Minireview

Ubiquitous late competence genes in *Bacillus* species indicate the presence of functional DNA uptake machineries

Ákos T. Kovács,1 Wiep Klaas Smits,1† Aleksandra M. Mirończuk1 and Oscar P. Kuipers1,2*
1 Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, the Netherlands.
2 Kluyver Centre for Genomics of Industrial Fermentation, Delft, the Netherlands.

Summary

Natural competence for genetic transformation, i.e. the ability to take up DNA and stably integrate it in the genome, has so far only been observed in the bacterial kingdom (both in Gram-negative and Gram-positive species) and may contribute to survival under adverse growth conditions. *Bacillus subtilis*, the model organism for the *Bacillus* genus, possesses a well-characterized competence machinery. Phylogenetic analysis of several genome sequences of different *Bacillus* species reveals the presence of many, but not all genes potentially involved in competence and its regulation. The recent demonstration of functional DNA uptake by *B. cereus* supports the significance of our genome analyses and shows that the ability for functional DNA uptake might be widespread among *Bacilli*.

Introduction

The Gram-positive bacterium *Bacillus subtilis* is a soil-dwelling member of the genus *Bacillus*, which comprises commercially interesting (for instance *B. amyloliquefaciens*, *B. licheniformis* and *B. stearothermophilus*) as well as pathogenic species (such as *B. cereus* and *B. anthracis*). It can be isolated from many environments (Vilain *et al.*, 2006) and it is regarded a model organism for Gram-positives, because of its long history of scientific research and good experimental amenability (Sonenshein, 2002). In addition to this, *B. subtilis* was one of the first bacteria for which cellular differentiation was recognized (spore formation and competence development). As spore formation is accompanied by easily visible morphological changes, much of the early research on cellular differentiation was aimed at the isolation, mapping and classification of sporulation genes (Hoch, 1971; Piggot and Coote, 1976). Groundbreaking work of Anastagnostopoulos and Spizizen in the early 1960s established a competence regime for *B. subtilis* (Spizizen, 1958; Anastagnostopoulos and Spizizen, 1961), making it genetically accessible and paving the way for advanced molecular research. As a result, the characterization of competence and competence genes has become one of the longest standing fields of investigation for this bacterium. Since that time, many genes and proteins involved in competence have been characterized (for reviews see Hamoen *et al.*, 2003; Chen and Dubnau, 2004).

DNA uptake apparatus in *Bacillus subtilis*

The ability to take up naked DNA has been detected in eu-bacteria, including Gram-positive (e.g. *Bacillus*, *Streptococcus*) and Gram-negative species (e.g. *Campylobacter*, *Haemophilus*, *Helicobacter*, *Neisseria*, *Vibrio*) (Lorenz and Wackernagel, 1994). It may help bacteria to survive under adverse conditions such as nutrient limitation (Finkel and Kolter, 2001; Claverys *et al.*, 2006; Palchevskiy and Finkel, 2006). In addition, it has been suggested that the thermophilic traits of the highly transformable bacterium *Thermus thermophilus*, which allow it to survive under extreme temperatures, were acquired via gene transfer (Averhoff, 2009). The DNA uptake machinery in most competent bacteria is related to Type II secretion systems and Type IV pili (Dubnau, 1999). In the case of Gram-positive organisms, such as *B. subtilis*, the presence of a thick peptidoglycan layer necessitates the modulation of the cell wall make-up in order for the DNA...
to access a membrane-located receptor, ComEs, which contains a DNA binding domain in its C-terminus (Provvedi and Dubnau, 1999). The proteins encoded by the comG operon resemble those of type IV pili (Dubnau, 1997) and are thought to form a structure called the competence pseudopilus (Chen and Dubnau, 2004; Chen et al., 2006). The ComG protein is believed to be a traffic NTPase, providing the energy for the assembly of the competence pseudopilus. Single molecule measurements of DNA translocation into B. subtilis have demonstrated that DNA uptake depends on the transmembrane proton motive force (Maier et al., 2004). The ComG protein localizes to the cell-pole during competence, and hence functional transport is believed to take place at that site (Hahn et al., 2005). ComGb is a polytopic membrane protein that is required for pilus assembly. The major pseudopilin is ComGc, while ComGd, ComGe and ComGg are minor pseudopilins. All of these proteins are produced as prepsilins, and require cleavage of an N-terminal sequence by the prepilin peptidase ComC before assembly into a pseudopilus is possible (Chung and Dubnau, 1995; Chen et al., 2006). Recently it was reported that intramolecular disulfide bonds in the major pseudopilin ComGc, dependent on the thiol-disulfide oxidoreductase pair BdbCD, are required to stabilize the protein (Meima et al., 2002; Chen et al., 2006). Strikingly, the competence pseudopilus is dispensable for DNA binding in the absence of a cell wall (Provvedi and Dubnau, 1999), supporting the hypothesis that it modulates the cell wall in such a way that the DNA gains access to the ComEs receptor protein. The receptor subsequently delivers the DNA to the permease, ComEs. Oligomers of the ComEs protein, that is essential for DNA uptake (Hahn et al., 1987; Inamine and Dubnau, 1995; Dubnau, 1999), form an aqueous pore through which the DNA is transported into the cell (Draskovic and Dubnau, 2005). Like ComGc, the protein contains an intramolecular disulfide bond that is probably introduced by BdbCD (Draskovic and Dubnau, 2005). ComFa is a membrane-associated protein (Londono-Vallejo and Dubnau, 1994) that is structurally similar to an ATP-dependent family of helicases and may act as the motor protein for DNA transport (Londono-Vallejo and Dubnau, 1993). Alternatively, its helicase activity may be required for unwinding of incoming double-stranded DNA. However, only single-stranded DNA (ssDNA) was shown to be taken up into the cells (Venema et al., 1965; Dubnau and Cirigliano, 1972). The non-transforming strand is degraded by an unidentified nuclease, which is presumably located on the outside of the membrane (Chen and Dubnau, 2004), and the degradation products are released into the medium (Dubnau and Cirigliano, 1972). The importance of DNA processing for transport is reinforced by the notion that the introduction of double strand breaks (cleavage) is required for efficient uptake, facilitated by the competence-induced nuclease NucA (van Sinderen et al., 1995; Provvedi et al., 2001). In order to reconstitute replicative plasmids or allow recombination of the transforming ssDNA with the host chromosome, the DNA has to be shielded from the action of nucleases by association with a competence-induced ssDNA binding protein (Eisenstadt et al., 1975), which likely corresponds to DprA (Smf) (Mortier Barriere et al., 2007; Tadesse and Graumann, 2007), SsbB (YwpH) (Lindner et al., 2004; Hahn et al., 2005; Morrison et al., 2007) and/or RecA (Lovett et al., 1989; Kidane and Graumann, 2005). Indeed, colocalization of these proteins with ComGg and ComFg, in vivo has been observed at the cell pole using fluorescence resonance energy transfer experiments (Kramer et al., 2007). Plasmids are reconstituted and stably maintained, while ssDNA can be integrated into a homologous double-stranded DNA duplex mediated by the RecA ATPase. Its function depends in part on a helicase/nuclease complex that is formed by the AddAB proteins in B. subtilis (Hajjema et al., 1995; Arnold and Kowalczykowski, 2000; Kidane and Graumann, 2005), although it has been noted that the addAB genes were not identified as ComK-dependent in a DNA array analysis of the ComK regulon (Hamen et al., 2002). CoiA (YjbF) contributes to the recombination process in a way that is not fully understood (Desai and Morrison, 2006; 2007). Notably, an extensive network of interactions exists between proteins that act after DNA uptake (Kidane and Graumann, 2005; Kramer et al., 2007; Mortier Barriere et al., 2007).

ComK, the master regulator for competence development in Bacillus

The transcription of the genes that encode the DNA-binding, uptake and recombination proteins is controlled by the auto-activating competence transcription factor ComK (van Sinderen and Venema, 1994). In B. subtilis, the induction of this protein is strictly regulated at the level of comK transcription as well as posttranslationally. Transcription of comK is repressed by binding of AbrB, CodY and Rok to the comK promoter region (Hamen et al., 2003), whereas the ComK protein is trapped by MecA and targeted for proteolytic degradations by ClpCP (Turgay et al., 1998). High cell density is a prerequisite for optimal competence development, as at least two independent quorum sensing pathways induce the production of anti-adaptor protein ComS, which liberates ComK from the proteolytic complex (D’Souza et al., 1994; Hamen et al., 1995; Turgay et al., 1997; Prepiak and Dubnau, 2007).

Through the use of whole genome DNA microarrays, it was established that ComK is directly or indirectly responsible for the activation of ~100 genes (Berka
ComK activates transcription by binding through the minor groove to specific sequences, so called K-boxes that are composed of two AT-boxes with the consensus sequence AAAA-N5-TTTT. The boxes are separated by a spacing of a discrete number of helical turns, which places them on the same side of the DNA-helix (Hamoen et al., 1998).

Distribution of genes encoding the competence machinery in various Bacilli

Competence development within the *Bacillus* genus has so far been described for *B. subtilis*, *B. licheniformis* and *B. amyloliquefaciens* (Spizizen, 1958; Thorne and Stull, 1966; Koumoutsi et al., 2004), but not for *B. cereus*, *B. anthracis* or other *Bacillus* species. With the availability of the genome sequence of other members of *Bacillaceae* (Takami et al., 2000; Ivanova et al., 2003; Read et al., 2003; Rasko et al., 2004; Rey et al., 2004; Han et al., 2006), our attention was drawn to the high number of homologues of competence-related genes in other species.

Up to now, the only functional competence machinery that has been characterized in detail is the one of *B. subtilis*. Similarly, the genetic network controlling the differentiation into the competent state has only been thoroughly characterized for this species. To gain insight in the function and evolution of the DNA uptake machinery, we have analysed all the completely sequenced bacterial genomes of *Bacillaceae* and other closely related bacteria, one *Oceanobacillus* and two *Geobacillus* species, as they are deposited in the NCBI database (20 genomes in January 2009). These BLAST analyses revealed the presence of many orthologous genes putatively involved in DNA uptake, and are visualized with Genesis software (Sturn et al., 2002) in Fig. 1.

Fig. 1. Presence of homologues of competence regulator proteins (A) and competence-related structural proteins (B) in *Bacillus* and closely related species. Results of BLAST searches were visualized with Genesis 1.6 software: white is absent (with e-value of E-0), dark blue is present (e-value < E-20). BLAST analysis was performed with *B. subtilis* protein sequences against translated protein database of a given genome. Where no hit (or bellow E-05) was found additional TBLASTN was performed. Protein names are indicated on the right. Bsu, *B. subtilis*; Bam, *B. amyloliquefaciens*; Bli, *B. licheniformis*; Bpu, *B. pumilus*; Ban, *B. anthracis*; Bce, *B. cereus*; Bth, *B. thuringiensis*; Bwe, *B. weihenstephanensis*; Oih, *O. iheyensis*; Gka, *G. kaustophilus*; Gth, *G. thermodenitrificans*; Bcl, *B. clausii*; Bha, *B. halodurans*.

Presence of the master regulator, ComK, in members of the Bacillus genus

In B. subtilis, competence development is strictly dependent on the ComK protein. Homologues of the comK gene were present in most species, but could not be detected in B. clausii KSMK16 and B. halodurans C-125. The presence or absence of comK in these species does not seem to be correlated to the presence of other competence genes. Assuming a similar dependency for competence development on ComK, this suggests that the gene may have been lost recently. In support of this, some other genes are either absent (nucA, nin, addB) or less conserved (comGD) compared with species that do harbour a comK gene (Fig. 1). In addition, the comG operon of B. clausii and B. halodurans contains an inserted tRNA region. Both these species are alkaliphilic and it is possible that diversification into an alkaline environment is not compatible with natural competence. Disruption of competence gene homologues by tRNA genes is reminiscent of the prophage insertion in comK of Listeria monocytogenes (Boreeze et al., 2000).

Interestingly, species from the B. cereus group of Bacilli (B. cereus, B. anthracis, B. thuringiensis and B. weihenstephanensis) contain two genes with homology to ComK (hereafter referred to as ComK1 and ComK2) (Fig. 2B). The putative ComK proteins show 61–62% (ComK1) and 44–48% (ComK2) similarity to B. subtilis ComK respectively. The ComK1 proteins, in general, are similar in length to the B. subtilis ComK protein, whereas the ComK2 proteins of the B. cereus group appear to be C-terminally truncated by 22–32 amino acids (Fig. 3).

Strikingly, the ComK/ComK1 proteins of outliers G. kaustophilus, G. thermodenitrificans and O. iheyensis are similarly 15, 10 and 23 amino acids shorter than the B. subtilis ComK protein respectively, raising the possibility that such a specific truncation may be relevant for the function of the protein. Oceanobacillus iheyensis ComK2 is 39 amino acids shorter. Previous studies on B. subtilis ComK have shown that a 25–35-amino-acid C-terminal truncation is incapable of transcriptional activation of a specific late competence promoter (PcomG) (Susanna et al., 2006), although the protein retained its ability to bind to DNA. Potentially, the multimerization of the ComK protein, presumably required for comG activation in B. subtilis, is affected. It will be of great interest to determine the oligomeric state of the various ComK1 and ComK2 proteins. Notably, both ComK1 and ComK2 of B. cereus ATCC14579 possess DNA binding activity (A.M. Mironczuk, Á.T. Kovács and O.P. Kuipers, unpublished).

The C-terminal part of the B. subtilis ComK protein shows homology to the DNA binding domain to two High

Fig. 2. Phylogenetic trees based on the RpoB (A) and ComK (B) protein sequences. Proteins were aligned using Clustal W (Thompson et al., 1994) and an evolutionary tree was generated using Treecon software (Van de Peer and De Wachter, 1994). The grouping of ComK/ComK1 and ComK2 proteins is indicated. For abbreviations of species names see Fig. 1. In the case of B. anthracis and B. licheniformis strains the proteins are grouped and strain names are not indicated as the corresponding protein sequences are identical.
DNA uptake among *Bacillus* species 1915–1922

Fig. 3. Multiple alignment of ComK homologues. The ComK proteins of *B. cereus* ATCC14579 are highlighted with boxes. Black background represents conserved amino acids and grey background represents similar amino acids. Alignment was performed using Clustal W (Thompson *et al.*., 1994), and presented using the Boxshade 3.21 program. The N- and C-terminal deletions analyzed by Susanna and colleagues (2006) are marked. Boxed amino acid residues indicate the residues involved in interaction with MecA (Prepiak and Dubnau, 2007). Alpha-helices and beta-sheets of *B. subtilis* ComK protein are indicated with rectangles and arrows under the alignment respectively. For abbreviations of species names see Fig. 1. In the case of *B. anthracis* and *B. licheniformis* strain names are not indicated as ComK protein sequences are identical within the different strains of the same species.
Mobility Group proteins, SRY and TCF-1, that like ComK bind through the minor grove of the DNA and induce bending. However, as both C-terminally truncated _B. subtilis_ ComK (Susanna _et al._, 2006) and ComK2 of _B. cereus_ – that lacks this region – have DNA binding activity, it seems unlikely that the region of homology is the sole DNA binding domain of ComK. It is conceivable, however, that this region is required for modulating the DNA topology, a property that may be critical for transcriptional activation by _B. subtilis_ ComK (Smits _et al._, 2007).

A quest for ComK binding sites in the upstream region of putative competence related genes in _B. cereus_ ATCC14579 reveals the presence of AT-boxes, although spacing between these sites mostly does not correspond to the spacing in functional K-boxes found in _B. subtilis_. This makes it likely that the _B. cereus_ ComK proteins recognize a different sequence or that they bind as a dimer to AT-boxes, rather than as tetramer to K-boxes.

The regulation of ComK levels

Recently, it was found that the C-terminus of ComK contains a region that is required and sufficient for the interaction with MecA (Prepiak and Dubnau, 2007). This FMLYPK motif can be found in the more closely related _B. subtilis_, _B. amyloliquefaciens_, _B. licheniformis_ and _B. pumilus_, but not in any other _B. cereus_ homologues (Fig. 3 and Prepiak and Dubnau, 2007). This indicates either (i) that a different interaction site is responsible for controlling ComK levels in these species or (ii) that it does not involve a MecA homologue. In either case, the regulatory events upstream of _comK_ expression may differ significantly from that of _B. subtilis_. One possibility is that the regulation does not involve quorum sensing-dependent production of an anti-adaptor protein, such as ComS. In support of this, _comS_ could not be identified in the _srF_A_ genes of the _B. cereus_ group. Moreover, genes from the quorum sensing pathway could not unambiguously be identified in most species (Fig. S1). It has to be noted that the prediction of small open reading frames (ORFs) is not trivial and the _comS_ gene may be located in other regions of the chromosome.

Not surprisingly considering their function in other pathways (Hamoen _et al._, 2003), the pleiotropic regulators that directly or indirectly control _comK_ transcription (e.g. DegU, CodY, AbrB and Spo0A) were almost universally identified in all species (see Fig. S1). As noted before, Rok may have been acquired recently, as it is only present in the _B. subtilis_/amyloliquefaciens/pumilus/licheniformis group (Albano _et al._, 2005). Whether these regulators have a role similar to the one in _B. subtilis_ competence development remains to be established.

Structural genes for DNA uptake machinery in various Bacillus species

For all species analysed, homologues for most of the structural genes encoding DNA uptake machinery could be identified. Two striking exceptions are the _comF_B and _comG_EFG_ genes.

The _comF_B gene was present only in _B. subtilis_ and its close relatives _B. amyloliquefaciens_, _B. licheniformis_ and _B. pumilus_, whereas the downstream _comF_C_ gene was present in all species analysed. The first gene of the _comF_ operon encodes a helicase-like protein essential for transformation. The function of _ComF_B_ is unknown, although transformation frequencies are slightly reduced in a _comF_B_ mutant (Londono-Vallejo and Dubnau, 1993). Possibly, _ComF_B_ is an auxiliary protein, acquired after the branching of the _B. subtilis_/amyloliquefaciens group (Fig. 2a). It is interesting that a _comF_B_ homologue is also missing in the more distantly related _Streptococcus pneumoniae comF_ operon (Berge _et al._, 2002).

The putative _ComG_ -operons demonstrate some interesting features. Whereas _ComG_AB_ homologues (the ATPase and the polytopic membrane protein respectively) are present in all species analysed and _ComG_CD_ (similar to pilins) could also be confidently identified in at least the _B. cereus_ lineage (on the basis of genome location, homology and size of the encoded protein), no homologues of the _ComG_EFG_ proteins (minor pilins) were detected (e-value > E-1) in any other species than _B. subtilis_, _B. amyloliquefaciens_, _B. licheniformis_ and _B. pumilus_ (Fig. 1). In _B. subtilis_, all seven ORFs of the _comG_ operon are required for efficient transformation (Chung and Dubnau, 1998), and it is conceivable that the absence of these genes explains the fact that no functional DNA uptake has been reported for these organisms. However, the genes downstream of _comG_A_ are conserved within the _B. cereus_ group and it is plausible that they encode functional homologues of the _B. subtilis_ _ComG_EFG_ proteins (Fig. 4). In spite of the lower homology of these proteins to _B. subtilis_ _ComG_EFG_ at the level of whole protein, the N-terminal regions locally show a higher level of conservation (Fig. S2). The N-terminal region of minor pilins contains the conserved prepilin-like domain. Alternatively, _ComG_ABCD_ might be sufficient in these organisms. Notably, the _comG_A_ gene is truncated in _B. cereus_ _Cyto_ toxins strain and in contrast to the conserved DNA sequence within the _comG_ operon no clear _orf_ for _comG_D_ can be assigned, while the allotted _orf_ for _comG_D_ is elongated (Fig. 4).

The _comG_ operon of the alkalophilic _Bacillus_ is disrupted by a tRNA island after _comG_A_. However, _ComG_CD_ proteins are encoded by genes downstream of the island, and at least in the case of _B. clausii_ the genes downstream of _comG_D_ show strong homology to the _B. cereus_ group of...
downstream genes (BC4236-BC4235 genes in *B. cereus* ATCC14579 respectively) (Fig. 4). In fact, the genomic arrangement of genes homologue to the *comGABCDEFG* is conserved even in *Streptococcus* species (*cglABCDEFG* in *S. pneumoniae*) (Peterson *et al.*, 2004).

Induction of competence for DNA uptake in Gram-negative and Gram-positive bacteria

The conditions that trigger natural competence can vary greatly, and may include medium/nutrient limitation, growth phase, cell density and other stresses (Claverys *et al.*, 2006). Additionally, it may depend on a given substrate in the environment, as was recently described for *Vibrio cholerae* (chitin) (Meibom *et al.*, 2005) or occur only during a short period [e.g. *Streptococci* (Claverys *et al.*, 2006) or *Acinetobacter baylyi* (Porstendorfer *et al.*, 2000; Friedrich *et al.*, 2001)]. As a result, establishing a competence regime can be a daunting task and this may in part explain the lack of successful transformation of species harbouring homologues of competence genes.

The mechanism of regulation of competence development generally diverges more than the DNA uptake machinery (Claverys and Martin, 2003), consistent with our findings in this study. Hence, several laboratories have focused on artificially inducing competence through the controlled expression of the putative key regulator. The ability to induce the expression of late competence genes has been shown for *Streptococcus pyogenes* (Woodbury *et al.*, 2006), *Lactococcus lactis* (Wyday *et al.*, 2006) and *Streptococcus thermophilus* (Blomqvist *et al.*, 2006). However, only in the latter it was accompanied by

Fig. 4. The structure of the *comG* operon in *Bacillus* species. The putative functions of ComGA, ComGB, ComGC and ComGDEFG are traffic ATPase, polytopic membrane protein, major pilin and minor pilins respectively. For abbreviations of species names see Fig. 1. Genes in blue symbolize *B. subtilis* *comG* genes and homologues in other species. Orange is used for genes conserved in the *B. cereus* group and *B. clausii*, while yellow shows other conserved genes. Asterisk labels a truncated gene, while dotted arrow symbolizes region where no *orf* can be assigned, but high homology at DNA level.

functional DNA uptake (Blomqvist et al., 2006), raising the question what prevents competence in the other instances. It has to be noted that in Streptococci the key regulator for the induction of genes for DNA uptake is a competence-specific sigma factor (ComX), different from the ComK protein described for Bacilli (Claverys et al., 2006).

Lack of transformation may be attributed to mutations or insertions that render essential competence proteins non-functional. For instance, the comK gene of L. monocytogenes is interrupted by the insertion of a prophage (Borezee et al., 2000). In this respect, the report that a clinical isolate of S. pyogenes (Sparling, 1966) seems to be capable of DNA transfer is noteworthy (Hidalgo-Grass et al., 2002). The complementation of putative non-competent strains with functional components of DNA-uptake machineries from closely related species may identify loss-of-function mutations.

Functional DNA uptake in various Bacillus species

In general, because of its dramatic impact on the physiology of the cells (Hajjema et al., 2001), competence for genetic transformation commonly only develops under certain conditions – the so-called competence regime. In fact, Neisseria gonorrhoeae is the only organism reported to demonstrate constitutive competence (Sparling, 1966). Within the genus Bacillus, a competence regime has been established for B. subtilis, B. licheniformis and B. amyloliquefaciens (Spizizen, 1958; Thorne and Stull, 1966; Koumoutsi et al., 2004). There is, however, a great interest in the other members, from both a medical and biotechnological point of view. Bacillus cereus and B. anthracis, for instance, are causative agents of common food poisoning and anthrax respectively. Bacillus halodurans and clausii have both been isolated on the basis of their biotechnological potential. Artificially induced genetic competence, depending on the expression of a functional DNA uptake apparatus, can facilitate molecular studies on these bacteria.

Bacilli grow under diverse environmental conditions and group members are commonly observed in soil (Vilain et al., 2006), in the rhizosphere of a variety of plants (Fall et al., 2004), in food samples [B. cereus (Schoeni and Wong, 2005)], in insect guts [B. thuringiensis (Jensen et al., 2003)] or in an aquatic milieu (de Barros Soares et al., 2003). These natural habitats provide complex conditions that are not easily reproduced in the laboratory. It is therefore likely that the number of *Bacillus* species identified as competent is an underrepresentation of the actual occurrence of natural competence in this genus.

Recently, it has been demonstrated that *B. cereus* has the ability to take up DNA (Mironczuk et al., 2008). Upon the overproduction of *B. subtilis* ComK protein consistently low levels of transformation with both chromosomal or plasmid DNA were obtained. These results are significant for two reasons. First, it shows that the gene reservoir of *B. cereus* ATCC14579 is sufficient for the uptake and integration of DNA from the environment. This indicates either that the lack of homologues of the *B. subtilis* comGEFG is functionally complemented in *B. cereus* or that these are proteins not needed for functional DNA uptake in this organism. Second, as the observed levels of competence are much lower than obtained by the equivalent overexpression of ComK in *B. subtilis*, it is expected that other factors (regulatory and/or structural) will be able to augment efficient DNA uptake.

The regulation of transcriptional activation of late competence genes can be conserved between closely related species (Martin et al., 2006) and the artificial induction of the key regulator of competence in *S. thermophilus* resulted in DNA uptake (Blomqvist et al., 2006). We anticipate therefore that a strategy similar to Mironczuk et al. may induce functional DNA uptake in at least the close relatives of *B. cereus*, such as *B. anthracis* and *B. thuringiensis*. Moreover, the strategy may be applicable to induce competence in natural *Bacillus* isolates, some of which demonstrate traits such as the ability to form architecturally complex communities of cells (biofilm) that have been lost in laboratory strains (Branda et al., 2001).

Concluding remarks

By screening the genomes of fully sequenced *Bacillus* species, we have identified genes encoding homologues of the proteins involved in competence in *B. subtilis*. Our findings suggest that species for which no competence regime has been established so far have the potential to develop natural competence or acquire DNA. Indeed, *B. cereus* has recently been shown to harbour a functional DNA uptake machinery. The induction of DNA uptake, either naturally or induced, will facilitate molecular genetic studies with these organisms. Moreover, the insights gained from these comparative studies extend our understanding of natural competence in general and competence in *Bacillus* species specifically and gives directions for further research on the factors required for competence in the *Bacillus* genus.

Natural competence of *Bacilli* in the environment like in the rhizosphere of plants might contribute to the genome plasticity observed in *Bacilli*, similar to conjugation that was demonstrated to occur in the rhizosphere between *B. anthracis* species (Saile and Koehler, 2006).

Future studies on competence should be aimed at answering whether a single factor is capable of inducing late competence (analogous to ComK in *B. subtilis*) and what the genetic or environmental factors affecting the activity of these regulators are (e.g. by fusing the
promoter regions of ComK and/or late competence genes to reporter genes). Moreover, complementation studies will reveal whether putative (functional) homologues such as ComG_EFG in the B. cereus group can support DNA uptake and may lead to the definition of a minimal competence machinery.

Acknowledgements
The authors wish to thank R.W.W. Brouwer for expert assistance with BLAST analysis and R. van Kranenburg for helpful discussions. A.T.K. was financially supported by PURAC and by Grant 818.02.004 from ALW-NWO Open programma, W.K.S. by Grant 811.35.002 and a Rubicon fellowship of the Netherlands Organization for Scientific Research. This project was carried out within the research programme of the Kluyver Centre for Genomics of Industrial Fermentation which is part of the Netherlands Genomics Initiative/ Netherlands Organization for Scientific Research.

References

© 2009 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 11, 1911–1922

Supporting information

Additional Supporting Information may be found in the online version of this article:

Fig. S1. Presence of homologues of proteins involved in the regulation of competence in Bacillus and closely related species. Results of BLAST queries were visualized with Genesis 1.6 software: white is absent (with e-value of E-0), dark blue is present (e-value < E-20). BLAST analysis was performed with B. subtilis protein sequences against the translated protein database of a given genome. Question
marks denote small ORFs where identification is uncertain using the available bioinformatic tools that can miss homologues. Where the search yielded no hit (or with an e-value below E-05) an additional TBLASTN was performed. Protein names are indicated on the right. Bsu, *B. subtilis*; Bam, *B. amyloliquefaciens*; Bli, *B. licheniformis*; Bpu, *B. pumilus*; Ban, *B. anthracis*; Bce, *B. cereus*; Bth, *B. thuringiensis*; Bwe, *B. weihenstephanensis*; Oih, *O. iheyensis*; Gka, *G. kaustophilus*; Gth, *G. thermodenitrificans*; Bcl, *B. clausii*; Bha, *B. halodurans*).

Fig. S2. Multiple alignments of ComGA homologues. Black background represents conserved amino acids and grey background represents similar amino acids. Alignment was performed using Clustal W (Thompson et al., 1994), and presented using the Boxshade 3.21 program. For abbreviations of species names see Fig. S1. Conserved domains of *B. subtilis* ComG proteins are indicated with arrows above the alignment. AAA+, ATPase domain (Smart accession number: SM00382); GSPII-F, general secretion pathway domain (PFAM accession number: PF00482); TMS, transmembrane segment; N-met, N-methyl domain often found at N-terminus of pilins and proteins involved in secretion (PFAM accession number: PF07963); SSeq, signal peptide sequence.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.