Adolescents with Low Intelligence Are at Risk of Functional Somatic Symptoms: The TRAILS Study

Eva M. Kingma, Karin A.M. Janssens, M.Sc., Manon Venema, Johan Ormel, Ph.D., Peter de Jonge, Ph.D., and Judith G.M. Rosmalen, Ph.D.*

Interdisciplinary Center for Psychiatric Epidemiology, University Medical Center Groningen, University of Groningen, The Netherlands

Article history: Received October 15, 2010; Accepted April 26, 2011

ABSTRACT

Purpose: Low intelligence is a risk factor for functional somatic symptoms (FSSs) in adults, but it is unknown whether a similar association exists in adolescents. We hypothesized that low intelligence may lead to FSS, and that this association is mediated by low school performance. In addition, we hypothesized that this mediation is particularly present in adolescents who perceive high parental expectations.

Methods: This study was performed in a general population cohort from the TRacking Adolescents’ Individual Lives Survey, using data from the first wave (n = 2,230, mean age = 11.09 years, SD = .56, 50.8% girls), second wave (n = 2,149, mean age = 13.65 years, SD = .53, 51.0% girls), and third wave (n = 1,816, mean age = 16.25 years, SD = .72, 53.3% girls). Intelligence was measured using the Wechsler Intelligence Scale for Children—Revised, which resulted in an intelligence quotient (IQ) for each participant. FSSs were measured by the Somatic Complaints Scale of the Youth Self-Report. School performance was assessed by teacher reports and perceived parental expectations by adolescent reports. Structural equation modeling was used to test our hypotheses.

Results: We found a significant negative association between IQ and FSS in the whole group (β = -.24). This association was significant in the group perceiving high parental expectations (β = -.37), but not in the group perceiving low parental expectations. The association between IQ and FSS was not mediated by school performance.

Conclusions: Low intelligence is associated with a higher predisposition for FSS in adolescents, especially in those adolescents perceiving high parental expectations.

© 2011 Society for Adolescent Health and Medicine. All rights reserved.
low school performance might depend on the norms of the social environment of the adolescent. A study on chronic fatigue syndrome (CFS), a syndrome defined by the existence of a cluster of FSS, suggested that parents might play an important role. Parental expectations of the intelligence of adolescents with CFS were significantly higher than parental expectations of the intelligence of adolescents without CFS [9]. The authors suggested that these high parental expectations might contribute to the development and maintenance of CFS [9]. It might be possible that when parental expectations cannot be met by the adolescent, it may lead to distress and consequently FSS in the adolescent.

Therefore, we hypothesized that adolescents with low intelligence and consequently low school performance are especially at risk for FSS when they perceive high parental expectations of their achievements. We studied our hypotheses in a large population cohort of adolescents.

Methods

Sample and procedure

This study is part of the TRacking Adolescents’ Individual Lives Survey (TRAILS). TRAILS is a longitudinal cohort study of Dutch adolescents. The study was approved by the Dutch Central Committee on Research Involving Human Subjects. Data from the first, second, and third assessment waves are involved in this study. These assessment waves were conducted between March 2001 and July 2002, between September 2003 and December 2004, and between September 2005 and August 2008, respectively. For the sample selection, five municipalities in the North of the Netherlands were asked to give information from the community register of all citizens who were born between October 1, 1989 and September 30, 1990 (first two municipalities), or between October 1, 1990 and September 30, 1991 (last three municipalities), yielding 3,483 names. Next, all 135 primary schools (including schools for special education) within these municipalities were asked to participate in TRAILS. School participation was a requirement for participants and their parents to be approached by the TRAILS staff. In all, 123 schools (90.4% of the schools accommodating 90.3% of the children) agreed to participate in the study. Of the 3,145 remaining eligible children, 210 were excluded because they were either unable or incapable to participate owing to severe mental retardation or a serious physical illness or handicap, or when no Dutch-speaking parent or parent surrogate was available (Turkish and Moroccan parents who were unable to speak Dutch were interviewed in their own language) [10]. After fully explaining the procedures, written informed consent from the parents was obtained. At the second and third assessment waves, informed consent was obtained from the adolescents themselves. Of all adolescents who were approached (n = 3,145), 76% (n = 2,230, mean age = 11.09 years, SD = .56, 50.8% girls) were enrolled in the study. Detailed information about sample selection and analysis of nonresponse bias has been reported elsewhere [10]. Primary schools that participated in TRAILS were comparable with other primary schools in the Netherlands with regard to the percentage of children with a low socioeconomic background (16.1% and 15.3%, respectively) [11]. Ten percent (n = 230) of the sample had at least one parent born in a non-western country, among which were Suriname (20.0%), Dutch Antilles (16.0%), Indonesia (16.0%), Morocco (6.5%), Turkey (5.5%), and other countries (36.0%). Of the 2,230 baseline participants, 96.4% (n = 2,149, mean age = 13.65 years, SD = .53, 51.9% girls) participated in the first follow-up assessment (T2), which was held 2 to 3 years after assessment wave 1 (T1). Of the 2,149 participants at T2, 81.4% (n = 1,816, mean age = 16.25 years, SD = .72, 53.3% girls) participated in the third assessment wave (T3), which was held 2 to 3 years after T2.

Measurements

Intelligence. At baseline, the intelligence of the participants was measured by psychologists using the shortened version of the Wechsler Intelligence Scale for Children–Revised (WISC-R) [12], which resulted in an intelligence quotient (IQ) for each participant. Because the TRAILS cohort consists of a large group of adolescents, measuring intelligence of all adolescents with the Wechsler Intelligence Scale for Children, third edition (WISC-III) [13] was found to be too labor-intensive. Therefore, we used a shortened version of the Wechsler Intelligence Scale for Children, the WISC-R [12]. The WISC-R is suitable for participants of age between 6 years and 16 years 11 months [14] and is age-standardized to compare different age groups with each other [15]. The shortened version of the WISC-R consists of a vocabulary subtest and a block design subtest. The WISC-R was assessed in a quiet environment and participants were given 30 minutes to complete both subtests.

Functional somatic symptoms. FSS were measured by the Somatic Complaints scale of the Youth Self-Report [16] at all three assessment waves (T1, T2, and T3). This scale contains nine items, which refer to somatic complaints without a known medical cause (aches/pains, headaches, nausea, eye problems, skin problems, stomachache, and vomiting) or without obvious reason (overtiredness and dizziness). For each item, participants had to respond on a 3-point scale (0 = did not experience the complaint in the preceding 6 months, 1 = experienced the complaint sometimes or a little bit in the preceding 6 months, 2 = experienced the complaint often or a lot in the preceding 6 months) [17–19]. Factor analysis indicated that two items (eye problems and skin problems) had low factor loadings at both assessment waves for both girls and boys. This suggests that these two items did not represent the underlying construct very well in our sample and were therefore excluded. For the analyses, we composed sum scores for FSS.

School performance. Baseline school performance was rated by the participants’ teacher for two school subjects: Dutch language and mathematics. We derived a mean score of school performance by adding the scores obtained in both the subjects and then dividing the total by two. School performance at both follow-up waves was rated by the participants’ teacher for five groups of school subjects: Dutch language, foreign languages (French, English, and German), geography and history, mathematics, and other exact sciences (biology, physics, and chemistry). For each group of school subject(s), performance was rated on a 5-point scale (1 = insufficient performance, to 5 = excellent performance). We derived a mean score of school performance by adding the scores obtained in all five groups of subjects and then dividing the total by five.

Perceived parental expectations. At baseline, perceived parental expectations were assessed with two items from the EMBU-C (a Swedish acronym for my memories of upbringing) for Children...
Concerned?” Possible answers could be no, never your school results, sport achievements and so on are concerned” and “Do you think your father has high expectations as far as your school results, sport achievements and so on are concerned?” The two items were concerned with the highest expectations, as perceived by the adolescent.

Description of the model. To model the relationships between IQ, school performance, and FSS, we first composed a trait and state (T&S) model of FSS (Figure 1), based on models of Duncan-Jones et al [21]. At each time point, FSSs were determined by two latent variables: trait FSS (Tr1, Tr2, and Tr3) and state FSS (St1, St2, and St3). Trait FSS is stable over time and reflects unchanged risk factors. State FSS represents the variance not accounted for by trait FSS and therefore reflects changes in symptom scores over time (partly caused by error variance). A necessary assumption to identify the model is that the T&S components are equal at each time point (Tr1 = Tr2 = Tr3; St1 = St2 = St3). The T&S model further includes autoregressive effects of the states (Au1 and Au2), meaning that the immediate preceding state value has a direct effect on the next state value. The T&S model is considered to represent the reality better than a completely autoregressive model, in which all stability in FSS scores is explained by the value of the preceding FSS score.

After having composed the T&S model for FSS, we connected this model to the measured variables school performance and IQ, as is depicted in Figures 2, 3, and 4. We modeled one correlation: between school performance at T1 and state FSS at T1. Furthermore, we modeled 14 regression effects: a direct effect of IQ on trait FSS; three direct effects of IQ on school performance (T1, T2, and T3); two direct effects from school performance at T1 on school performance at T2, and from school performance at T2 on school performance at T3; two contemporaneous effects of school performance on state FSS (at T2 and T3); two contemporaneous effects of state FSS on school performance (at T2 and T3); two lagged effects of school performance on state FSS; and two lagged effects of state FSS on school performance. To identify the model, it was necessary to remove the contemporaneous path from FSS on school performance at T2.

Statistical analyses. Descriptive statistics were calculated by SPSS version 16.0 for Windows (SPSS Inc, Chicago, IL). In addition, we tested our hypotheses by structural equation modeling performed by Mplus version 6.0 for Windows (Muthén & Muthén, Los Angeles, CA). Model fits were considered good when the comparative fit index (CFI) and the Tucker–Lewis index (TLI) were greater than .95, and the root mean square error of approximation (RMSEA) was smaller than .05. Ideally, the χ^2 should be nonsignificant ($p > .05$), but larger samples increase the likelihood of obtaining significant p values [22]. After testing the model in the total sample, we tested the model in two groups based on perceived parental expectations (high vs. low). In addition, for the total group and for the two subgroups, we added all requested indirect effects between IQ and state FSS. Furthermore, we performed multiple imputation analyses by Mplus, including 10 imputed data sets, as a sensitivity analysis to test for the influence of missing values.

Figure 1. The trait and state model. Note that the trait functional somatic symptoms (FSS) at assessment wave 1 (Tr1) = trait FSS at assessment wave 2 (Tr2) = trait FSS at assessment wave 3 (Tr3) and state FSS at T1 (St1) = state FSS at assessment wave 2 (St2) = state FSS at assessment wave 3 (St3). The autoregressive effect at assessment wave 1 (Au1) and the autoregressive effect at assessment wave 2 (Au2) may differ across time points. T1 = assessment wave 1, T2 = assessment wave 2, T3 = assessment wave 3.

Figure 2. Relation between IQ, school performance, and FSS for the total group of adolescents. The standardized estimates (β and standard error) are depicted. The dotted lines represent the paths that are not significant. T1 = assessment wave 1, T2 = assessment wave 2, T3 = assessment wave 3.
Results

Sample characteristics

Table 1 presents the scale scores on IQ, FSS, and school performance of the adolescents at the three assessment waves. All these variables were normally distributed. Table 1 shows that the prevalence of FSS declined during the waves. When categorizing perceived parental expectations as high or low, 1,139 adolescents (51.9%; 56.5% boys) perceived high parental expectations and 1,056 (48.1%; 41.1% boys) perceived low parental expectations.

Model for the total sample

The model is depicted in Figure 2; only significant path estimates are given. The model fit was good (model fit: $\chi^2 (df = 3) = 3.72, p = .29; \text{CFI} = .99; \text{TLI} = .98; \text{RMSEA} < .01$). The estimated trait variance in FSS ranged from 27% (.52^2) to 29% (.54^2). According to the model, there was a significant negative association between IQ and trait FSS. Furthermore, IQ was significantly positively associated with school performance at T1 and T2, whereas the association between IQ and school performance at T3 was not significant. School performance at T1 predicted school performance at T2, and school performance at T2 predicted school performance at T3. With regard to the paths between school performance and state FSS, no path was significant. Thus, there were no significant indirect paths between IQ and state FSS through school performance. State FSS at T1 predicted state FSS at T2, and state FSS at T2 predicted state FSS at T3. Estimates remained essentially the same after multiple imputation analyses.

Model for adolescents perceiving high parental expectations

The model is depicted in Figure 3; only significant path estimates are given. The model fit was good (model fit: $\chi^2 (df = 3) = 5.63, p = .13; \text{CFI} = .99; \text{TLI} = .98; \text{RMSEA} = .03$). The estimated trait variance in FSS ranged from 25% (.50^2) to 28% (.53^2). According to the model, there was a significant negative association between IQ and trait FSS. Furthermore, IQ was significantly positively associated with school performance at T1 and T2, but not with school performance at T3. School performance at T1 predicted school performance at T2, but school performance at T2 did not predict school performance at T3. With regard to the paths between school performance and state FSS, no path was significant. Thus, there were no significant indirect paths between IQ and state FSS through school performance. State FSS at T1 predicted state FSS at T2, and state FSS at T2 predicted state FSS at T3. After fixing all paths between school performance and state FSS at zero, the model fit was good (model fit: $\Delta \chi^2 (df = 8) = 5.16$, $p = .79; \text{CFI} = 1; \text{TLI} = 1; \text{RMSEA} = .00$), and the model did not alter significantly (model fit: $\chi^2 (df = 11) = 10.79, p = .46; \text{CFI} = 1.00; \text{TLI} = 1.00; \text{RMSEA} = .02$).
The model is depicted in Figure 4; only significant paths are given. The model fit was good (model fit: $\chi^2 (df = 3) = 2.86, p = .41; CFI = 1.00; TLI = 1.00; RMSEA < .01$). The estimated trait variance in FSS ranged from 31% (.562) to 33% (.572). According to the model, there was no significant association between IQ and trait FSS. Furthermore, IQ was significantly positively associated with school performance at T1 and T2, whereas the association between IQ and school performance at T3 was not significant. School performance at T1 predicted school performance at T2, and school performance at T2 predicted school performance at T3. With regard to the paths between school performance and state FSS, no path was significant. Thus, there were no significant indirect paths between IQ and state FSS through school performance. State FSS at T1 did not predict state FSS at T2, but state FSS at T2 predicted state FSS at T3. After fixing all paths between school performance and state FSS at zero, the model fit was good (model fit: $\chi^2 (df = 11) = 11.59, p = .40; CFI = .99; TLI = .99; RMSEA = .02$), and the model did not alter significantly (model fit: $\Delta \chi^2 (df = 3) = 8.73, p = .37$). Estimates remained essentially the same after multiple imputation analyses.

Discussion

This study demonstrates that low intelligence is associated with a higher predisposition for FSS. School performance did not mediate the association between intelligence and state FSS. The association between intelligence and trait FSS was significant for adolescents perceiving high but not for those perceiving low parental expectations.

There are several strengths of this study. First, we used a large longitudinal population cohort without applying strict inclusion criteria. Therefore, results are likely to be generalizable to adolescents from the general population. Second, we used structural equation models with trait and state FSS to test our hypotheses. These models are preferred because they are multidimensional and include FSS scores at specific time points, while also taking into account the underlying risk factor for FSS. Third, instead of using arbitrary cut-off points that might result in inevitable loss of information and power [23], we strengthened our analyses by the use of continuous measures for FSS.

Besides strengths, there are also limitations that should be considered when interpreting our results. First, the WISC-R measures only two subtests for intelligence. Although intelligence was there-

$p = .74$). Estimates remained essentially the same after multiple imputation analyses.

Model for adolescents perceiving low parental expectations

Although we found an association between low intelligence and risk of FSS, as we hypothesized, results differed somewhat from our expectations. High intelligence was significantly associated with high school performance in primary school, but this association decreased in the subsequent measurement waves in which adolescents were in secondary school. Several explanations for this decrease can be proposed. Adolescents in secondary school are in an educational level matching their intelligence, explaining the decreasing strength between intelligence and school performance over time. Moreover, school performance in adolescence partly depends on motivation[25] that might influence school performance more strongly than intelligence. Another explanation might be found in the way we analyzed our data. Part of the effect between intelligence and school performance at the second and third waves might be included in the autoregressive paths between school performances at different waves. Logically, this results in less strong effects over time between intelligence and school performance. When we performed simple regression analyses between intelligence and school performance at each wave, we found the same decrease in strength between intelligence and school performance over time, indicating that the autoregressive paths are not responsible for the decreasing correlation between intelligence and school performance.
Our results show that low school performance is not a risk factor for FSS in adolescents perceiving high parental expectations. However, we found a significant negative association between intelligence and FSS in adolescents perceiving high parental expectations. These results seem quite similar to the findings in previous research, where parental expectations were higher in adolescents with CFS as compared with healthy controls [9]. However, that particular study was a small cross-sectional case-control study, whereas we studied a large longitudinal population cohort. Moreover, because we studied expectations related to both parents, we were able to identify the parent with the highest expectations, as perceived by the adolescent, whereas the previous study looked at the view of only one parent. Our results suggest that perceived parental expectations influence the association between intelligence and FSS through factors other than school performance. In a previous cross-sectional study on perfectionism and well-being in adolescents [26], it was found that adolescents who perceive parental pressure report more somatic complaints and had higher motivation to avoid failure [26]. Adolescents who perceive high parental expectations or pressure are thought to experience emotional distress [26], which could be reflected in FSS. Alternatively, adolescents with low intelligence may tend to smoke more often and often have a high body mass index, which in turn are associated with more FSS [6]. Perhaps, adolescents with low intelligence who are distressed, owing to highly perceived parental expectations, tend to smoke more and engage more often in unhealthy eating behaviors, resulting in FSS.

In conclusion, low intelligence is associated with a higher predisposition for FSS in adolescents, especially in those adolescents perceiving high parental expectations. These results suggest that the social context is important for a healthy development during adolescence. Clinicians dealing with adolescents with FSS could consider possible interactions between intelligence and perceived parental expectations, so as to understand the development of FSS in adolescents. In those cases in which parental factors are suspected to contribute to the development of FSS, it might be important to involve parents in the treatment.

Acknowledgments

This research is part of the TRacking Adolescents’ Individual Lives Survey (TRAILS). Participating centers of TRAILS include various departments of the University Medical Center and University of Groningen, the Erasmus University Medical Center, Rotterdam, the University of Utrecht, the Radboud Medical Center, Nijmegen, and the Parnassia Bavo group, all in the Netherlands. TRAILS has been financially supported by various grants from the Netherlands Organization for Scientific Research NWO (Medical Research Council program grant GB-MW 940-38-011; ZonMW Brainpower grant 100-001-004; ZonMW Risk Behavior and Dependency grants 60-60600-98-018 and 60-60600-97-118; ZonMW Culture and Health grant 261-98-710; Social Sciences Council medium-sized investment grants GB-MaGW 480-01-006 and GB-MaGW 480-07-001; Social Sciences Council project grants GB-MaGW 457-03-018, GB-MaGW 452-04-314, and GB-MaGW 452-06-004; NWO large-sized investment grant 175.010.2003.005); the Sophia Foundation for Medical Research (projects 301 and 393), the Dutch Ministry of Justice (WODC), the European Science Foundation (EuroSTRESS project FP-006), and the participating universities. The authors are grateful to all adolescents, their parents and teachers who participated in this research, and to everyone who worked on this project and made it possible. They also thank Professor Tineke Oldenhinkel for critical reading.

References