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Using the measured optical response and surface roughness topography as inputs, we perform realistic
calculations of the combined effect of Casimir and electrostatic forces on the actuation dynamics of
microelectromechanical systems (MEMS). In contrast with the expectations, roughness can influence MEMS
dynamics, even at distances between bodies significantly larger than the root-mean-square roughness. This effect
is associated with statistically rare high asperities that can be locally close to the point of contact. It is found
that even though surface roughness appears to have a detrimental effect on the availability of stable equilibria,
it ensures that those equilibria can be reached more easily than in the case of flat surfaces. Hence our findings
play a principal role for the stability of microdevices such as vibration sensors, switches, and other related MEM
architectures operating at distances below 100 nm.
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I. INTRODUCTION

Electromagnetic fluctuations that pervade any medium,
including empty space, generate forces between neutral
bodies known as Casimir-Lifshitz forces, of which van
der Waals forces are special cases.1–7 Casimir forces arise
from electromagnetic waves created by quantum and thermal
fluctuations.1–22 These are expected to become important
as components of microelectromechanical systems (MEMS)
enter submicrometer separations.11,23–39 The small scales at
which MEMS engineering is now conducted have revitalized
interest in the Casimir force, since devices such as vibration
sensors and switches are made with parts that are just a few
micrometers in size and have the right size for the Casimir force
to play a role: they have surface areas big enough but gaps small
enough for the force to draw components together and lock
them tight, which is an effect called stiction. In fact, permanent
adhesion is a common cause of malfunction in MEMS devices.
Casimir forces, in synergy with electrostatic actuating forces,
can further augment this phenomenon.23–39 Additionally, as
the development of MEMS evolves toward nanomechanical
systems (NEMS), attention will also be drawn to scaling issues.
It is inevitable that the Casimir interactions between metallic
and/or dielectric surfaces in nanometer proximity of each other
will occur, and stiction phenomena require specific attention.
On the other hand, the irreversible adhesion of moving parts
resulting from Casimir and electrostatic forces23–39 can also
be exploited to add new functionalities to micromechanical
architectures.

Casimir forces that are responsible for stiction in dry
conditions,30 and thus profoundly influence the actuation
dynamics, supplement the electrostatic force in countering the
elastic restoring force to determine, for example, the beam’s
actuation behavior in microswitches. The latter is typically
constructed from two conducting electrodes, of which one
is fixed and the other is suspended by a mechanical spring
governed by Hooke’s law40 [see Fig. 1(a)]. Voltage application
between the electrodes moves the electrodes toward each other

because of the electrostatic force. At a certain voltage, the
moving electrode becomes unstable and collapses or pulls-in
onto the ground electrode.31,32 Residual stress and fringing
field effects have also been shown to have a great influence on
the behavior of rf switches and strongly influence their failure
characteristics.33,34

In earlier investigations of the effect of the Casimir or
van der Waals forces on the dynamical behavior of nanoscale
electrostatic actuators, roughness was either ignored or only
weak roughness was considered. In some cases tabulated
optical data were taken into account.27–29 In this paper, we will
explore the actuation dynamics of microswitches made from
real materials (with a definite measured optical response41–43

and characterized by some degree of nanoscale roughness),
accounting for both electrostatic and Casimir forces, which
counteract an elastic restoring force [see Fig. 1(a)]. Advances
made in the measurement and theoretical understanding of
Casimir forces over the last 10 years allow today a more
detailed study of MEMS made from real material surfaces.44–46

Note that although electrostatic forces can be switched off if
no potential is applied, Casimir forces will always be present
and will influence the actuation dynamics.

II. ROUGHNESS CORRECTION TO THE
ELECTROSTATIC FORCE

It has been shown44,45 that the disagreement between
the experiment47 and the theory describing roughness
perturbatively48,49 can be resolved by taking into account
rare high peaks on rough surfaces. These high peaks can
be described by “extreme value statistics,” as follows from
a statistical analysis of Atomic Force Microscopy (AFM)
topography data for gold films.44,45,50 Indeed, recently there
has been more awareness of the importance of extreme value
statistics for the analysis of rough surfaces.51 The Casimir
force between rough surfaces can be written as

FCas(z) = FPT (z) + Fpeaks(z). (1)
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FIG. 1. (Color online) (a) Schematic of the MEM system. The spring tries to move the oscillator toward the initial separation L0. The
contact distance d0 is the maximum height of the asperities on a rough surface. (b) In the inset, the Casimir force from Eq. (1) for gold surfaces
is compared to the electrostatic force between rough surfaces from Eq. (6) for several values of the applied voltage V . The quantity Veq indicates
to what voltage the Casimir corresponds after equating the Casimir force from Eq. (1) to the electrostatic force from Eq. (6). In this case the
rms w = 10 nm and the contact distance d0 = 50.8 nm.

The term FPT (z) denotes the Casimir force between rough
surfaces from Ref. 48, which includes a “zeroth”-order
contribution corresponding to flat surfaces and a perturba-
tive roughness correction �(w/z)2, where w is the root-
mean-square roughness. The term Fpeaks(z) represents the
contribution of high peaks, which is associated with the
aforementioned extreme value statistics. It is important to
note that FCas(z) is singular at the distance upon contact44,45,50

(z = d0), which is the real minimum separation due to surface
roughness. It is assumed that the contributions of high peaks
are independent of each other, an approximation justified by
the large horizontal distance between them. This distance
is large because such peaks are statistically rare events.44,45

The ellipsometry measurements for gold samples reported in
Ref. 41 were used as optical data.

The roughness correction to the electrostatic force can be
obtained in the same way as was done in Ref. 44 for the
Casimir force: the heights of the surface comparable to w can
be taken into account perturbatively, whereas the contribution
of high peaks can be approximated by treating each peak
independently. This approximation is justified by the large
distance between the high peaks, because such peaks are
statistically rare events. The perturbative roughness correction
to the electrostatic force is based on an analysis for isotropic
roughness,25,26,46 as is the case for the gold films considered
here,41 which are grown under nonequilibrium conditions.
This correction starts by modeling the surfaces as a capacitor
with capacitance,

�C(z)�

=
A�
z

�
1 +

2(2� )4

A

� kc

0
�|h̃(k)|2�

�
k2 +

�
z

coth(kz)
�
dk

�
,

(2)

where the first and second terms correspond to flat surfaces
and a second-order perturbative correction, respectively, and
A denotes the surface area of each plate. The quantity kc
represents the wave number corresponding to a lower lateral
roughness cutoff of the order of the interatomic distances
(�4 Å for gold). For power law or self-affine random
roughness, a suitable model for the power spectrum �|h̃(k)|2�
to perform calculations with is given by52

�|h̃(k)|2� =
A

(2� )5
w2� 2

(1 + ak2� 2)1+H . (3)

Here � denotes the correlation length, and a represents the
self-affine roughness parameter which can be found by solv-
ing the algebraic equation: a = 1/(2H )[1 � (1 + ak2

c � 2)�H ].
For the gold films considered here,41 the roughness exponent
has the value H = 0.9.

The electrostatic force including the second-order pertur-
bative roughness correction can be written as

Fpe(z) = �
1
2
V 2 d �C(z)�

dz
, (4)

where the average capacitance �C(z)� is given by Eq. (2)
and V denotes the applied voltage. Equipotential planes are
expected to be a valid approximation at separations below
100 nm. Statistical deviations from this approximation, known
as potential patches, typically play a role at separations
of the order of a few hundred nanometers up to a few
micrometers.53–55 Now the contribution of the high peaks in the
surface can be approximated by a sum of separate contributions
of each peak, as it was done in Ref. 44 for the Casimir force.
For this purpose we start with the electrostatic force between
flat surfaces:

Fe(z) �=
�0AV 2

2z2 . (5)
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For the roughness statistics we can use the same AFM
topography data with the same statistical analysis as in Ref. 44.
Therefore the electrostatic force between rough surfaces
becomes

Fes(z) = Fpe(z) +
� d0

d1

f (d)
�
Fe(z � d) � Fe(z)

+ dF �
e(z) �

1
2
d2F ��

e (z)
�
dd, (6)

where f (d) denotes the probability density function. The
height d1 = 3w is the separation above which f (d) can be
fitted to a Gumbel distribution,44,45 and d0 is the height of
the highest asperity [see Fig. 1(a)]. It must be noted that the
expression in Eq. (6) is also singular at z = d0.

Figure 1(b) shows the relative strength of electrostatic and
Casimir forces for various potentials between real, nanoscale,
rough Au-Au surfaces. The Casimir force becomes significant
for separations z < 100 nm and overcomes the electrostatic
force rather rapidly as the applied potential drops below 1 V
(a regime typical for MEMS) and separations close to distance
upon contact due to surface roughness. Indeed, the potential
Veq(z) where FCas(z) = Fes(z) increases rapidly toward smaller
separations, which shows that the Casimir force corresponds
to increasing values of the applied voltage V . These results
clearly show that below 100 nm Casimir forces can strongly
influence the actuation dynamics.

III. ACTUATION DYNAMICS OF MEMS

Modeling a MEMS as a classical mass-spring system has
been well established.40 Let the separation z depend on time
and satisfy the following differential equation:

m
d2z
dt2 = �(L0 � z) � F (z), (7)

where F (z) = FCas(z) + Fes(z) represents the total surface
force, � is the spring constant, and L0 is the distance
between bodies if no external force is present, F (z) = 0. The
effective mass m merely rescales the equation (7). For our
calculations we used as an example a resonance frequency
�0 �

�
�/m = 300 × 2� krad/s, which is typical for a wide

variety of commercial resonators, e.g., tapping-mode AFM
cantilevers and other doubly clamped beam MEMS.56 This
frequency is kept constant, whereas � is varied and used as a
control parameter.

The solutions of Eq. (7) can be investigated with a
phase portrait,57 i.e., a plot of z versus z�(t). Studies of
the influence of the Casimir force for nanoscale electrostatic
actuators with flat, perfectly conducting electrodes showed
that their phase portraits exhibit periodic orbits around a center
equilibrium and an orbit that passes through an unstable saddle
point.38,39 These studies were extended to the influence of weak
roughness only.25,26

Consider first the case of zero electrostatic force, Fes(z) =
0. The goal is to find out under what conditions the oscillator
described by Eq. (7) can return to its original position, i.e., for
what parameter values periodic solutions exist. The existence
of periodic solutions indicates that the spring is strong enough
to prevent stiction. If the spring constant is large enough, the
stable center around which periodic solutions exist will be

accompanied by an unstable saddle-point equilibrium.36–39 If
the spring constant becomes lower, the center and saddle point
will merge into an unstable “center-saddle” point. For an even
lower value of � there are no equilibria at all. This is an example
of what is known as a saddle-node bifurcation.57

In order to understand for what values of � such equilibrium
points are available we introduce the following bifurcation
parameter:

�cas �
FL(L0)
�L0

, (8)

where FL(L0) denotes the Casimir force given by the Lifshitz
formula2,3 (for flat surfaces) at z = L0. This ratio of the
minimal Casimir force and the maximal elastic restoring force
represents the relative importance of one force compared
to the other. In an equilibrium the total force given by
Eq. (7) is zero: Ftot(z) = 0. This case yields �cas = (1 �
zs/L0)FL(L0)/Fcas(zs), where zs denotes the locus of the
stationary points.

The results are plotted in Fig. 2(a). As one can see, the
rougher the sample (i.e., the higher the value of the contact
distance50 d0), the higher the spring constant must be to
get equilibria and periodic solutions. The maximum of �cas
decreases with d0. The position of this maximum changes
only slightly under the influence of random roughness: from
0.78L0 for a flat surface to 0.81L0 for the roughest sample.
This is because at these separations the roughness effect is
small (perturbative) and does not drastically change the force.
To clarify the meaning of Fig. 2(a), the general solution,
represented by the phase portrait, is plotted for three different
values of the spring constant for the roughest sample (with
d0 = 50.8 nm). Figure 2(b) shows the case where the spring
constant is large enough for the bifurcation parameter to
be below its maximum value. In this case there are two
equilibria: the stationary point closest to L0 is a (stable) center
around which periodic solutions (closed curves) exist. Since
the system considered here is conservative (Hamiltonian), the
phase portraits can be obtained by plotting the level curves of
the total energy. The solutions of Eq. (7) are periodic if the
amplitude stays below a value of approximately 0.4L0. The
shift of the minimum separation due to roughness from zero to
d0 prevents periodic motion if the total energy is too high. In
Fig. 2(c) the value of � has been chosen such that it corresponds
to the maximum value of �cas in Fig. 2(a). In this case there
is only one equilibrium, known as a center-saddle point,58

which is always unstable. There are no periodic solutions in
this case. If the value of the spring constant is lowered further,
no equilibria are available anymore. The spring is too weak to
counterbalance the attractive Casimir force. The solution for
this case is plotted in Fig. 2(d).

Although neglecting the electrostatic force can provide
some insight, this force must also be taken into account. If we
consider the presence of the electrostatic force only, Fes(z) �= 0
and FCas(z) = 0, we can define an additional bifurcation
parameter for the electrostatic force:

�es �
�0AV 2

2�L3
0

=
Fe(L0)
�L0

. (9)
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FIG. 2. (Color online) (a) Bifurcation diagram of Casimir actuated MEMS for various rough surfaces, each of which is associated with a
different value of the contact distance d0. The value of the initial separation L0 = 100 nm. (b) Phase portrait for the surface with d0 = 50.8 nm.
The (black) circle and the (black) square indicate the positions of the center and saddle-point equilibria, respectively. In this case, the spring
constant is high enough for periodic solutions to exist. (c) This phase portrait corresponds to the maximum of the solid (red) curve in Fig. 2(a).
In this case there is only one (unstable) equilibrium, and there are no periodic solutions. (d) Phase portrait corresponding to a point above the
maximum of solid (red) curve in Fig. 2(a). There are no equilibria in this case.

Similarly to the previous case, this is the ratio of the
minimum electrostatic force and the maximum elastic
force, which is a measure of the relative importance of
one force compared to the other. In this case it holds that
�es = Fe(L0)/Fes(zs)(1 � zs/L0), which is obtained from the
condition Ftot = 0. However, it must be stressed that this case
is a rather artificial one, because the Casimir force cannot
be shut down (since it stems from quantum-mechanical
uncertainty). Results for this case are qualitatively similar to
the previous one, but the roughness effect is less pronounced
because the electrostatic force depends more weakly on the
separation distance than the Casimir force.

In the more general case Fes(z) �= 0 and FCas(z) �= 0, the
stationary points zs satisfy the following equation obtained
from the condition Ftot = 0:

1 �
zs

L0
�

Fcas(zs)
FL(L0)

�cas �
Fes(zs)
Fe(L0)

�es = 0, (10)

where �cas and �es are defined by Eqs. (8) and (9), respectively.
Equation (10) is an implicit function of two variables, plotted
in Fig. 3(a) for both the idealized case of flat surfaces and the
roughest surface with d0 = 50.8 nm. The graph for the case of
flat surfaces encloses the one for the rough surface case. This
indicates that, similarly to the previous case, surface roughness
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