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In a recent publication, we derived the mesoscale continuum theory of plasticity for

multiple-slip systems of parallel edge dislocations, motivated by the statistical-based

nonlocal continuum crystal plasticity theory for single-glide given by Yefimov et al.

[2004b. A comparison of a statistical-mechanics based plasticity model with discrete

dislocation plasticity simulations. J. Mech. Phys. Solids 52, 279–300]. In this dislocation

field theory (DiFT) the transport equations for both the total dislocation density and

geometrically necessary dislocation (GND) density on each slip system were obtained

from the Peach–Koehler interactions through both single and pair dislocation

correlations. The effect of pair correlation interactions manifested itself in the form of

a back stress in addition to the external shear and the self-consistent internal stress. We

here present the study of size effects in single crystalline thin films with symmetric

double slip using the novel continuum theory. Two boundary value problems are

analyzed: (1) stress relaxation in thin films on substrates subject to thermal loading, and

(2) simple shear in constrained films. In these problems, earlier discrete dislocation

simulations had shown that size effects are born out of layers of dislocations developing

near constrained interfaces. These boundary layers depend on slip orientations and

applied loading but are insensitive to the film thickness. We investigate the stress

response to changes in controlled parameters in both problems. Comparisons with

previous discrete dislocation simulations are discussed.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Contrary to the prediction of classical crystal plasticity theory, experimental observations at length scales ranging from
hundreds of nanometers to tens of microns show size effects of the type ‘‘smaller is harder’’ (Ebeling and Ashby, 1966;
Brown and Ham, 1971; Fleck et al., 1994; Ma and Clarke, 1995; Stölken and Evan, 1998; Arzt, 1998; McElhaney et al., 1998;
Nix and Gao, 1998). This failure of conventional continuum theory is caused by the lack of a characteristic length scale.
Several more sophisticated theories (Aifantis, 1984; Walgraef and Aifantis, 1985; Fleck and Hutchinson, 1993; Fleck et al.,
1994; Gao et al., 1999; Huang et al., 2000, 2004; Ortiz and Repetto, 1999; Ortiz et al., 2000; Acharya and Bassani, 2000;
Acharya and Beaudoin, 2000; Bassini et al., 2001; Gurtin, 2000, 2002, 2003) have been developed which, in various ways,
include a length scale. Some of these theories attempt to incorporate this length scale through the concept of geometrically
necessary dislocations (GNDs) as introduced by Nye (1953). In all theories, however, the length scale enters in an ad hoc
ll rights reserved.
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fashion, and often has a constant value that needs to be supplied a priori by comparison with discrete dislocation
simulations or experimental results.

Alternatively, Yefimov et al. (2004a, b) have applied a nonlocal continuum plasticity theory based on the works by
Groma (1997) and Zaiser et al. (2001) to successfully solve a set of boundary value problems for systems with one active
slip system.1 They described the evolution of total dislocation densities and GND densities using a set of coupled transport
equations. In addition to external shear and Peach–Koehler interactions among dislocations, the effect of pair–dislocation
correlation, in the form of a back stress, was considered; the latter gave rise to a natural length scale 1=

ffiffiffiffirp , determined by
the average dislocation density r. Thriving on the success of their theory, Yefimov and Van der Giessen (2005a, b)
attempted to extend their single-slip theory to describe multiple-slip systems on phenomenological grounds. Albeit
favorable results were obtained in the problem of shearing of thin films, the theory could not capture the size and
orientation-dependent hardness observed in thin films.

To address this problem, we have reformulated the multiple-slip theory aiming to extract the correct angular
dependence of the back stress between different pairs of slip orientations (Limkumnerd and Van der Giessen, 2008).
By solving Bogolyubov–Born–Green–Yvon–Kirkwood (BBGYK) integral equations that relate different orders of
dislocation correlation functions, the functional forms of pair–dislocation densities were derived. The results provided
slip orientation dependence of pair densities from which the exact expression of the back stress was obtained. In their
recent publication, Groma et al. (2006) arrived at the same expression for a pair correlation function in the case of single-
slip systems.

We begin in Section 2 by giving a summary of our continuum theory with a short account to the work of Yefimov and
Van der Giessen (2005a). In Section 3, we apply the theory to the problem of stress relaxation in single crystalline thin films
on substrates subjected to thermal loading. It was this problem in which the results between the former multiple-slip
theory (Yefimov and Van der Giessen, 2005b) and discrete dislocation simulations (Nicola et al., 2003, 2005b) deviated
most. In a quasi-static limit, where dislocations rearrange themselves much faster than the stress increase in the film, an
analytical solution is derived. The hardening effect due to the film thickness and comparisons with the discrete dislocation
results can be directly investigated for two slip orientations. Finally in Section 4, we revisit the problem of the simple shear
response of thin films, which was used by Yefimov and Van der Giessen (2005a) for selecting their slip-interaction law.
Layers of dislocations form the top and bottom boundaries which give rise to size effects. Analytical solutions of our theory
are checked against the discrete dislocation simulations by Shu et al. (2001).

2. Summary of DiFT based plasticity

Over a decade ago, Groma (1997) derived a set of transport equations governing the motion of many-dislocation
densities by carrying out a statistical averaging procedure on ensembles of edge dislocations on parallel glide planes. Later
on, Zaiser et al. (2001) specialized on these equations to describe evolution of single-dislocation densities in terms of
pair–dislocation densities. Recently, the authors have extended the above formalism to include systems with more than
one active slips (Limkumnerd and Van der Giessen, 2008). By constructing the integral equations that relate different
orders of dislocation correlation functions, we explicitly calculate pair correlation functions, and hence pair–dislocation
densities. In this section we shall briefly summarize this continuum theory, leaving the derivation to Limkumnerd and Van
der Giessen (2008).

Consider a single crystal with N active slip systems where each system i is defined by slip direction si and slip plane
normal mi. We assume that the motion of dislocations is overdamped; positive dislocations on slip system i flow with
velocity vi � ðbi=BÞ teff

i in the direction of their Burgers vector bi � b si, with magnitude proportional to the effective
resolved shear stress teff

i with drag coefficient B, while negative dislocations flow in the opposite direction. The evolution
equations for uncorrelated, single-dislocation densities rþi and r�i can then be rewritten in terms of a set of coupled
transport equations for total dislocation density ri � rþi þ r

�
i and the GND density ki � rþi � r

�
i as follows:

qtri þ= � ½kivi� ¼ 0; qtki þ= � ½rivi� ¼ 0 ðno sum over iÞ (1)

with = the derivative with respect to spatial position r. Nucleation and annihilation of dislocations can be taken into
account by modifying the right-hand side of the evolution law for ri (cf. Yefimov et al., 2004b). The dislocation density
description can be incorporated into the framework of crystal plasticity through Orowan’s relation

_gi ¼
b2

B
teff

i ri (2)

and the definition of plastic strain rate

_ep
�
XN

i¼1

_giPi; Pi ¼
1
2 ðsi �mi þmi � siÞ.
1 Somewhat similar approaches have been taken by Arsenlis and Parks (2002), Arsenlis et al. (2004), El-Azab (2000), Limkumnerd and Sethna (2006),

Acharya and Roy (2006), and Roy and Acharya (2006).
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Substitution into the second dynamical equation (Eq. (1)) and time integration yields Kröner’s relation

ki ¼ �ð1=bÞðsi �=Þgi, (3)

which connects GND density ki to plastic slip gi.
The effective resolved shear stress

teff
i � ti � tb

i , (4)

consists of ti—the external shear stress plus the self-consistent, long-range, single-dislocation interaction—and the back
stress tb

i given by

tb
i ðrÞ ¼

mbD

2pð1� nÞ
XN

j¼1

cosðyijÞ
ðbj �=ÞkjðrÞ

rjðrÞ
, (5)

arising from the short-range, dislocation–dislocation interactions. Here m and n are the shear modulus and the Poisson
ratio, respectively. The strength of intra-slip back stress is controlled by the dimensionless constant D. The back stress
contribution from slip system j to slip system i is reduced relative to the self back stress by a factor cosðyijÞ, where yij is the
angle between planes of slip system i relative to j.

The form of the back stress as shown in Eq. (5) reduces to that of the previous single-slip theory (Groma et al., 2003;
Yefimov et al., 2004a, b) for N ¼ 1. The cosðyijÞ slip coupling should come as no surprise. The angular dependence of the
back stress must reflect the symmetry of the Peach–Koehler interaction. The angular average of the interaction selects out
cosðyijÞ as the only possibility. The cosðyijÞ coupling also appears in the strain-gradient theory for continuum crystal
plasticity by Gurtin (2000, 2002, 2003). In an early attempt to extend their theory to describe systems with multiple slips,
Yefimov and Van der Giessen (2005a) had considered three different coupling terms: cos2ðyijÞ, cosð2yijÞ, and cosðyijÞ. They
subsequently discarded the first and the third variations upon comparisons with discrete dislocation simulations by Shu
et al. (2001). Although the chosen form of coupling showed reasonable agreements with the discrete dislocation results in
the problem of simple shearing of constrained thin film, it failed to capture the dependence on film size and slip orientation
observed in the problem of stress relaxation in thin films on substrates (Yefimov and Van der Giessen, 2005b). We shall
reexamine these problems with the new continuum theory in the following sections and argue that the success of the
cosð2yijÞ-type coupling was just fortuitous.

3. Application to single crystal thin films on a substrate

In this section we consider the problem of stress relaxation in a single crystalline thin film, oriented for symmetric
double-slip, on a substrate subjected to thermal loading. The geometry of the problem is shown in Fig. 1. Initially both the
thin film, with thermal expansion coefficient af , and the substrate, with coefficient as, are at a (high) temperature T0. Since
af4as, a tensile stress up in the film as temperature decreases (with a rate _T). At sufficiently high stress, pairs of
dislocations nucleate on the two active slips according to Frank–Read mechanism. When the material is assumed to be
initially homogeneous, the problem is effectively one-dimensional; only variations along the direction perpendicular to the
film matter and the only nonvanishing stress component is sxx � s. Also, by symmetry, g1 ¼ �g2 and t1 ¼ �t2. Hence, on
average, the density of positive dislocations on the first slip is the same as that of negative dislocations on the second, while
the negative of the first slip and the positive of the second are driven out of the system through the top traction-free
surface. We shall henceforth drop the subscripts and only consider slip system 1.
s1

m1

s2

m2

y

�f

�s

H

� �

Fig. 1. A thin film of thickness H and thermal expansion coefficient af is situated on top of an infinite substrate with coefficient as. The film has two

symmetrical slip planes defined by angle f. The y-axis is taken to be perpendicular to the film–substrate interface.
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This problem can be treated rather simply in a quasi-static limit where dislocations rearrange themselves much faster
than the stress change. In this limit, the exact expressions for the nucleation and/or annihilation terms are unimportant
and the nature of the evolution equation (1) is only to transport dislocations inside the thin film according to its overall
effective stress. At any particular time, the distribution of these densities can be calculated from the competition between
the back stress and the stress due to the thermal mismatch. Given the form of the back stress (5), we can derive the time
dependence of this expression from the compatibility requirement in terms of slip gi on system 1 and 2. Using Kröner’s
relation (3), the time evolution of the overall resolved shear stress as a function of slip orientation can then be found. The
effects of film thickness and slip orientation on the stress response can be investigated from these expressions.

In the absence of plasticity, the stress inside the film would build up according to

sNðTÞ ¼ 2m 1þ n
1� n

� �
aðT0 � TÞ, (6)

where a � af � as is the effective expansion coefficient of the film relative to the substrate. Once the yield point is reached,
sY � sNðTYÞ, plastic straining,

_exx ¼ �_g sinð2fÞ,

is governed by the resolved shear stress

t ¼ � sinð2fÞ
2

s.

Compatibility of the thermally induced strain and the elastoplastic strains requires that after the yield point is reached,

ð1þ nÞaDT ¼
1� n

2m
ðs� sYÞ � g sinð2fÞ, (7)

where DT � TY � T is the temperature drop since yield, and g is the plastic slip (taken to be of slip system 1). The effective
shear stress teff comprises the resolved shear stress

t ¼ � sinð2fÞ
2

sN þ
2m

1� n g sinð2fÞ
� �

, (8)

and the back stress which, according to Eq. (5), is given by

tb ¼
mbD

2pð1� nÞr sinðfÞ 1� cosð2fÞ
� �

qyk

¼
mbD sin3

ðfÞ
pð1� nÞk qyk, (9)

since r ¼ k in this system. Combining Eqs. (7)–(9) with k ¼ � sinðfÞ=bqyg from Eq. (3), we can write the effective shear
stress as

teff ¼ �
sinð2fÞ

2

2m
1� n

1� n
2m sN þ g sinð2fÞ þ

bD

p
sin3
ðfÞ

sinð2fÞ
q2

yg
qyg

" #
(10)

Under the quasi-static assumption mentioned above, the equation of motion (1) is solved by force balancing—in other
words—by setting teff ¼ 0. Eq. (10) then gives the nonlinear differential equation

zf ðfÞ
2

q2
ygþ qyg g sinð2fÞ þ

1� n
2m sN

� �
¼ 0 (11)

with the length scale z � 2bD=p being considered the new fitting parameter (instead of D). The solution during yield,
subject to the no-slip condition g ¼ 0 at the film–substrate interface y ¼ 0, is unique and given by

sinð2fÞ g ¼ �1� n
2m

sN � sY
sN coshðlyÞ þ sY sinhðlyÞ

sY coshðlyÞ þ sN sinhðlyÞ

� �
, (12a)

l �
eY

f ðfÞ
1

z
. (12b)

Here, eY ¼ ð1þ nÞaðT0 � TYÞ is the film’s strain at yield, and f ðfÞ � sin3
ðfÞ= sinð2fÞ contains the angular dependence on slip

orientation. The stress profile after yield can be derived using Eq. (8):

sðy; TÞ ¼ sY
sN coshðlyÞ þ sY sinhðlyÞ

sY coshðlyÞ þ sN sinhðlyÞ
(13)

The average stress over the thickness of the film, hsxxi � ð1=HÞ
RH

0 sdy, follows directly from Eq. (13) as

hsxxðTÞi ¼
sY

lH
log coshðlHÞ þ

sNðTÞ

sY
sinhðlHÞ

� �
(14)
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To compare results between the nonlocal theory and discrete dislocation simulations by Nicola et al. (2003) we use
parameters from their simulation. The film is taken to be isotropic with Poisson’s ratio n ¼ 0:33, Young modulus E ¼ 70 GPa
(from which the value of m ¼ E=ð2ð1þ nÞÞ is computed), and thermal expansion coefficient af ¼ 23:2� 10�6 K�1. These
values are representative of aluminum. The silicon substrate has expansion coefficient as ¼ 4:2� 10�6 K�1. The system is
cooled from an initial temperature of T0 ¼ 600 K down to T ¼ 400 K, at a rate of _T ¼ 4� 107 K=s. For the source density and
source strength (distribution) chosen by Nicola et al. (2003), yield starts when the temperature reaches TY ’ 582 K, i.e. at
sY ’ 35:8 MPa.
0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

� (MPa)

y 
(�

m
)

H = 1.0 �m

0.5 �m

0.25 �m

Fig. 2. Stress distribution across the film as predicted by Eq. (13) for f ¼ 60�. Vertical lines indicate the average stress in the films at different film

thicknesses H.
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400 450 500 550 600

25

50

75

100

125

150

T (K)

1.0 �m

0.5 �m
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� x
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(M
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)

� x
x 

   
(M

Pa
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Fig. 3. Temperature dependence of average tensile stress hsxxi from Eq. (14) for slip orientations (a) f ¼ 30� and (b) f ¼ 60�. The solid dots represent the

discrete simulation results (Nicola et al., 2003).
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Fitting to the average film stress at T ¼ 400 K predicted by the discrete dislocation simulations for orientation f ¼ 60�

yields a value of z ’ 28:5 nm. Fig. 2 shows the corresponding stress distribution across the film thickness according to
Eq. (13). At the film–substrate interface, the stress s reaches its elastic value of sN ’ 397 MPa, and decays roughly
exponentially to the yield stress sY ’ 35:8 MPa at the free surface. This profile is independent of the film thickness H, as is
the discrete dislocation result for the thickest two films. The average stress hsxxi for each thickness is indicated by a vertical
line. The result for f ¼ 30� exhibits a similar functional dependence but with a steeper decay, and is omitted for brevity.

Figs. 3(a) and (b) show the average stress hsxxi as a function of temperature T for different film thicknesses for f ¼ 30�

and 60�, respectively. When the temperature axis is read right-to-left as a measure of strain, these stress–strain curves are
steeper (film is harder) as the thickness decreases. The hardening rate also increases with increasing f, even though the
Schmid factors for both orientations are identical. Finally, the prediction of the average tensile stress versus film thickness
according to Eq. (14) is shown in Fig. 4 against the discrete dislocation results (in symbols) for both slip orientations with
satisfactory agreement.

The thickness dependence of stress predicted by Eq. (14) is clearly a more complicated one than a simple scaling of the
type hsxxi / H�p, with p varying usually between 1=2 and 1. In order to see how large this deviation is, Fig. 5 shows the data
of Fig. 4 on double-log scales. For f ¼ 60�, the theoretical hsxxiðHÞ is rather close to a power law over the entire regime
considered here, but curves upwards for very small H when f ¼ 30�. Enhanced hardening in very thin films is observed in
discrete dislocation results (Nicola et al., 2003, 2005b) and has been attributed there to dislocation sources being shut
down by relatively long pile-ups; this effect is absent in the quasi-static solution developed here since nucleation is not
taken into account. It is noted that a variability in the thickness scaling exponent is not only found in theoretical and
numerical considerations but also in experiments, e.g. (Arzt, 1998; Venkatraman and Bravman, 1992; Baker et al., 2001; Yu
and Spaepen, 2004). However, in the latter this is partly due to variations in experimental conditions: most experiments are
carried out on polycrystalline films instead of single crystal films, as assumed here, and not all substrate materials can be
expected to serve as perfect barriers to dislocation motion, as assumed here too. In polycrystalline films, the film thickness
0 0.25 0.5 0.75 1
0

100

200

300

400

H (�m)

� = 30°

� = 60°

� x
x 

  (
M

Pa
)

Fig. 4. Average stress at final temperature as a function of film thickness H for f ¼ 30� and 60�. The symbols represent results from the discrete

dislocation simulations.
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Fig. 5. Log–log plot of the same data as in Fig. 4, and comparison with simple power law scaling laws with exponents �0:5 and �1.
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effect is coupled to the influence of grain size, and it is generally difficult experimentally to ascertain the relative roles of
grain size and film thickness. Yet, quite commonly, the experimental value of the scaling exponent also varies between �0:5
and �1.

A similar theoretical study has been carried out by Nicola et al. (2005a) using Gurtin’s strain-gradient theory. Compared
to the discrete dislocation results, size-dependent hardening was captured but not the orientation dependence since
Gurtin’s original theory predicts the same response for f ¼ 30� as for f ¼ 60�. Subsequently, they proposed a modified
‘‘defect energy’’ based on the consideration of dislocation pile-ups which did predict the correct f-trend. The latter implies
a material length scale that scales with cosf, while our theory predicts scaling with 1=f ðfÞ / sin2 f= cosf; the ratio of
these for f ¼ 30� and 60� is identical. It is also interesting to note that the theory by Nicola et al. (2005a) reveals a constant
hardening rate for a given thickness and slip orientation, whereas we find a weak logarithmic dependence on temperature.
Both outcomes are within the error bar of the discrete dislocation results.

4. Simple shear of constrained film

We consider the same film as in the previous section, but now subjected to a shear G in the x direction, see Fig. 6. While
the normal strain was uniform in the film under thermal straining, in the present problem the only nonvanishing stress
component sxy is uniform across the width. The second difference is that now both surfaces are impenetrable for
dislocations; i.e. g1 ¼ g2 ¼ 0 at y ¼ 	H=2 (note that the origin has been placed at the center of the film for calculational
convenience). By symmetry, t1 ¼ t2 and g1 ¼ g2 which implies that k1 ¼ k2 and r1 ¼ r2. We shall therefore omit the
subscripts.

We can again solve this problem quasi-statically in the manner of Section 3. The resolved shear stress t1 is given by

t ¼ cosð2fÞsxy, (15)

while the back stress tb is, according to Eq. (5),

tb ¼ GDf ðfÞ
qyk
r , (16)

where G � mb=ð2pð1� nÞÞ contains all the material parameters, and f ðfÞ � sinðfÞð1� cosð2fÞÞ ¼ 2 sin3
ðfÞ captures the slip

orientation information. Force balancing, t� tb ¼ 0, implies that

sxy ¼ GD
f ðfÞ

cosð2fÞ
qyk
r . (17)

Since sxy is uniform across the film thickness by virtue of equilibrium, we arrive at the differential equation

AðfÞqykðyÞ ¼ sxyrðyÞ, (18)

above yield. Here AðfÞ � 2GD sin3
ðfÞ= cosð2fÞ contains the slip orientation dependence.

Under shear, dislocations of one sign (negative when f4p=4) move towards the top y ¼ H=2 where they are blocked,
while the opposite-signed dislocations will pile-up against the bottom surface; this implies that kðyÞ ¼ �sgnðyÞrðyÞ. The
solution of Eq. (18) is thus very simple:

kðyÞ ¼ �sgnðyÞk0 exp½sxyjy=AðfÞj� (19)

The constant of integration k0 in general could be a function of the applied shear G. Using the relationship (3) between
GND density and slip, Eq. (19) together with the no-slip boundary conditions give

gðyÞ ¼ �g0ðGÞf1� exp½lðjyj � H=2Þ�g, (20)

where all the integration constants have been absorbed into g0ðGÞ, and 1=l � jAðfÞj=sxyðGÞ gives the approximate
characteristic width of the boundary layers as a function of the applied shear G.
s1

m1

s2

m2

�

x

y

H

Γ (t)

�

Fig. 6. The thin film of thickness H with two impenetrable top and bottom layers is under prescribed shearing GðtÞ. The film has two symmetrical slip

planes defined by angle f. The origin of the coordinate system is located at the center of the film.
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Averaging of the decomposition eij ¼ eE
ij þ e

P
ij across the width of the sample, along with Hooke’s law sxy ¼ 2meE

xy gives

sxy ¼ 2mðG=2� cosð2fÞhgiÞ. (21)

Here, we have made use of the fact that hexyi ¼ G=2 and employed Eq. (2) to find eP
xy ¼ cosð2fÞg. The average slip can be

calculated directly from Eq. (20),

hgi ¼ �g0ðGÞ 1�
1� e�lH=2

lH=2

� �
. (22)

The functional form of g0ðGÞ can be obtained in the limit of large film thickness, H!1, where the system is insensitive to
the boundary layers which results in perfect plasticity. In this case Eq. (21) implies that

tY ¼ m Gþ 2 cosð2fÞg0

	 

. (23)

Eqs. (21)–(23) together provide an implicit expression of sxy as a function of the applied shear G:

sxy ¼ tY þ ðmG� tYÞ
1� e�lH=2

lH=2
(24)

The continuum theory is tested against the discrete dislocation simulations by Shu et al. (2001) on a crystal with two slip
systems oriented at f ¼ 60�. The elastic properties are the same as in Section 2, i.e. m ¼ 26:3 GPa and n ¼ 0:33, and stress is
measured in units of the mean nucleation strength s0 ¼ 1:9� 10�3 m in the discrete simulations. We first note that the
width of the boundary layers 1=l cannot be used as a fitting parameter since its value changes with increasing stress. We
therefore define the length parameter l � sxy=ðs0lÞ ¼ jAj=s0, which is independent of sxy, as a new fitting parameter. Given
stress sxy at a selected shear G, the value of l can be determined from fitting Eq. (20) to the strain distribution across the
film thickness, as shown in Fig. 7. The fitting procedure is somewhat intricate due to the nonalgebraic nature of Eq. (24)
which needs to be computed for gðyÞ in Eq. (20) at a given G. We therefore take the stress value from the simulation
stress–shear curve (Fig. 8) as an additional input for the fitting of l, yielding l ’ 46 nm for the case of H ¼ 1mm on the basis
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Fig. 9. Dislocation distribution in a H ¼ 1mm thick f ¼ 60� film at an overall shear of G ¼ 0:0218 according to (a) discrete simulations by Shu et al. (2001)

and (b) the theoretical solution (19) with l ’ 46 nm.
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(2001) and (b) the theoretical solution (19) with l ’ 8:7 nm.
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of the stress at G ¼ 0:0218. Fig. 7 shows shear strain distributions across the film thickness at three other values of G where
no additional fitting has been performed.

For further comparison, Fig. 9(b) shows the theoretical distribution of dislocation density (recall that r ¼ k for all slip
systems) in comparison with the discrete dislocation distribution in a periodic cell with a width of 1mm. The theory
correctly predicts the development of intense dislocation boundary layers. The core of the crystal is left almost dislocation
free as dislocations pass each other almost unhindered on their way towards the top and bottom faces.

From the above-mentioned best-fit l for the film thickness of H ¼ 1mm, we can study the shear response for different
film thicknesses. Data of the discrete dislocation simulations suggest thickness-dependent initial yield strengths. The
responses are shown in Fig. 8 in comparison with results from the discrete simulations. We supply for each film thickness
the best-fit yield point as an extra degree of freedom. Similar to the previous test problem (Section 3), the stress–strain
curves show size-dependent hardening. The hardening rate decreases with increasing applied external shear, and
approaches a constant value at large shear. Shu et al. (2001) also analyzed this problem with their version of strain-gradient
theory and found weak size effects. Their stress response, however, is linear due to the fact that the width of dislocation
boundary layers is constant in their theory. The same linear stress–strain relation was also predicted by Gurtin’s strain-
gradient theory (Bittencourt et al., 2003).

It should be mentioned that the exact form of the slip–interaction coupling (in Eq. (5)) turns out to be unimportant in
this problem. The slip orientation dependence is buried inside the definition of jAðfÞj which has been absorbed into the
fitting parameter l. On this ground, it does not matter whether this coupling be cosðyijÞ or cosð2yijÞ as proposed by Yefimov
and Van der Giessen (2005a).

Our theory predicts drastic changes in behavior when f crosses 45�. Due to a sign change in the resolved shear stress,
the charges of dislocations at the two interfaces reverse from the present situation when fo45� (resulting in the sign
alternations of k0 and g0 in Eqs. (19), (20), (22), and (23)). As a result, the applied shear acts in favor of the new dislocation
arrangement—in other words—our theory predicts that the back stress further enhances plasticity instead of impeding the
flow of new dislocations into the boundaries. Hence, thinner boundary layers are expected which suggests smaller size
effects. More quantitatively, for the orientation angle of, say, f ¼ 30�, the layers should be thinner by a factor of
l30�=l60� ¼ jAð30�Þ=Að60�Þj ¼ ðsinð30�Þ= sinð60�ÞÞ3 ’ 0:19. The dislocation distribution thus predicted is shown in Fig. 10(b).
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Fig. 11. Types of dislocations at the pile-ups for (a) f ¼ 30� and (b) f ¼ 60� , and their locking situations as they glide (a) upwards or downwards

(as viewed upside down) for 30� case or (d) in the opposite directions for 60� case.

S. Limkumnerd, E. Van der Giessen / J. Mech. Phys. Solids 56 (2008) 3304–3314 3313
Discrete dislocation dynamics simulations, however, reveal essentially no boundary layers at all—or, equivalently,
boundary layers that span the entire width (Fig. 10(a)). Upon closer examination, we find ‘locks’ of dislocations2 of like
charges on different slip systems which prevent their motion pile-ups to the boundaries. A pair of dislocations with the
relative angle of their Burgers vectors between 90� and 270� feel their mutual attraction when they glide past each other.
Although rather weak, this interaction is apparently strong enough in this case for locking to occur. Figs. 11(a) and (b) show
the types of dislocations which accumulate at the boundaries for f ¼ 30� and 60�, respectively. Figs. 11(c) and (d)
demonstrate one of the two situations when locking happens in each case (the others are 180� rotations of these). In the
region sufficiently far away from the boundaries, event shown in Fig. 11(c) is roughly as likely to occur as event shown in
Fig. 11(d), since the situations differ just by a 90� rotation followed by a flip about the y-axis. The relative likelihood,
however, increases immensely close to the boundaries because only in the 30� case do dislocations moving to the same
boundary permit locking, Fig. 11(c). This mutual locking of slip systems prevents dislocations to reach the boundaries and
form localized boundary layers. The locking mechanism is purely a discrete phenomena and cannot be captured by the
current continuum theory without further refinement. Due to its relatively small probability, locking seldom occurs in the
60� case.

5. Discussion and conclusion

We applied the recently formulated multiple-slip continuum plasticity theory to analyze two boundary value problems
relating to thin films. In Section 3, we studied stress relaxation mechanism in thin films on substrates with thermal loading.
We obtained an explicit analytical expression of the stress distribution as a function of slip orientation with one fitting
parameter. The predictions were in good agreement with the discrete dislocation results of Nicola et al. (2003, 2005b). Our
theory was able to show size-dependent hardening and the hardening due to slip orientations—both of which the previous
continuum theory failed to explain. Subsequently, we analyzed simple shear in constrained films. Similarly to the first
problem, we observed dislocation pile-ups at the top and bottom constrained boundaries. The thickness of dislocation
layers depends weakly on the incremental shear. Regardless of the difference between the forms of slip–interaction
coupling between our theory and that in Yefimov and Van der Giessen (2005a), our theory also gave satisfactory
agreements with results from discrete dislocation dynamics simulations (Shu et al., 2001). We pointed out that this term
can be absorbed into fitting parameter; the correct functional form of the coupling, therefore, cannot be decided only on
the basis of this problem.
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