Synthesis and Analysis of the All-(S) Side Chain of Phosphomycoketides

Buter, Jeffrey; Yeh, Edmund A. -H.; Budavich, Owen W.; Damodaran, Krishnan; Minnaard, Adriaan J.; Curran, Dennis P.

Published in:
Journal of Organic Chemistry

DOI:
10.1021/jo4005298

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Synthesis and analysis of the all-(S) side chain of phosphomycoketides: a test of NMR predictions for saturated oligoisoprenoid stereoisomers

Jeffrey Buter,a Edmund A.-H. Yeh,b Owen W. Budavich,b Krishnan Damodaran,b Adriaan J. Minnaard,a* and Dennis P. Curranb*

a) Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands, and b) Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

E-mail: a.j.minnaard@rug.nl, curran@pitt.edu

Table of Contents

Synthesis of samples, Schemes S1, S2 ..3
General Information on NMR experiments ..5
Copies of NMR spectra of 3c..6
Copies of NMR spectra of 4 ..10
Copies of NMR spectra of 7 ...14
The large scale preparation of isoprenoid building block 12 was crucial because it was used twice in the synthesis (Scheme S1). Dienone 9 was prepared by double oxidation of cyclooctanone 8 with IBX, which was then subjected to a copper-catalyzed asymmetric 1,4-addition employing Feringa’s ligand L1, to provide 10 in 80% yield and 98% ee. Repetition of the asymmetric 1,4-addition, this time with the enantiomer of the copper catalyst, and subsequent trapping of the enolate with TMSCl, resulted in silylenol ether 11. Oxidative ring-opening with ozone followed by esterification with methanol gave isoprenoid 12 in 60% yield over 4 steps as a single diastereomer and enantiomer (>99% ee).

Alcohol 12 served as a precursor to both aldehyde 18, obtained by a TPAP mediated oxidation (96% yield), and sulfone 17. The sulfone was synthesized via TBDPS protection of the alcohol 12, reduction of the ester and subsequent Mitsunobu reaction of 14 with 1-phenyl-1H-tetrazole-5-thiol 15. The resulting thioether 16 was then oxidized to the corresponding sulfone 17, completing the four step sulfone synthesis procedure in 72% overall yield.

Sulfone 17 and aldehyde 18 were connected in a Julia-Kocienski reaction,¹² which smoothly provided alkene 19 in a 2:1 E:Z isomer mixture in 83% yield. The synthesis of 4 was completed by a straightforward three-step sequence of ester reduction, tosylation, and alkylation to give key intermediate 4 in good yield. Subsequent NMR studies of the final product 3c (see below) led us to question the stereochemical integrity of 4. To assess this, we carefully saturated a small sample of the (E)/(Z) isomer mixture of 4 to give 7. This sample was isomerically pure (see below) so by implication all the reactions leading to 4 occurred with high stereoselectivity and the so-formed stereocenters were retained with fidelity.
The synthesis of the final needed fragment 5 and the completion of the synthesis of 3c are shown in Scheme S2. Construction of sulfone 5 started with readily available aldehyde 21, which was employed in a Wittig reaction to give α,β-unsaturated thioester 22. Introduction of the fifth stereocenter was achieved by copper/Josiphos (L2) catalyzed asymmetric 1,4-addition in 94% yield and 89% ee. Reduction of thioester 23 with LiAlH4 proceeded in 95% yield, and then the resulting alcohol was converted into the sulfone 5 by the same steps as in Scheme S1.

To finish the synthesis, TBDPS ether 4 was desilylated (95% yield) and the resulting alcohol 26 was oxidized by TPAP (97% yield) to afford aldehyde 27. The Julia-Kocienski reaction involved deprotonation of sulfone 5 with LiHMDS at –78 °C, subsequent addition of aldehyde...
27 and warming to rt. Workup gave 6, in 81% yield, presumably as an E/Z mixture at both alkenes (the (6E,14E)-isomer is the major product, as shown). Careful hydrogenation with palladium on carbon provided MPM side chain sample 3c in 92% yield.

Scheme S2. Synthesis of the final fragment 5 and completion of the synthesis of MPM side chain 3c.

(a) Synthesis of sulfone 5

(b) Completion of the synthesis of 3c

Conditions: a) Ph₃PC(OSEt (1.1 equiv), CHCl₃, reflux, 3 h; b) DMAP (25 mol%); CHCl₃, rt; c) CuBr•SMe₂ (5 mol%); [(R,S)-Josiphos L₂ (6 mol%); MeMgBr (1.3 equiv), TBME, –78 °C; d) LiAlH₄ (2.5 equiv), THF, –78 °C, 1 h; e) 24 (2 equiv), Ph₃P (1.5 equiv), DIAD (1.8 equiv); THF, 0 °C to rt, 1 h; f) mCPBA (5 equiv), CH₂Cl₂, 0 °C to rt; g) TBAF (3 equiv), THF, rt, 3 h; h) TPAP (2 mol%), NMO (1.2 equiv), 4 Å mol sieves, CH₂Cl₂, rt, 2 h; i) LiHMDS (1 equiv), 4 (1 equiv), then 27 (1.15 equiv); THF, –78 °C to rt; j) Pd/C (10 mol%), H₂ (1 bar), CH₂Cl₂/MeOH (2:1), rt.
General Information on NMR Experiments:

The NMR spectra were recorded on a 700 MHz spectrometer using deuterated chloroform spiked with 1% trimethylsilane (TMS), unless otherwise indicated. The signals are given as in parts per million (δ, ppm) and were determined relative to the proton and carbon resonance of TMS at 0 ppm as the internal standard. For the resolution-enhanced spectra of 3c and 7, data were collected and processed as described in Traficante, D. D.; Nemeth, G. A. *J. Magn. Reson.* **1987**, *71*, 237-245.

Copies of predicted ¹H and ¹³C NMR spectra of all stereoisomers of both 3b and 3c (48 spectra total) are found in the Supporting Information associated with Yeh, E. A.; Kumli, E.; Damodaran, K.; Curran, D. P. *J. Am. Chem. Soc.* **2013**, *135*, 1577-1584.
Buter and coworkers

MPM Sidechain Spectra

3c

HO

C₅H₁₁

ppm

8 7 6 5 4 3 2 1 0
1H NMR &
Selective TOCSY

1st CH₃

2nd CH₃
1H-13C 2D correlation (major isomer peaks)
$^{1}H-^{13}C$ 2D correlation
(major and minor isomer peaks)
Minnaard Cmpd 18, 1H, 700, 2/14/12

Owen Budavich, Curran Group, University of Pittsburgh

Buter and coworkers

MPM Sidechain Spectra

TBDPSO
Minnaard Cmpd 18, 1H, 700, 2/14/12

Owen Budavich, Curran Group, University of Pittsburgh
Owen Budavich, Curran Group, University of Pittsburgh
Minnaard Cmpd 18, 1H, 700, 2/14/12

MPM Sidechain Spectra

TBDPSO
Buter and coworkers
Owen Budavich, Curran Group, University of Pittsburgh
Minnaard Cmpd 18, 1H, 700, 2/14/12

TBDPSO

MPM Sidechain Spectra
OB-NB-094-078, 700 MHz, CDCl3

Buter and coworkers

MPM Sidechain Spectra

TBDPSO
Buter and coworkers

MPM Sidechain Spectra

S16
High Resolution 1H NMR spectrum

TBDPSO

1 2 3 4

5th CH₃

5th CH₃
Selective TOCSY NMR

Selective irradiation of $\text{CH}_2\text{-O-Si}$

1st CH$_3$
Selective TOCSY NMR

Selective irradiation of 1st CH₃

TBDPSO

1st CH₃

2nd CH₃

Buter and coworkers

MPM Sidechain Spectra
2D-TOCSY NMR

4th and 5th CH₃ are connected to the same bunch of CH₂

Buter and coworkers

MPM Sidechain Spectra

S20
2D-TOCSY NMR

2nd and 3rd \text{CH}_3 are connected to the same bunch of \text{CH}_2

Buter and coworkers

MPM Sidechain Spectra
13C NMR Assignments

13C-1H 2D NMR Correlation Spectrum

Buter and coworkers

MPM Sidechain Spectra
13C NMR Assignments

13C- 1H 2D NMR Correlation Spectrum

Buter and coworkers

MPM Sidechain Spectra

TBDPSO