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We demonstrate that magnetic vortices in which spins are coupled to polar lattice distortions via

superexchange exhibit an unusually large linear magnetoelectric response. We show that the periodic

arrays of vortices formed by frustrated spins on kagome lattices provide a realization of this concept; our

ab initio calculations for such a model structure yield a magnetoelectric coefficient that is 30 times larger

than that of prototypical single phase magnetoelectrics. Finally, we identify the design rules required to

obtain such a response in a practical material.
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The ability to control magnetism with electric fields,
which can be realized through the interplay between spins
and charges in solids, has an obvious technological appeal.
The simplest form of such control is the linear magneto-
electric effect, in which an antiferromagnet in an electric
field E acquires a magnetization M, while an applied
magnetic field H induces an electric polarization P, both
proportional to the field:

Pi ¼ �ijHj; Mj ¼ �ijEi: (1)

Here�ij is the magnetoelectric tensor, and summation over

repeated indices is implied. This magnetoelectric response
requires simultaneous breaking of inversion and time-
reversal symmetries, which defines the allowed magnetic
symmetry classes and the nonzero components of the
magnetoelectric tensor. While the phenomenology of the
linear magnetoelectric effect is now well understood [1,2],
the use of magnetoelectrics is hampered by rather low
values of their magnetoelectric constants: For example,
in the prototypical magnetoelectric Cr2O3, a (large) elec-
tric field of 106 V=cm induces a (tiny) magnetization of
�10�3�B per Cr ion [3]. The search for materials with
stronger response requires new ideas about spin orders and
crystal lattices that can conspire to produce a large mag-
netoelectric effect.

Two recent developments in the related field of multi-
ferroics, which are materials with simultaneous ferroelec-
tric and (ferro)magnetic order, underlie the work we
present in this Letter. First, an early observation that spiral
magnetic order can lead to an electrical polarization [4] has
been confirmed repeatedly [5,6], and the list of such ma-
terials has been considerably enlarged. While spectacular
nonlinear magnetoelectric effects, such as reorientation of
electric polarization with a magnetic field, have been ob-
served, the polarizations in such spiral magnets are small
because they are induced by the weak spin-orbit-driven
Dzyaloshinskii-Moriya interaction [7,8]. At the same time,
a new class of multiferroics has been identified in which
the magnetic ordering couples to the lattice through

mechanisms of nonrelativistic origin, in particular, ex-
change striction arising from superexchange [9,10]. The
stronger spin-lattice coupling leads to correspondingly
larger magnetically induced ferroelectric polarizations,
with polarization values close to those of conventional fer-
roelectrics. Here we show that these two concepts from the
field of multiferroics—symmetry breaking in spiral mag-
nets and superexchange-mediated spin-lattice coupling—
can be combined to yield materials with a strong linear
magnetoelectric response.
We begin by considering the magnetoelectric response

of a single spin vortex [Fig. 1(a)]. This can be viewed as a
magnetic spiral rolled into a circle, and so we use the
following result [11] from spiral multiferroics to determine
its magnetoelectric response: The electric polarization in-
duced by rotating spins lies in the plane of the spiral and is
orthogonal to its propagation vector. Then the polarization
in a vortex is locally oriented in the radial direction. In zero
magnetic field, when the rotation of spins is uniform, this
yields zero net polarization [Fig. 1(a)]. A magnetic field
applied in the xy plane leads to a nonuniform rotation of
spins in the vortex, which results in a nonzero net electric
polarization proportional to the magnetic field [see
Fig. 1(b)]. The spin vortex shown in Fig. 1(a) has a diago-

FIG. 1 (color online). (a) A magnetic vortex carrying a mono-
pole moment. The thin solid arrows indicate the spin orientation,
while the thick open arrows show the local polarization vector.
(b) A magnetic field applied to the vortex shown in (a) induces a
net polarization along the field direction. (c) A magnetic vortex
with a toroidal moment. (d) A magnetic field applied to (c)
induces an electric polarization perpendicular to the field.
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nal magnetoelectric tensor, with magnetization induced
parallel to the applied electric field, while for the vortex
shown in Fig. 1(c), an applied magnetic field induces a
perpendicular electric polarization and the magnetoelectric
tensor is antisymmetric [see Fig. 1(d)] [12].

Next we analyze the spin-lattice coupling resulting from
the dependence of the Heisenberg superexchange interac-
tion between spins on their relative positions. Figure 2
shows a schematic diagram of a three-atom unit consisting
of two magnetic transition-metal ions connected by a
ligand, such as oxygen, that mediates superexchange.
Because of charge differences, the cations and ligand shift
in opposite directions under application of an electric
field. The exchange constant coupling the spins depends
on the amplitude of the relative shifts through the changes
in the metal-oxygen distance and the metal-oxygen-metal
bond angle �. According to the Anderson-Kanamori-
Goodenough rules [14], the exchange is antiferromagnetic
(J > 0) for � ¼ 180� and ferromagnetic (J < 0) for � ¼
90�. Experiments varying A-site cation size in transition-
metal oxides have shown that the crossover from ferro-
magnetic to antiferromagnetic coupling is continuous [15].
Therefore, the total magnetization of the unit can be modi-
fied by applying an electric field; conversely, changes in
spin orientation will affect its electric dipole moment.

Now we combine these two concepts to form a periodic
array of magnetic vortices in which the magnetic moments
are coupled through superexchange and show that the
combination leads to a large magnetoelectric response.
The macroscopic magnetoelectric response of an array of
magnetic vortices is proportional to the vortex density.
Therefore we choose the smallest possible magnetic vortex
as our building block: a triangle of antiferromagnetically
coupled spins, in which the angle between spins in the
lowest-energy state is 120� [Fig. 3(a)]. We use transition-
metal (TM) ions to provide the spins and incorporate oxy-
gen ligands between them for superexchange spin-spin
interactions. Upon application of an electric field, the shifts
of the oxygen anions relative to the positive TM ions
induce changes in the Heisenberg exchange energy, cant-
ing the spins to result in a nonzero magnetization. The
symmetry of the magnetoelectric response of the triangle is
identical to that of the magnetic vortices of Fig. 1, with the
form of the in-plane magnetoelectric tensor constrained by
its C3 symmetry to

�ij ¼ ��0
cos’ sin’
� sin’ cos’

� �
: (2)

Here ’ is the angle between spins and the radial axis. In
particular, ’ ¼ 0 [Fig. 3(a)] leads to �ij ¼ ��0�ij, so that

for �0 > 0 the induced magnetization M is antiparallel to
the electric field E; for ’ ¼ �=2,M is perpendicular to E
[Fig. 3(b)].
To transform the concepts outlined above into a model

material with a three-dimensional periodic structure, we
begin with planes of Mn atoms situated on the vertices of a
kagome lattice and assume that their spins form the 120�
structure with zero wave vector (Fig. 4), as observed, e.g.,
in iron jarosite KFe3ðOHÞ6ðSO4Þ2 [16]. This zero wave
vector spin structure is stabilized by antiferromagnetic
next-nearest-neighbor exchange interactions and magnetic
anisotropies [17,18]. At first glance, such a spin lattice
would yield no magnetoelectric response because spins
in the vortices formed at ‘‘up’’ and ‘‘down’’ triangles are
oriented in opposite senses (’ ¼ 0 and ’ ¼ �). However,
when oxygen ions are positioned outside the up triangles
and inside the down triangles, the sign of the local mag-
netoelectric coupling [�0 in Eq. (2)] also alternates and the
contributions of all triangles to�ij have the same sign. This

can be understood by comparing the magnetoelectric re-
sponse of the S2-S1 and S1-S

0
2 spin pairs and noting that,

for fixed bond lengths and angle, only the scalar product of
spins is important in Heisenberg exchange. This mecha-
nism would produce no net magnetoelectric response in the

case of kagome magnets with the so-called
ffiffiffi
3

p � ffiffiffi
3

p
spin

structure, stabilized by ferromagnetic next-nearest-
neighbor exchange [17], which contains equal numbers
of � ¼ 0, 2�=3, and �2�=3 triangles.
The two-dimensional plane shown in Fig. 4 has a similar

structure to the MnO layers of the experimentally realized
YMnO3 structure [19], which consists of a connected mesh
of oxygen trigonal bipyramids with Mn atoms at their
centers. Using this structure as motivation, we extend our
two-dimensional MnO planes to a model three-
dimensional crystal and introduce counterions (Ca and

FIG. 2 (color online). (a) Two magnetic cations (solid circles)
connected by a ligand (open circle). (b) Upon application of the
electric field, the bond lengths and angle change resulting in a
different relative alignment of spins S1 and S2.

FIG. 3 (color online). Magnetoelectric response of a single
spin triangle. Antiferromagnetic coupling of S1, S2, and S3 (solid
arrows) leads to a 120� spin order (zero magnetization) in the
classical ground state. For ’ ¼ 0 (a), all spins are oriented out
from the center of the triangle analogous to Fig. 1(a). In an
applied electric field E, the oxygen atoms (open circles) displace
(open arrows) relative to TM ions (solid circles) inducing a
magnetization through changes in the exchange coupling. The
magnetization M is opposite in direction to E for ’ ¼ 0,
regardless of the orientation of E. For ’ ¼ �

2 (b), the spin

triangle has a toroidal moment [Fig. 1(c)], and the induced
magnetization is perpendicular to the electric field.
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Al) in the voids of the lattice so that the correct charge
balance is attained. To ensure that the sign of magneto-
electric response is the same for all layers, the neighboring
MnO planes are rotated by 180� with respect to each other
(Fig. 4). This reverses the positioning of oxygen ions with
respect to the up and down spin triangles in the next layer,
which compensates the reversal of the spin direction that
must result from the antiferromagnetic interlayer coupling
provided by the 180� connections through the apical oxy-
gen atoms. Our resulting ‘‘KITPite’’ structure [20], with
chemical formula CaAlMn3O7, correctly breaks I and T
symmetry; in addition, the apical oxygen ions between the
MnO layers are centers of combined IT symmetry.

We first estimate the magnetoelectric response of the
model material using a simple analytic approach in which
only oxygen ions displace with respect to the rest of the
lattice under application of an electric field. By considering
the geometry of the MnO planes with spin-spin coupling
provided by Heisenberg superexchange, we obtain, after
some algebra,

� ¼ SQ�BJ
0

JK�
; (3)

where S ¼ 2 is the spin of the Mn ions, Q ¼ 2e is the
nominal charge of oxygen ions, and �B is the Bohr mag-
neton. J and J0 describe the nearest-neighbor spin-
exchange constant and its derivative with respect to sym-
metric oxygen shifts, respectively. K is the spring constant,
and � is the volume per Mn ion. From the dependence of J
on the Mn-O bond length and the Mn-O-Mn bond angle

[21], we get J0=J � 3:5 �A�1. The frequency of the polar
phonon mode in hexagonal manganites [22] (�300 cm�1)

allows us to estimate K � 6 eV �A�2, and we take J �
3 meV [23]. Using these data and Eq. (3), we obtain � �
10�3 for the dimensionless magnetoelectric constant.

Finally, we calculate the magnetoelectric constant from
first principles using plane-wave density-functional theory

as implemented in VASP [24]. We use projector-augmented
wave potentials for core-valence separation [25] and in-
clude noncollinear magnetism for the valence electrons.
We approximate the exchange-correlation part of the
Kohn-Sham potential using the rotationally invariant
form of the LSDAþU in the fully localized limit [26],
with the Hubbard U applied only to the Mn d electrons
(U ¼ 5:5 eV and J ¼ 0:5 eV [27]). It is important to note
that we deliberately do not include spin-orbit coupling in
our calculations to ensure that the obtained magnetoelec-
tric constant arises entirely from the superexchange cou-
pling. As a result, the monopole and toroidal spin
arrangements [Figs. 3(a) and 3(b)] are degenerate.
We first relax the structure in the absence of an electric

field by optimizing the ionic coordinates to find the lowest-
energy state with the constraint that the trigonal bipyramids
are prevented from tilting; this ensures a locally stable
lattice structure while preserving the kagome structure of
the MnO planes and does not impede the lattice mode
responsible for magnetoelectricity. The resulting structure
is shown in Fig. 4. Our calculated valence electronic struc-
ture is, as expected, similar to that of YMnO3 [19]: The
effective Mn charge is close to the nominal 3þ , with four
d electrons per Mn adopting a high-spin configuration with
local moment �4�B=Mn.
Subsequently, we apply an electric field and calculate

the linear response of the ions [28]. The force on an ion in
an external electric field is determined by the Born effec-
tive charge tensor Z? through F�i ¼ Z?

�ijEj, where F is the

force,E is the applied electric field,� is an index denoting
the ion, and i and j are spatial directions. All elements of
the Z? tensor are computed through derivatives of the bulk

polarization Z?
�ij ¼ �Pj

�R�i
, where P is calculated using the

Berry-phase approach [29] for a small displacement in all
degrees of freedom individually.
In order to obtain the first-order ionic response to the

field, we use the force-constant matrix C�i;�j ¼ �F�i

�R�j
.

Then, to linear order, the ionic displacements for a given
electric field are found through the inverted force-constant
matrix �R�j ¼ C�1

�j;�iZ
?
�ikEk. Finally, the total magnetiza-

tion is calculated as a function of Ek.
Figure 5 shows the calculated magnitude of the in-

duced magnetization as a function of applied electric field.
With a field of 106 V=cm, the ionic response leads to an
average relative displacement between Mn and O atoms of
0.012 Å parallel to the field. The Born effective charges Z?

have an in-plane average magnitude of þ3:30e� for Mn
and �2:26e� for O. Applying E ¼ 106 V=cm along the
direction of S1 (Fig. 4), the spins S2 and S3 rotate by�0:1�
and 0.1�, respectively, leading to a magnetoelectric cou-
pling coefficient of � ¼ 1:22� 10�5 J T�1 V�1 m�2.
Transformation to Gaussian units yields �G ¼ 3:66�
10�4, close to the analytic estimate. For a benchmark, we
compare to the magnetoelectric response of Cr2O3 com-
puted also within density-functional theory [28,30]

FIG. 4 (color online). (Left) The structure of one MnO plane.
The Mn atoms (solid circles) are arranged on a kagome lattice
(dashed lines) with oxygen atoms (open circles) mediating the
binding and superexchange. (Right) Two layers of KITPite in the
zero-field structure (space group Pmma). The Mn ions are at the
center of the oxygen trigonal bipyramids (purple polyhedra). The
correct charge balance is obtained through Ca (blue) and Al
(green) counterions in voids of the MnO mesh.
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�GðCr2O3Þ ¼ 1:0� 10�5 (in good agreement with the
experimental value at T ¼ 0). Hence, our model system
has a magnetoelectric coupling around 30 times larger than
that of Cr2O3. Since spin-orbit coupling was not consid-
ered in this work, the magnetoelectric coupling is demon-
strably driven by superexchange. As a side effect, magnetic
anisotropies are absent so that we cannot predict ’ of
KITPite in the ground state. However, the strength of the
superexchange magnetoelectric coupling [�0 in Eq. (2)] is
insensitive to ’.

In conclusion, we have combined the concepts of mag-
netically induced polarization in magnetic vortices with
lattice-mediated coupling through superexchange to dem-
onstrate strong magnetoelectric coupling in geometrically
frustrated antiferromagnets. We showed that such a mecha-
nism can be studied using modern density-functional the-
ory approaches with noncollinear spin density functionals
augmented with linear-response methods, and we explic-
itly calculated the magnetoelectric coupling of a model
transition-metal oxide. While the linear magnetoelectric
response of our model compound is relatively strong, we
anticipate that many further improvements are possible: In
particular, materials with larger polarizability through in-
creased Z?’s or reduced rigidity would be promising. We
hope that this study will stimulate the search for additional
novel strongly coupled magnetoelectric materials.
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FIG. 5 (color online). Calculated magnetoelectric response of
the model system using density-functional theory and a linear fit.

PRL 102, 157203 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

17 APRIL 2009

157203-4


