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ABSTRACT
Convolutional Neural Networks (ConvNets) are one of the most promising methods for identi-
fying strong gravitational lens candidates in survey data. We present two ConvNet lens-finders
that we have trained with a dataset composed of real galaxies from the Kilo Degree Survey
(KiDS) and simulated lensed sources. One ConvNet is trained with single r-band galaxy im-
ages, hence basing the classification mostly on the morphology. While the other ConvNet is
trained on g-r-i composite images, relying mostly on colours and morphology. We have tested
the ConvNet lens-finders on a sample of 21 789 luminous red galaxies (LRGs) selected from
KiDS and we have analysed and compared the results with our previous ConvNet lens-finder
on the same sample. The new lens-finders achieve a higher accuracy and completeness in
identifying gravitational lens candidates, especially the single-band ConvNet. Our analysis
indicates that this is mainly due to improved simulations of the lensed sources. In particular,
the single-band ConvNet can select a sample of lens candidates with ∼40 per cent purity,
retrieving three out of four of the confirmed gravitational lenses in the LRG sample. With
this particular setup and limited human intervention, it will be possible to retrieve, in future
surveys such as Euclid, a sample of lenses exceeding in size the total number of currently
known gravitational lenses.

Key words: gravitational lensing: strong – methods: statistical – galaxies: elliptical and
lenticular, cD.

1 INTRODUCTION

Strong gravitational lensing is a phenomenon that originates when
light rays propagating from a background source galaxy are de-
flected, on their way towards the observer, by the gravitational
field of a foreground galaxy, creating multiple images, arcs, and/or
rings around the foreground galaxy. Strong gravitational lensing is a
unique probe for studying the (dark) matter distribution of galaxies
and providing cosmological constraints. E.g. gravitational lenses
have been used to measure the Hubble constant through time de-
lays of lensed quasar images (e.g. Suyu et al. 2010, 2017; Bonvin
et al. 2017) and to constrain the dark energy equation of state (e.g.
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Biesiada, Piórkowska & Malec 2010; Cao, Covone & Zhu 2012;
Collett & Auger 2014; Cao et al. 2015). Gravitational lensing also
allows measuring the fraction of dark matter in the central regions
of galaxies (Gavazzi et al. 2007; Jiang & Kochanek 2007; Cardone
et al. 2009; Covone et al. 2009; Auger et al. 2010; Cardone &
Tortora 2010; Grillo et al. 2010; Tortora et al. 2010; More et al.
2011; Ruff et al. 2011; Sonnenfeld et al. 2015) and to constrain
the slope of the inner mass density profile (e.g. Treu & Koopmans
2002a,b; Koopmans & Treu 2003; Koopmans et al. 2006; More et al.
2008; Barnabè et al. 2009; Koopmans et al. 2009; Cao et al. 2016;
Mukherjee et al. 2018). Moreover, studying gravitational lenses can
constrain the stellar initial mass function (e.g. Möller, Kitzbichler &
Natarajan 2007; Ferreras et al. 2010; Treu et al. 2010; Spiniello et al.
2011; Brewer et al. 2012; Posacki et al. 2015; Sonnenfeld et al.
2015, 2018b; Spiniello et al. 2015). Strong lensing also works as a
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‘cosmic telescope’, producing a magnified view of background ob-
jects otherwise not observable (e.g. Impellizzeri et al. 2008; Swin-
bank et al. 2009; Richard et al. 2011; Deane et al. 2013; Treu et al.
2015; Mason et al. 2017; Salmon et al. 2017; Kelly et al. 2018). Dis-
covering new gravitational lenses allows placement of more precise
constraints on the above-mentioned quantities (see e.g. Vegetti &
Koopmans 2009; Barnabè et al. 2011; Li et al. 2016). For a com-
prehensive review of the scientific applications of strong lensing,
see, e.g. Schneider, Ehlers & Falco (1992), Schneider, Kochanek &
Wambsganss (2006), and Treu (2010).

Originally, gravitational lenses were found serendipitously in as-
tronomical surveys, while currently they are considered as an im-
portant class of objects to systematically search in large sky surveys.
The most successful campaign aiming at building a homogeneous
dataset of strong gravitational lenses was the Sloan Lens ACS Sur-
vey (SLACS; Bolton et al. 2008) with more than 100 observed
lenses that were identified by analyzing spectra from the Sloan Dig-
ital Sky Survey (SDSS; Eisenstein et al. 2011) that exhibited the
imprint of two galaxies at two different redshifts. On-going optical
surveys such as the Hyper Suprime-Cam survey (HSC; Miyazaki
et al. 2012), the Kilo Degree Survey (KiDS; de Jong et al. 2015), and
the Dark Energy Survey (DES; The Dark Energy Survey Collabo-
ration 2005) are expected to provide in the coming years thousands
of new lenses (see Collett 2015; Petrillo et al. 2017) and have al-
ready provided new lens candidates (Diehl et al. 2017; Petrillo et al.
2017; Sonnenfeld et al. 2018a). The future is bright also in the sub-
millimetre wavelength, where Herschel (Negrello et al. 2010) and
the South Pole Telescope (Carlstrom et al. 2011), coupled with the
Atacama Large Millimetre/submillimetre Array, are providing sev-
eral hundreds of new lens candidates (Vieira et al. 2013; Negrello
et al. 2017). However, it is the next decade that holds a treasure
trove of new gravitational lenses. It has been estimated that sam-
ples of ∼105 strong lenses (Oguri & Marshall 2010; Pawase et al.
2014; Collett 2015; McKean et al. 2015) will be observed by Euclid
(Laureijs et al. 2011), the Large Synoptic Survey Telescope (LSST;
LSST Science Collaboration et al. 2009) and the Square Kilometre
Array.1

The huge number of possible new candidates, together with the
difficulty of identifying them in the enormous volume of survey
data, drives the growing effort in developing automatic lens-finders.
Most are based on the identification of arc-like features (e.g. Lenzen,
Schindler & Scherzer 2004; Horesh et al. 2005; Alard 2006; Estrada
et al. 2007; Seidel & Bartelmann 2007; Kubo & Dell’Antonio 2008;
More et al. 2012; Maturi, Mizera & Seidel 2014). Other approaches,
such as described by Gavazzi et al. (2014) and Joseph et al. (2014),
focus on the analysis of the residuals after subtracting the candidate
lens galaxies from the astronomical images. Both methods have
been used to find lens candidates in the Canada–France–Hawaii
Telescope Legacy Survey (CFHTLS2) by Sonnenfeld et al. (2013),
Gavazzi et al. (2014) and Paraficz et al. (2016). Instead, the algo-
rithm developed by Chan et al. (2015) is specialized in identifying
lensed quasars and together with the algorithm YATTALENS (Sonnen-
feld et al. 2018a) has been applied to find lens candidates in HSC
(Sonnenfeld et al. 2018a). Another approach, as in Brault & Gavazzi
(2015), is modelling the probability that the targets are actual lenses.
Stapelberg, Carrasco & Maturi (2017) applied the same strategy
to clusters and groups of galaxies. Gravitational lenses have been
identified also with citizen-science experiment approaches with the

1https://www.skatelescope.org/
2http://www.cfht.hawaii.edu/Science/CFHLS/

Space Warps project (Marshall et al. 2016; More et al. 2016) where
non-professional volunteers can classify galaxy images with the
help of a web applet.3 Most recently, Petrillo et al. (2017) and Jacobs
et al. (2017) have used Convolutional Neural Network (ConvNets)
for finding lens candidates in KiDS and CFHTLS, respectively. Fi-
nally, Hartley et al. (2017) have used a technique based on support
vector machines (SVMs) and applied it to KiDS. Instead, Spiniello
et al. (2018) focused on the search of lensed quasars in KiDS using
three different morphology based methods.

In this paper, we present and test our latest ConvNet lens-
finders, improving on the work of Petrillo et al. (2017). Con-
vNets (Fukushima 1980; LeCun et al. 1998) are the state of the
art and often the standard choice among machine learning algo-
rithms for pattern recognition in digital images. The winners of the
ImageNet Large Scale Visual Recognition Competition (ILSVRC;
Russakovsky et al. 2015; the most important image classification
competition) in recent years have all been groups utilizing Con-
vNets. The advantage of the latter method with respect to other
pattern recognition algorithms is that the features are not hand-
crafted but are themselves extracted automatically during the train-
ing procedure, thus the algorithm decides which features are most
representative for classifying the images. The theoretical basis of
ConvNets was developed in the 1980s and the 1990s. However,
only recently ConvNets have started to outperform other algorithms
thanks to the advent of large labelled datasets, improved algorithms
and faster training, especially on graphics processing units. The in-
terested reader is referred to the appendix for a brief introduction
on ConvNets and to the reviews by Schmidhuber (2015), LeCun,
Bengio & Hinton (2015), and Guo et al. (2016) for a more detailed
introduction.

ConvNets have been used recently in many astronomical prob-
lems, e.g. galaxy morphology classification (Dieleman, Willett &
Dambre 2015; Huertas-Company et al. 2015), estimation of photo-
metric redshifts (Hoyle 2016; D’Isanto & Polsterer 2018), spectra
classification (Hála 2014; Tao et al. 2018), identifying exoplanets
(Shallue & Vanderburg 2018), transient detection (Cabrera-Vives
et al. 2017), galaxy surface brightness estimation (Tuccillo et al.
2018), strong lensing parameters estimation (Hezaveh, Levasseur &
Marshall 2017), and star/galaxy separation (Kim & Brunner 2017).

More importantly, Metcalf et al. (2018) presented the results of
a large international challenge in which various methods of identi-
fying simulated gravitational lenses were tested blindly. This chal-
lenge, the first of a series, sets out to prepare the community for
finding lenses in the data of ESA’s Euclid mission. Its large data
volume requires fast and efficient algorithms to identify strong grav-
itational lenses. However, the methods were also tested on simulated
KiDS data. ConvNets and SVMs were recognized to be the most
promising methods, among many different methods tested in the
challenge.

The ConvNet lens-finders presented in this paper will be applied
on ∼900 square degrees of the KiDS survey in a forthcoming paper
with the purpose of starting a systematic census of strong lenses
named ‘LinKS’ (Lenses in KiDS Survey). The paper is organized as
follows. In Section 2, we illustrate our lens-finding ConvNet-based
algorithms and how the training dataset is built. In Section 3, we
evaluate the performances of the ConvNets. In Section 4, we apply
the lens-finders to ∼22 000 extracted from ∼255 square degrees of
KiDS for testing the algorithms on real data. Finally, in Section 5,
we provide a summary and the main conclusions of this work.

3https://spacewarps.org/
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2 TRAINING THE CONVNETS TO FIND
STRONG LENSES

A ConvNet can be seen as a sequence of non-linear functions, called
layers, that create, starting from an input image, a series of increas-
ingly abstract representations of the input called feature maps. The
final layer of the ConvNet converts the input feature maps into
a set of numbers that represent the outcome of the classification.
Hence, a ConvNet maps an image on to a single or few numbers.
In our case, the output is a single number, denoted by p, which
can vary between 0 and 1, and it is related to the probability that
the input image is a lens (see Saerens, Latinne & Decaestecker
2002 for a detailed discussion). The parameters of the non-linear
functions are obtained during the so called training phase where
labelled images are fed to the ConvNet. In more detail, the param-
eters are derived by minimizing a loss function that expresses the
difference between the label values of the images (1 for lenses, 0
for non-strong-lensing systems) and the output p of the ConvNet.
Although in Petrillo et al. (2017), we have used a similar set-up,
the aim of this work is to improve the performance of our previous
lens-finder.

Currently, we use a ConvNet with a ResNet-type architecture that
has 18 layers, exactly as described in He et al. (2015b). ResNet-type
architectures are often the preferred choice in image classification
tasks because of their faster convergence and higher classification
accuracy with respect to other architectures. Moreover, ResNet ar-
chitectures have already been tested successfully on identifying
simulated lenses and they have proven to be one of the best ar-
chitecture for this task (Lanusse et al. 2018; Metcalf et al. 2018;
Schaefer et al. 2018). We train two different ConvNets with the
same architecture except that one takes in input RGB-images com-
posed with HUMVI4 (Marshall et al. 2016), while the other takes
single r-band images as input. We choose the r band as single-band
input because the KiDS observing strategy reserves the best see-
ing conditions for this band (which is used for the weak lensing
studies; Kuijken et al. 2015; Hildebrandt et al. 2017). The tech-
nical details of the ConvNet and of the training procedure are
described in Appendix A together with a brief introduction on
ConvNets.

To produce the data used to train and validate the ConvNets, we
adopt a hybrid approach similarly as done in Petrillo et al. (2017),
Jacobs et al. (2017) and Pourrahmani, Nayyeri & Cooray (2018),
creating mock images of strong gravitational lenses using images
of real galaxies from KiDS and superimposing simulated lensed
images. We adopt this approach because we do not have a sample
of genuine KiDS lenses large enough to train a ConvNet (usually
of the order of 106).

2.1 Data

In this section, we describe the dataset used to train the ConvNets,
which is composed of real KiDS galaxies and simulated lensed
sources.

2.1.1 Luminous red galaxies

We use the sample of luminous red galaxies (LRGs; Eisenstein
et al. 2001) presented in Petrillo et al. (2017). We choose to focus on
massive early-type galaxies, because it has been estimated that these

4https://github.com/drphilmarshall/HumVI

galaxies form ∼80 per cent of the lens-galaxy population (Turner,
Ostriker & Gott 1984; Fukugita et al. 1992; Kochanek 1996; Chae
2003; Oguri 2006; Möller et al. 2007). Spiral galaxies form the
other ∼20 per cent but are much harder to identify. This training
sample of LRGs is a random subset of 6554 galaxies from a parent
sample of 21 789 selected from 255 square degrees of KiDS DR3
(de Jong et al. 2017) with the following criteria (see Petrillo et al.
2017 for more details).

(i) The low-z (z < 0.4) LRG colour–magnitude selection of
Eisenstein et al. (2001), adapted to include more sources, both
fainter and bluer:

r < 20

|cperp| < 0.2

r < 14 + cpar/0.3,

where

cpar = 0.7(g − r) + 1.2[(r − i) − 0.18)]

cperp = (r − i) − (g − r)/4.0 − 0.18.

(1)

(ii) A source size in the r band larger than the average full width
at half-maximum (FWHM) of the point spread function (PSF) of the
respective tiles, times an empirical factor to maximize the separation
between stars and galaxies.

2.1.2 Contaminants

Moreover, we have used a set of ∼6000 KiDS sources to train
the ConvNets to recognize sources that would likely be incorrectly
classified as lenses otherwise, either because they can resemble
lensing features or they are ‘ghosts’, i.e. they are undetected, at
least significantly, in the LRGs sample discussed in Section 2.1.1.

(i) ∼2000 sources wrongly classified as lenses in previous tests
with ConvNets identified by the authors. This is done to teach the
ConvNets not to replicate previous mistakes.

(ii) ∼3000 randomly extracted KiDS sources with r-band mag-
nitude brighter than 21. To provide the network with general true
negatives.

(iii) ∼1000 KiDS sources visually classified as spiral galaxies
from an on-going new project of GalaxyZoo (Willett et al. 2013,
Kelvin et al., in preparation). This is done to decrease the false
positives due to spiral features. To select the galaxies, we used a
preliminary reduced version of the GAMA-KiDS Galaxy Zoo cata-
logue for the GAMA09 9 h region (see Driver et al. 2011 for further
details). This catalogue contains ∼104 sources out to a redshift of
z = 0.15. We select galaxies for which a large majority of people
replied to the question ‘Is the galaxy in the centre of the image
simply smooth and rounded, or does it have features?’ with ‘it has
features’.5

There is a non-zero probability that among the contaminants
and the LRGs described in the previous section, there are actual
gravitational lenses. We can estimate that thepercentage would be
of the order of 10−2 among the contaminants and ∼1 per cent among
the LRGs (Petrillo et al. 2017). Thus, even if real lenses are actually
in the training sample, with such a smallpercentage they would not
contaminate the training procedure.

5The actual selection is done by selecting sources from the catalogue with
a value of the attribute features features frac larger than 0.6.
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Table 1. Range of parameter values adopted for simulating the lensed
sources. The parameters are drawn uniformly, except for Einstein and effec-
tive radius, as indicated. See Section 2.1.3 for further details.

Parameter Range Unit

Lens (SIE)

Einstein radius 1.0–5.0 (log) arcsec
Axis ratio 0.3–1.0 –
Major-axis angle 0.0–180 degree
External shear 0.0–0.05 –
External-shear angle 0.0–180 degree

Main source (Sérsic)

Effective radius (Reff) 0.2–0.6 (log) arcsec
Axis ratio 0.3–1.0 –
Major-axis angle 0.0–180 degree
Sérsic index 0.5–5.0 –

Sérsic blobs (1 up to 5)

Effective radius (1–10 per cent)Reff arcsec
Axis ratio 1.0 –
Major-axis angle 0.0 degree
Sérsic index 0.5–5.0 –

2.1.3 Mock lensed-sources

We simulate 106 lensed images of 101 × 101 pixels, using the same
spatial resolution of KiDS (∼0.2 arcsec per pixel), corresponding
to a 20 × 20 arcsec field of view. To produce more realistic lensing
systems, we add more complexity both in the source and in the lens
plane with respect to the simulations in Petrillo et al. (2017). The
distribution of the lens and source parameters that we choose for
simulating the lensed images are chosen to create a wide range of
realistic lensed images. They are not meant to statistically represent
a real lens population, since the training set has to be populated
sufficiently densely in the parameter space to allow the ConvNets
to learn all the possible configurations and to recognize lenses that
are rare in a real distribution (or currently even unknown). To en-
sure this, a more homogeneous distribution of the parameters is
advantageous in order not to overtrain on the most common lens
configurations.

We proceed in the following way, we sample the parameters of the
singular isothermal ellipsoid (SIE; Kormann, Schneider & Bartel-
mann 1994) and Sérsic (1968) source models as listed in Table 1.
The values of the lens Einstein radius and the source effective radius
are drawn from a logarithmic distribution, while the remaining pa-
rameters, listed in Table 1, are drawn from a uniform distribution.
In this way, our simulation sample contains a higher fraction of
smaller rings and arcs compared to Petrillo et al. (2017) for making
the new ConvNets more sensitive to this kind of objects with respect
to the old one. The source positions are chosen uniformly within the
radial distance of the tangential caustics plus one effective radius
of the source Sérsic profile. This leads our training set to be mostly
composed of high-magnification rings, arcs, quads, folds, and cusps
rather than doubles (Schneider et al. 1992). To add complexity in
the lensed sources, besides the Sérsic profile, we add between 1 and
5 small circular Sérsic blobs. The centres of these blobs are drawn
from a Gaussian probability distribution function (PDF) around the
main Sérsic source. The width of the standard deviation of the PDF
is the same as the effective radius of the main Sérsic profile. The
sizes of the blobs are chosen uniformly within 1–10 per cent of the
effective radius of the main Sérsic profile. The Sérsic indices of

the blobs are drawn using the same prescription as for the main
central source. The amplitudes of the blobs are also chosen from a
uniform distribution in such a way that the ratio of the amplitude of
an individual blob to the amplitude of the main Sérsic profile is at
most 20 per cent.

Moreover, we add Gaussian random field (GRF) fluctuations
to the lens potential, which, to a first-order approximation, make
the lens sample more realistic by adding small scale substructures
(Chatterjee & Koopmans 2018). The GRF realizations we added
in our simulations all follow a power-law power-spectrum with a
fixed exponent −6, which is to the first order a good approximation
of substructures in lens plane in the � cold dark matter paradigm
(Hezaveh et al. 2014). The variances of the realizations are drawn
from a logarithmic distribution between 10−4 and 10−1 about mean
zero in the units of square of the lensing potential. This yields both
structured sources and lenses that are not perfect SIE.

For each source, a realistic colour is simulated to create images in
g, r, i bands. In order to produce realistic 3-band images, we extract
magnitudes from ‘COSMOS’ models in LE PHARE (Arnouts et al.
1999; Ilbert et al. 2006). This library of spectra, consists of 31
models, used for COSMOS photo-z (Ilbert et al. 2009). The basic
‘COSMOS’ library is composed of eight templates for elliptical/S0
galaxies, 11 for spiral types, and 12 for galaxies with star-burst ages
ranging from 0.03 to 3 Gyr, allowing us to span a wide range of
galaxy types and colours. In order to simulate the typical blue arcs
observed in most of the observed lenses, we choose models bluer
than S0 and calculate observer-frame magnitudes in the three KiDS
wavebands g, r, and i for model spectra redshifted up to a redshift of
z = 3 with a 0.1 binning. Moreover, to populate the magnitude-space
more uniformly, we perturb the three magnitudes adding to each of
them a random number uniformly extracted from the range [−0.1,
0.1] mag. We also take into account dust extinction by considering
a colour excess E(B − V), we extract it from a normal distribution
with σ = 0.1 and mean 0 considering only the positives values. In
this way, we obtain a small extinction correction in order to avoid
very red lensed sources that, in the real universe, are much rarer
than blue ones. We adopt a typical extinction curve with RV = 3.1,
using the relation Ax = Rx E(B − V ) where x represents the value
for the g, r, and i SDSS-filters that can be found in table 2 of Yuan,
Liu & Xiang (2013). Finally, we convolve the three images with an
average KiDS–DR3 PSF for each different band: with an FWHM
of ∼0.86 arcsec for g, ∼0.68 arcsec for r, and ∼0.81 arcsec for i
(de Jong et al. 2017).

2.2 Creating the training set

The data presented above are used to build the training set that is
composed of mock strong-lensing systems (labelled with a 1) and
non-strong-lensing systems (labelled with a 0), i.e. objects without
lensing features. In the following, we outline the procedure used to
build the two kinds of objects in the training set.

Mock strong-lensing systems. To create mock strong-lensing sys-
tems, we carry out the following procedure.

(i) We randomly choose a mock lensed source (Section 2.1.3) and
an LRG (Section 2.1.1); we rescale the brightness of the simulated
source to the peak brightness of the LRG in the r-band multiplied
by a factor α randomly drawn from the interval [0.02, 0.3]. This
accounts for the typical lower brightness of the lensing features with
respect to the lens galaxies;

(ii) we stack the LRG and the mock source for each one of the
three bands;
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Figure 1. Examples of RGB images of simulated strong lens galaxies used to train the ConvNets. The lens galaxies are observed KiDS galaxies, while the
lensed sources are simulated, as described in Section 2.1.3.

(iii) for the single-band images, we clip the negative values of
the pixels to zero and performing a square-root stretch of the image
to emphasize lower luminosity features. Instead, we create 3-band
images with HUMVI that operates an arcsinh stretch of the image
following the Lupton et al. (2004) composition algorithm;

(iv) finally, we normalize the resulting images by the galaxy peak
brightness (only for single-band images).

Some examples of mock strong-lensing systems obtained in this
way are shown in Fig. 1.

Non-strong-lensing systems. To create the non-strong-lensing
system sample, we carry out the following procedure:

(i) we choose a random galaxy from either the LRG sample
(with a probability of 20 per cent) or from the contaminant sample
(80 per cent probability);

(ii) we clip the negative values of the pixels to zero and perform-
ing a square-root stretch of the images. We create 3-band images
with HUMVI;

(iii) we normalize the images by the galaxy peak brightness (only
for single-band images).

Finally, we augment the images, which is a standard proce-
dure in machine learning (see e.g. Simard, Steinkraus & Platt
2003). It is used to avoid overfitting by expanding artificially the
training set through different transformations of the images. Be-
fore feeding the images to the ConvNets, we apply the following
transformations:

(i) a random rotation between 0 and 2�;
(ii) a random shift in both x and y direction between −4 and +4

pixels;
(iii) a 50 per cent probability of horizontally flipping the image;
(iv) a rescaling with a scale factor sampled log-uniformly be-

tween 1 and 1.1.

All transformations are applied to both the mock strong-lensing
systems and the non-strong-lensing systems. The final set of inputs
of the ConvNets are postage stamps of 101 times 101 pixels that
correspond to ∼20 × 20 arcsec. The images are produced in real-
time during the training phase. For more details on the training
phase see Appendix A.

3 ANALYSIS

After the training is completed, the ConvNets must be tested in
order to assess whether the training was successful. In this section,
we define the metric for evaluating the results and evaluate the
performances of the ConvNets on a dataset composed by non-lenses
and mock lenses in comparison to Petrillo et al. (2017).

3.1 Performance metric

To evaluate the performances of the ConvNets, we use:

(i) the true-positive rate (TPR), which measures the fraction of
positive objects (in our case the lenses) detected by the algorithm.
It is given by the ratio between the number of real positive (the
number of real lenses that algorithm finds) and the sum of the latter
and the number of false negatives (the lenses that the algorithm does
not find):

TPR = NTruepositives

NTruepositives + NFalsenegatives
∈ [0, 1]; (2)

(ii) the false-positive rate (FPR), which measures the fraction
of negative objects (non-strong-lensing systems) misclassified as
positives (lenses). It is given by the ratio between the number of
false positive (the number of non-lenses that algorithm misclassifies
as lenses) and the sum of the latter and the number of true negatives
(the non-lenses that the algorithm classifies correctly)

FPR = NFalsepositives

NTruenegatives + NFalsepositives
∈ [0, 1]; (3)

(iii) these two quantities can be used to build receiver operating
characteristic (ROC) curves that allow us to check at a glance the
degree of completeness and contamination of a binary classifier.
ROC curves are created by plotting TPR as a function of FPR
varying the threshold of detection for p between 0 and 1. This
allows us to tune the value for the threshold for p in order to get the
desired amount of TPR and FPR for a given classification problem.
In our case, p is the output of the ConvNet and we can tune the p-
threshold depending how many lens candidates we desire and what
level of contamination is deemed to be acceptable.

3.2 Performance

The ROC curves for a test-set composed of 5000 mock strong-
lensing systems and 5000 non-strong-lensing systems created, as
described in Section 2, are shown in Fig. 2. In general, the 3-bands
ConvNet has a better performance than the 1-band ConvNet, retriev-
ing more mock strong-lensing systems than the 1-band ConvNet.
On the contrary, the 1-band ConvNet is less contaminated by false
positives at higher values of the threshold for p. Since gravitational
lenses are rare events, it is important to keep a low value of FPR.
Otherwise a candidate sample selected from real data would be
dominated by false positives and a large amount of time would be
needed to discard them through a visual inspection. In Fig. 3, we
show, for a fiducial value for the threshold of the detection p =
0.8, thepercentage of false negatives (i.e. thepercentage of lenses
that have been misclassified) as a function of the Einstein radius,
RE, and the source over lens-galaxy brightness contrast, α, defined
in Section 2.2. Lenses with small Einstein radii and low-contrast
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Figure 2. ROC curves for the 1-band (blue) and 3-band (red) ConvNet.
Each point of the curves is the TPR versus FPR for different values of
threshold for p (decreasing from left to right; some values are shown on the
curve for reference).

lensed images are, as expected, the ones with which the ConvNets
struggle the most. This suggests that our mock lens training samples
currently covers the range in which lenses are found most easily.
Smaller lenses are effectively smeared to an unrecognizable config-
uration by the PSF and fainter lensed sources will be too noisy to
detect. In Fig. 3, we also see that the accuracy decreases for larger
Einstein radii, possibly due to the fact that we covered the Einstein
radius with logarithmic distribution, focusing slightly more on the
small-separation systems, and secondly because their lensed images
are more likely to blend in to the local environment and therefore
harder to distinguish from nearby galaxies by the ConvNets.

However, because our goal is to efficiently select true strong-
lenses in real astronomical observations, therefore it is necessary to
assess the TPR and FPR when the ConvNets are applied to real data
where the performance might be worse than on a simulated dataset.

4 APPLICATION TO REAL DATA

Testing the ConvNets on real data is fundamental, since the algo-
rithms have been trained on a mixture of real and simulated data.

It is not trivial how the method will perform on a completely real
dataset, since the domain of application is slightly different with
respect to the domain where the ConvNets have been trained on.
Ideally, the morphologies in the ensemble of simulated strong-lens
systems and non-strong-lens systems would be a fair representation
of all morphologies observed in their equivalents in real observa-
tions.

Hence, to properly analyse the performances of the ConvNets,
we apply them to the full LRG sample composed of 21 789 galaxies
extracted from 255 square degrees as described in Section 2.1.1.
Using the same LRG sample of Petrillo et al. (2017) allows us to
assess whether there has been any improvement with respect to
our previous work. For each galaxy image, we opt to obtain an
average prediction given by the average of the p’s for the original
image and the images obtained operating a rotation of 90◦, 180◦,
and 270◦, respectively. Generally, this procedure allows to increase
the accuracy of the classifications.

4.1 Results on the LRG sample

In Fig. 4, we show the number of lens candidates detected varying
the threshold p. The 1-band ConvNet detects more lens candidates
compared to the 3-band one for any given threshold for p. For each
of the three ConvNets, it holds that the lower the threshold in p is
set, the more candidates will have to be inspected visually. In other
words, one wants to set as the threshold to an as low as possible value
that yields both a sufficiently large sample of candidates and a suffi-
ciently high TPR for the purpose of the scientific project. In Petrillo
et al. (2017), we used visual inspection to select visually promising
strong-lens candidates within the sample of systems assigned with
a p > 0.5 by the ConvNet. This sample contains 56 candidates.
Moreover, in Petrillo et al. (2017), we selected a subsample of 22
candidates based on the agreement between their expected Einstein
radii, computed from the stellar mass or the velocity dispersion of
the candidate lens galaxies, and the actual galaxy-image configu-
rations. This does not guarantee that the 22 candidates are actual
lenses but it allows us to exclude the cases with more implausible
configurations. Fig. 5 compares the p-values for these two samples
assigned by the two new ConvNets to those assigned by Petrillo
et al. (2017) ConvNet.

Figure 3. Percentage of false negatives (i.e. thepercentage of lenses that have been misclassified) for bins of RE and α defined as the ratio between the peak
brightness of the lens galaxy and the lensed source.

MNRAS 482, 807–820 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/482/1/807/5116172 by guest on 20 N
ovem

ber 2018



Testing ConvNet lens-finders 813

Figure 4. Number of detections as a function of the threshold for p for the
1-band (blue) and the 3-bands ConvNet (red) compared to the ConvNet of
Petrillo et al. (2017, grey).

We note that the p-values of the new ConvNets have a noticeable
peak at high values that becomes even more pronounced consider-
ing only the 22 candidates. In particular, the single-band ConvNet
selects high-confidence candidates assigning high values of p. This
is a fair improvement of the performance of the algorithm since
there is a larger clustering of the higher visually ranked candidates

towards the high p-values. Instead in Fig. 6, we show the subset
of the 56 galaxies that the new ConvNets classify with p < 0.5.
For the 1-band finder, there are no clear candidates that would be
lost; maybe a couple of galaxies could be considered acceptable
lens candidates, while for the rest a low p-value it is the ideally
desired output. In particular, three candidates (third, fourth, and
fifth galaxy in Fig. 6, which have been selected as lenses in Petrillo
et al. 2017 by visual inspection but after a more careful analysis
have been revealed as false positives (likely a merger and two ring
galaxies) are classified as non-lenses. Thus, the new finder does cu-
mulatively a better job in excluding contaminants and selecting lens
candidates. Instead, the 3-bands lose some acceptable candidates,
but more importantly misidentifies a known gravitational lens and a
clear good candidate (first and second galaxy in Fig. 6). This needs
further investigation, thus, in the following subsection, we analyse
the behaviour of the two lens-finders on a small sample composed
by real lenses and striking lens candidates.

4.2 Application to a small sample of clear lens candidates

Additional insights on ConvNet performance can be obtained from
inspecting the results on a set of real lenses and striking lens can-
didates. We gather a set of six galaxies composed as follows (see
Fig. 7).

(i) The four confirmed lenses known in literature that are present
in our LRG sample: J085446 − 012137 (Limousin et al. 2010),

Figure 5. The first row shows the distribution of the scores for the 56 candidates with p > 0.5 selected in Petrillo et al. (2017). The scores of the 1-band (blue)
and 3-bands ConvNet (red) are compared with those of Petrillo et al. (2017, grey). The second row shows the same for a subsample of 22 candidates selected
as described in Section 4.1.
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