The role of solvent cohesion in nonpolar solvation
Otto, Sijbren

Published in:
Chemical Science

DOI:
10.1039/c3sc50740h

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
SUPPORTING INFORMATION

The Role of Solvent Cohesion in Nonpolar Solvation

Sijbren Otto

University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Figure S1. Determination of P_i for hexadecane by extrapolation from the data for other linear alkanes.

![Graph showing the determination of P_i for hexadecane.]

Table S1. Correlation coefficients (R^2) for plots of the Gibbs energy of transfer of a series of nonpolar solutes from the gas phase to a range of solvents versus solvent cohesion expressed as a linear combination of P_i and ced for different values of $\%ced$. The last line shows the $\%ced$ for which the best correlation is obtained.

<table>
<thead>
<tr>
<th>$%ced$</th>
<th>He</th>
<th>Ne</th>
<th>Ar</th>
<th>Kr</th>
<th>Xe</th>
<th>Rn</th>
<th>H2</th>
<th>Me</th>
<th>Et</th>
<th>Pr</th>
<th>Bu</th>
<th>Pen</th>
<th>Hex</th>
<th>Hep</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.576</td>
<td>0.581</td>
<td>0.639</td>
<td>0.485</td>
<td>0.345</td>
<td>0.346</td>
<td>0.672</td>
<td>0.467</td>
<td>0.361</td>
<td>0.281</td>
<td>0.257</td>
<td>0.197</td>
<td>0.264</td>
<td>0.276</td>
<td>0.186</td>
</tr>
<tr>
<td>20</td>
<td>0.672</td>
<td>0.734</td>
<td>0.87</td>
<td>0.905</td>
<td>0.845</td>
<td>0.877</td>
<td>0.844</td>
<td>0.799</td>
<td>0.743</td>
<td>0.688</td>
<td>0.672</td>
<td>0.653</td>
<td>0.667</td>
<td>0.682</td>
<td>0.624</td>
</tr>
<tr>
<td>30</td>
<td>0.573</td>
<td>0.649</td>
<td>0.835</td>
<td>0.926</td>
<td>0.94</td>
<td>0.845</td>
<td>0.774</td>
<td>0.895</td>
<td>0.89</td>
<td>0.884</td>
<td>0.874</td>
<td>0.875</td>
<td>0.873</td>
<td>0.88</td>
<td>0.852</td>
</tr>
<tr>
<td>40</td>
<td>0.501</td>
<td>0.578</td>
<td>0.762</td>
<td>0.892</td>
<td>0.943</td>
<td>0.959</td>
<td>0.689</td>
<td>0.89</td>
<td>0.922</td>
<td>0.945</td>
<td>0.939</td>
<td>0.948</td>
<td>0.942</td>
<td>0.943</td>
<td>0.934</td>
</tr>
<tr>
<td>50</td>
<td>0.454</td>
<td>0.531</td>
<td>0.701</td>
<td>0.861</td>
<td>0.93</td>
<td>0.962</td>
<td>0.642</td>
<td>0.861</td>
<td>0.918</td>
<td>0.956</td>
<td>0.953</td>
<td>0.968</td>
<td>0.959</td>
<td>0.958</td>
<td>0.96</td>
</tr>
<tr>
<td>60</td>
<td>0.422</td>
<td>0.499</td>
<td>0.656</td>
<td>0.835</td>
<td>0.918</td>
<td>0.962</td>
<td>0.578</td>
<td>0.831</td>
<td>0.905</td>
<td>0.951</td>
<td>0.951</td>
<td>0.971</td>
<td>0.957</td>
<td>0.955</td>
<td>0.966</td>
</tr>
<tr>
<td>70</td>
<td>0.4</td>
<td>0.476</td>
<td>0.621</td>
<td>0.815</td>
<td>0.907</td>
<td>0.961</td>
<td>0.544</td>
<td>0.804</td>
<td>0.89</td>
<td>0.942</td>
<td>0.944</td>
<td>0.968</td>
<td>0.949</td>
<td>0.947</td>
<td>0.965</td>
</tr>
<tr>
<td>80</td>
<td>0.383</td>
<td>0.458</td>
<td>0.595</td>
<td>0.8</td>
<td>0.898</td>
<td>0.961</td>
<td>0.518</td>
<td>0.781</td>
<td>0.877</td>
<td>0.931</td>
<td>0.935</td>
<td>0.962</td>
<td>0.94</td>
<td>0.938</td>
<td>0.961</td>
</tr>
<tr>
<td>90</td>
<td>0.371</td>
<td>0.445</td>
<td>0.574</td>
<td>0.788</td>
<td>0.89</td>
<td>0.96</td>
<td>0.498</td>
<td>0.762</td>
<td>0.854</td>
<td>0.921</td>
<td>0.927</td>
<td>0.957</td>
<td>0.931</td>
<td>0.929</td>
<td>0.957</td>
</tr>
</tbody>
</table>

| best fit (% ced) | 16.3 | 17.5 | 22 | 26 | 35 | 55 | 19 | 33 | 45 | 50 | 53 | 58 | 53 | 52 | 63 |

It appears that the $\%ced$ for the best fit seems to level off for the linear alkanes. This is most likely a result of the $\%ced$ approaching the limit for solvation of a methylene unit. It is also noteworthy that for these solutes the correlation coefficients show only minor changes in the range of 50-100 $\%ced$. This is at least to some extent an artefact of the isolated position of water which allows it to exert a dominant influence on the linear regression analysis. Repeating the fitting procedure excluding the data for water gave clearer defined maxima in the relation between correlation coefficient and $\%ced$. The position of the maxima is not significantly affected by excluding water.
Figure S2. Gibbs energies of transfer of the noble gases, hydrogen and linear alkanes from the gas phase to different solvents at 298 K as a function of solvent cohesion, as quantified a linear combination of the internal pressure (P_i) and the cohesive energy density (ced) (in cal/cm3). Standard states: solute(ideal gas, 1M) \rightarrow solute(ideal solution, 1M). The solvents include: n-hexadecane, n-decane, n-hexane, cyclohexane, carbontetrachloride, diethylether, toluene, benzene, ethyl acetate, methyl acetate, butanone, acetone, DMF, acetonitrile, propylene carbonate, DMSO, isobutyl alcohol, 1-butanol, 2-propanol, 1-propanol, ethanol, methanol, ethylene glycol and water. Data points for water are circled. The insets in the graphs of the smaller solutes show the corresponding correlations with ced only.

Figure S3. Re-analysis of the data in Figure 2 (main text) in which the data for water has been left out of the linear regression.
Figure S4. Re-analysis of the data in Figure 4 (main text) in which the data for water has been left out of the linear regression.

![Graph showing re-analysis of data](image)

References: