 

targeted infection control measures and thereby become cost-effective [35].

FUTURE PERSPECTIVES

E. faecium

to environmental conditions and changes. E. faecium has become a hospital adapted patho-

gen in which evolution will never stop. This continuously evolution is seen on a large scale 

but also within the host. In hospitals in Australia and New Zealand a new endemic VREfm 

clone – sequence type 796- rapidly disseminated. Since the population structure of ST796 

VREfm remained very clonal, the authors suggest that this clone has a survival advantage 

in hospitals over its predecessors [36, 37]. Indeed, these clones seem to be more tolerant 

to hand-rub alcohols [38]. Not only new endemic clones further adapting to its environment 

seem to emerge, also resistance to last-line enterococcal drugs is starting to rise. Resistance 

to linezolid [39, 40] , daptomycin [41, 42] , tigecyclin [43-45] and quinupristin-dalfopristin [46, 

47] have been reported in E. faecium. Especially linezolid resistance seems to rapidly emerge 

in several countries [48-51]. Interestingly, cfr genes responsible for linezolid resistance are 

found in [51-53]. Like for vanB genes, E. faecium can acquire resistance 

genes from other species, of anaerobes in particular. Enterococci (predominantly E. faecium) 

and anaerobes may be left to dominate the microbiota after antibiotic treatment, for example 

cephalosporin’s, and then exchange their genomic material. This underlines the importance 

to continue further epidemiological and evolutionary studies in E. faecium. These evolutionary 

studies may give us insights how to tackle this organism. For example, for the ST796 clone, 

as well as the spread of MGEs should be investigated in E. faecium outbreaks. It would be of 

interest to investigate the presence of resistance genes in anaerobic bacteria and to determine 

which can be a potential donor for E. faecium.

Next to the efforts that need to be taken to control VREfm in which cross-border 

collaboration may play an important role, more research is needed to tackle the ongoing 

success of E. faecium. For example, the effect of administration of a (fecal) cocktail 
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containing microbiota clearing VREfm in humans colonised with VREfm would be interesting 

to investigate [54, 55]. This might reduce further transmission and dissemination of VREfm 

in hospitals. Also, innovations in the detection and typing of VREfm are needed. Examples 

during temporary lethal concentrations of antibiotics, without a change in their minimal 

hosts can create an opportunity for tolerance [56]. Antibiotic tolerance can affect multiple 

antibiotics and it facilitates the evolution to resistance [57]. Often secondary mutations 

involved in the bacterial stringent response are found [58]. Recently, it was found that E. 

faecium acquired mutations in the stringent response (RelA mutant) despite appropriate 

therapy within the bloodstream in an immunocompromised host [59]. As a consequence, 

this has led to antibiotic tolerance for linezolid, daptomycin and quinipristin-dalfopristin. 

Another example for within-host evolution, is the acquisition of (hetero)resistance to linezolid, 

daptomycin and vancomycin upon prolonged multidrug therapy, suggested to be caused by 

a novel fabF mutation encoding a fatty acid synthase [60]. These within-host studies have 

some important perspectives. First, laboratory diagnostics determining MICs may not be 

of the TD-test is that is promotes the growth of surviving bacteria in the inhibition zone once 

the antibiotic has diffused away. These are the tolerant and persistent bacteria. Second, 

once antibiotic tolerance or hetero-resistance has evolved, this could affect multiple other 

antibiotics, leaving no treatment options left. This asks for the clinicians awareness and the 

need to develop new antibiotics. Not only with antibiotics other targeting mechanisms [62] 

relA mutant E. faecium strains [59]. Last, observing the evolution 

of E. faecium, it is interesting to discuss whether the human environment (e.g. modern life, 

antibiotic use, hospital environment) has selected this successful pathogen or did it selected 

us human beings as the ultimate host in which it can continue his parasitic and ultimate 

evolutionary lifestyle.

8
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