Chapter 9

Summary

Nederlandse samenvatting
Summary

Under stress conditions such as scarce of nutrients, low oxygen levels, accumulation of cellular damage or pathogen invasion, cells use different mechanisms to reduce stress and survive. Autophagy is one of them. Autophagy, from two Greek words meaning “self-eating”, is a process that cells use to degrade parts of themselves in a controlled manner. This turnover is essential to eliminate unwanted components and structures, but also to obtain energy under starvation conditions. However, when this protective “shield” is compromised, cells become vulnerable. In fact, defects in autophagy are associated with numerous human diseases, from autoimmune and degenerative disorders to cancer.

But how does this process work? When autophagy is triggered, ATG proteins associate at specific intracellular areas, known as phagophore assembly sites (PAS), and orchestrate the formation of an initial cistern, the phagophore, which elongates while sequestering the cellular material that needs to be degraded. Closure of the phagophore leads to the formation of a vesicle that is called autophagosome, which then fuses with vacuoles/lysosomes. Within these organelles, hydrolases break down the delivered material and the resulting metabolites are used by the cell to form new components or as an energy source.

The autophagy process, the role of Atg proteins and the molecular mechanisms of autophagy are described in detail in Chapter 1. Levels of autophagy need to be well regulated, higher or lower levels than those required could have negative consequences for the cells. An overview of the main autophagy regulatory mechanisms, the physiological roles, and pathologies associated with defects in autophagy are also described in this chapter.

The cell is divided in different subcellular compartments that perform distinct functions and are delimited by a lipid membrane. The origin of the lipids constituting the autophagosome membrane is still far from being understood. In Chapter 2, together with Jana Sanchez-Wandelmer, we wrote a review that provides an overview about the knowledge that has been revealed through diverse studies, and we
provide plausible explanations for the different lipid sources used for the autophagosome formation.

The proteolytic activity of Atg4 allows Atg8 to get associated to the PAS, which is an essential step for autophagosome biogenesis. Once an autophagosome is formed, Atg4 removes Atg8 from the autophagosomal membrane promoting the fusion of these vesicles with the vacuole. Thus, Atg4 activity needs to be timely regulated to avoid halting autophagy. This thesis focused on unveiling the mechanisms underlying Atg4 regulation. In Chapter 3, I discovered that Atg4 associates to the PAS through Atg8 binding. This recruitment depends on a domain in Atg4, called APEAR, which is essential for Atg4 function in autophagy. I performed most of the experiments shown in this chapter. Along the same line, in Chapter 4, we found that Atg8 deconjugation by Atg4 is negatively regulated by the Atg1 kinase. Atg1 modifies a specific site of Atg4, blocking the binding to Atg8 and the cleavage of Atg8-PE from the autophagosome. This regulation is therefore important for normal autophagosome formation. In this study, I performed a thorough ultrastructure analysis to measure autophagy activity using transmission electron microscopy. I also generated numerous reagents (strains and plasmids) necessary for the realization of this work, and extensively discussed with Jana Sanchez-Wandelmer because of the interconnection between this chapter and chapter 3.

Atg9 is one of the first Atg proteins to be recruited to the PAS, and similarly to Atg4 and Atg8, is essential for autophagy. Atg9 exits the Golgi in vesicles that form a cytoplasmic pool, which can traffic to and from the PAS. In Chapter 5, I systematically investigated all the members of the core Atg machinery to determine which ones could also be involved in Atg9 trafficking. By combining genetics with fluorescence microscopy, I discovered new putative mediators of the Atg9 trafficking, which will allow new future studies to better and more completely understand Atg9 function and regulation in autophagy.

Autophagy is a mechanism that allows cells to adapt to starvation conditions. Cell adaptations, involve metabolic changes to spare energy and use it to maintain vital cellular functions. One of these adaptations is the change in lipid metabolism. In Chapter 6, I collaborated with
Siniosoglou group to study the mechanism underlying the lipid metabolic switch during nutrient limitation by carrying out all the ultrastructural analyses that are shown. Our work highlights the role of the yeast Pah1 phosphatase in lipid droplets formation. In Alzheimer’s disease (AD) lipid homeostasis is compromised. High levels of the lipid PC(0-16:0/2:0) are found in AD patients and this has a toxic effect on brain cells. In Chapter 7, I performed all the depicted electron microscopy analyses to investigated in collaboration with the Baetz group the effects of the accumulation of this lipid in yeast. We discovered lipid and signalling alterations at the plasma membrane that could explain the toxicity associated with AD. In Chapter 8, I summarize the most relevant outcomes of this thesis and discuss future perspectives.
Nederlandse samenvatting

Bij fysieke stress condities zoals een gebrek aan voedingsstoffen, een laag zuurstofniveau, opeenhoping van cellulaire schade of een invasie van pathogenen, gebruiken cellen verschillende mechanismen om de stress te verlagen en te overleven. Autofagie is een van deze mechanismen. Autofagie, komend van het griekse woord voor “zichzelf eten”, is een proces dat cellen gebruiken om bepaalde onderdelen van zichzelf op gecontroleerde wijze te ontmantelen. Dit proces is essentieel voor de eliminatie van ongewenste componenten en structuren. Wanneer dit beschermingsmechanisme echter is aangetast, kunnen cellen kwetsbaar worden. Defecten in het autofagie mechanisme worden geassocieerd met talrijke menselijke ziekten variërend van auto-immuun- en degeneratieve ziekten tot kanker.

Maar wat is de exacte werking van dit proces? Wanneer autofagie wordt geïnduceerd associëren ATG eiwitten aan specifieke intracellulaire gebieden genaamd *phagophore assembly sites* (PAS), alwaar deze verantwoordelijk zijn voor de formatie van een initiële cisterne, de fagofoor, die zich verlengt en hiermee het cellulaire materiaal isoleert dat ontmanteld moet worden. Het sluiten van de fagofoor leidt tot de formatie van een blaasje genaamd een autofagosoom, die zich vervolgens samenvoegt met de vacuolen/lysosomen. Binnenin deze organellen breken hydrolasen het materiaal af en de afbraakmetabolieten worden gebruikt door de cel voor de vorming van nieuwe componenten of als energiebron.

Het autofagie proces, de rol van ATG eiwitten en het moleculaire mechanisme voor autofagie worden in detail beschreven in *Hoofdstuk 1*. De mate van autofagie moet goed gereguleerd worden. Een te hoge of te lage mate van autofagie kan negatieve consequenties hebben voor de cellen. Een overzicht van de belangrijkste mechanismen ter regulatie van de autofagie, de fysiologische rollen, en pathologieën die geassocieerd worden met defecten in het autofagie mechanisme worden ook beschreven in dit hoofdstuk. In *Hoofdstuk 2* is in samenwerking met Jana Sanchez-Wandelmer een overzichtsartikel geschreven waarin de huidige kennis wordt samengevat die is verworven uit diverse studies. Hier worden tevens plausibele verklaringen gegeven voor de
verschillende lipide bronnen die voor de autofagosome formatie gebruikt worden.

The proteolytische activiteit van Atg4 maakt het Atg8 mogelijk om geassocieerd te worden aan de PAS, hetgeen een essentiële stap is voor autofagosome biogenese. Zodra een autofagosoom is gevormd, wordt Atg8 door Atg4 verwijderd van de autofagosomale membraan, waardoor het samenvoegen van deze blaasjes met de vacuole wordt mogelijk gemaakt. Activiteit van Atg4 moet exact op het juiste moment gereguleerd worden om te voorkomen dat de autofagie tot stilstand komt. Dit proefschrift concentreert zich op het ontrafelen van de mechanismen van de onderliggende Atg4 regulatie. In Hoofdstuk 3 staat mijn ontdekking beschreven dat Atg4 zich associeert aan de PAS middels Atg8 binding. Deze werving hangt af van een domein in Atg4, genaamd APEAR, die essentieel is voor het functioneren van Atg4 in autofagie. De auteur van dit proefschrift heeft het grootste deel van de experimenten die in dit hoofdstuk staan zelf uitgevoerd. In lijn hiermee staat in Hoofdstuk 4 beschreven hoe we gevonden hebben dat Atg8 deconjugatie door Atg4 negatief wordt gereguleerd door Atg1 kinase. Atg1 modificeert een specifieke positie op Atg4, waardoor de binding met Atg8 en de scheiding van Atg8-PE van de autofagosoom geblokkeerd wordt. In deze studie heeft de auteur van dit proefschrift, met behulp van transmissie elektron microscopie, een grondige ultrastructuur analyse uitgevoerd om de autofagie activiteit te meten. Tevens zijn talrijke reagentia (strengen en plasmiden) gegenereerd die nodig waren voor de realisatie van dit werk, welke ook uitgebreid besproken zijn met Jana Sanchez-Wandelmer vanwege de interconnectie tussen dit hoofdstuk en hoofdstuk 3.

Atg9 is een van de eerste Atg eiwitten die zijn gerekruteerd voor de PAS, en die net zoals Atg4 en Atg8 essentieel is voor autofagie. Atg9 verlaat de Golgi in blaasjes die een cytoplasmatische pool vormen die zich van en naar de PAS kunnen verplaatsen. In Hoofdstuk 5 heb ik systematisch alle onderdelen van het Atg mechanisme onderzocht om te kunnen bepalen welke onderdelen betrokken kunnen zijn bij het transport van Atg9. Door het combineren van genetica met
fluorescentiemicroscopie heb ik nieuwe vermeende mediatoren van Atg9 transport kunnen ontdekken, waardoor nieuwe studies een beter en completer beeld hebben om het functioneren en reguleren van Atg9 in autofagie te kunnen begrijpen.

Autofagie is een mechanisme waardoor cellen in staat zijn zich aan te passen op een tekort aan voedingsstoffen. Hierbij wordt door metabolische veranderingen energie gespaard waardoor de cel zijn vital cellulaire functies kan behouden. Een van deze aanpassingen is de verandering van het lipide metabolisme. In Hoofdstuk 6 staat het resultaat van de samenwerking met de Siniosoglou groep beschreven waarin we het onderliggende mechanisme beschrijven van de omschakeling van de lipide metabolisme gedurende voedingsbeperking, door middel van ultrastructuurele analyses die worden laten zien in dit hoofdstuk. Ons werk laat met name de rol van de gist Pah1 fosfaat zien bij de vorming van lipide druppels.

Bij de ziekte van Alzheimer (AD) is de lipide homeostase aangetast. Hoge concentraties van de lipide PC(O-16:0/2:0) zijn gevonden in Alzheimer patiënten, hetgeen een toxisch effect heeft op hersencellen. Alle uitgevoerde elektron microscopie analyses weergegeven in Hoofdstuk 7, zijn uitgevoerd door de auteur van dit proefschrift, waarmee in samenwerking met de Baetz groep de effecten van de opeenhoping van deze lipide in gist zijn onderzocht. We hebben lipide en signalering alteraties gevonden op het plasmamembraan die mogelijk de toxiciteit kunnen verklaren die geassocieerd is met de ziekte van Alzheimer.

In Hoofdstuk 8 vat ik de meest relevante uitkomsten van dit proefschrift samen en bespreek ik de vooruitzichten voor toekomstig onderzoek.