The oxidation of the C-H and C=C bonds of hydrocarbons with H$_2$O$_2$ catalyzed by non-heme iron complexes with pentadentate ligands is widely accepted as involving a reactive FeIV=O species such as [(N4Py)FeIV=O]$^{2+}$ (where N4Py is 1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine) formed by homolytic cleavage of the O-O bond of an FeIII-OOH intermediate. We show here that at low H$_2$O$_2$ concentrations the FeIV=O species formed is detectable in methanol. Furthermore we show that the decomposition of H$_2$O$_2$ to water and O$_2$ is an important competing pathway that limits efficiency in terminal oxidant, and indeed dominates reactivity except where only sub/near-stoichiometric amounts of H$_2$O$_2$ are present. Although independently prepared [(N4Py)FeIV=O]$^{2+}$ oxidizes stoichiometric H$_2$O$_2$ rapidly, the rate of formation of FeIV=O from the FeIII-OOH intermediate is too low to account for the rate of H$_2$O$_2$ decomposition observed under catalytic conditions. Indeed, contrary to expectations, with excess H$_2$O$_2$, disproportionation to O$_2$ and H$_2$O is catalyzed by the Fe(III)-OOH intermediate, and not the FeIV=O species. These data reveal that the activity of these catalysts with respect to hydrocarbon/alkene oxidation is maximized by maintaining sub/near-stoichiometric steady state concentrations of H$_2$O$_2$, which ensure that the rate of the H$_2$O$_2$ oxidation by the FeIII-OOH intermediate is less than the rate of the O-O bond homolysis and the subsequent reaction of the FeIV=O species with substrate.
Chapter 6

6.1 Introduction

Biomimetic analogs play a central role in understanding bioinorganic systems and enzymes, particularly in the identification of reactive intermediates and their role in catalytic processes.\(^1-4\) In this context, high valent iron oxo species (i.e. Fe\(^{IV}=O\)) have been studied intensively over the last decade,\(^5-9\) especially since their first isolation and crystallographic characterization by Que and co-workers in 2003.\(^10\) Indeed, the synthetic non-heme Fe\(^{IV}=O\) complexes reported to date, show a broad range of reactivity including C-H oxidation\(^11-15\) with potencies comparable to non-heme and heme enzymes, such as Tau-D, and cytochrome P450.\(^16\)

Isolated Fe\(^{IV}=O\) species are invaluable in determining their intrinsic reactivity. High valent Fe\(^{IV}=O\) species are frequently invoked as the active species engaged in the oxidation of organic substrates by both heme and non-heme enzymes.\(^3,5,7,17,18\) The continuous regeneration of Fe\(^{IV}=O\) under catalytic conditions, with \(H_2O_2\) as terminal oxidant, is desirable also in achieving turnover in the oxidative transformations that they engage in.

The formation of Fe\(^{IV}=O\) species upon homolytic O-O bond cleavage in their corresponding Fe\(^{II}=OOH\) complexes has been postulated to be a key step for the oxidation of organic substrates by non-heme iron catalysts with \(H_2O_2\).\(^3,4,19\) For example, in the oxidative cleavage of DNA by bleomycin-Fe\(^{II}=OOH\).

However, to the best of our knowledge, this process (Fe\(^{II}=OOH\) \(\rightarrow\) Fe\(^{IV}=O\)) has not been observed directly for low-spin Fe\(^{II}=OOH\) complexes, and was described only recently for high spin Fe\(^{II}=OOH\) species.\(^22-26\) Furthermore, the relatively low efficiency of non-heme iron complexes in alkane oxidations with an excess of \(H_2O_2\), together with the known reactivity of Fe\(^{IV}=O\) species with \(H_2O_2\)\(^27\) casts doubt over the validity of this paradigm under catalytic conditions.\(^3\)

The absence of evidence of the formation of Fe\(^{IV}=O\) species and loss of \(H_2O_2\) through unproductive pathways (i.e. disproportionation) can be rationalized by assuming that the generated Fe\(^{IV}=O\) species either reacts with \(H_2O_2\) or engages in, e.g., C-H oxidation. Such a mechanism requires that the rate of reaction of Fe\(^{IV}=O\) species with \(H_2O_2\) is similar to that with an organic substrate. Iron(III) complexes, such as the Fe\(^{III}\)(TAML) (TAML = tetra-amidato-macroyclic-ligand) system reported by Collins and co-workers, disproportionate \(H_2O_2\) through a Fe\(^{IV}=O\) intermediate\(^2\) implying that oxidation of \(H_2O_2\) is rapid compared with C-H oxidation. Indeed data obtained with isolated [(N4Py)Fe\(^{IV}=O\)]\(^{2+}\) complex (N4Py is 1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine) indicates that \(H_2O_2\) oxidation proceeds much more rapidly than C-H oxidation.\(^27\)

In the case of complexes based on pentadentate ligands, e.g., N4Py, the apparent stability of the Fe\(^{IV}=OOH\) intermediate and absence of direct spectroscopic evidence for the formation of Fe\(^{IV}=O\) from this intermediate, make it challenging to identify the actual mechanisms involved in substrate oxidation and \(H_2O_2\) disproportionation.

Here, using a combination of time resolved UV-vis absorption, (resonance) Raman and EPR spectroscopy and computational chemistry, we demonstrate that, contrary to expectations, the rate of O-O bond homolysis in [(N4Py)Fe\(^{III}=OOH\)]\(^{2+}\) to form [(N4Py)Fe\(^{IV}=O\)]\(^{2+}\) and a hydroxyl radical is much lower than the rate of \(H_2O_2\) disproportionation observed under reaction conditions. We show that it is the Fe(III)-OOH species that is responsible for \(H_2O_2\) decomposition and as a result the efficiency of substrate oxidation is negatively affected by an increase in the steady state \(H_2O_2\) concentration, since formation of Fe\(^{IV}=O\) species is uncompetitive.
Disproportionation by Iron(III)-hydroperoxyl Intermediates

Figure 100. Structures of the complexes and intermediates discussed in the present study.

6.2 Results and Discussion

Typically, acetonitrile is the solvent of choice for the reaction of non-heme iron complexes with oxidants such as \(\text{H}_2\text{O}_2 \). However, in acetonitrile, the formation of \([\text{N4PyFe}^{\text{III}}\text{OOH}]^{2+}\) (3) is observed only with a stoichiometric excess (> 50 equiv) of \(\text{H}_2\text{O}_2 \) and the subsequent formation of \([\text{N4PyFe}^{\text{IV}}\text{O}]^{2+}\) (4) has not been observed,\(^{21}\) despite that 4, prepared independently, is itself stable in acetonitrile even at room temperature. In the present study methanol is chosen to circumvent the formation of kinetically inert CH\(_3\)CN complexes such as \([\text{N4PyFe}^{\text{II}}\text{NCCH}_3]^{+}\) (1). The CH\(_3\)CN ligand of 1 exchanges immediately with methanol, to form \([\text{N4PyFe}^{\text{II}}\text{OCH}_3]\)\(^+\) (2), manifested in a decrease and red shift in the near-UV and visible absorption bands (Figure 101).\(^{28}\) The exchange of the methoxido ligand for water and \(\text{H}_2\text{O}_2 \) is relatively rapid in both the ferrous and ferric states (vide infra), which is central to enabling observation of other species involved in the reactions discussed and is in stark contrast to the slow ligand exchange seen for 1 in acetonitrile.

Figure 101. (left) UV-vis absorption spectrum of 1 (0.1 mM) in methanol and in acetonitrile and after addition of acetonitrile to a solution of 1 in methanol (dashed lines); (right) Cyclic voltammetry of 1 (1 mM) in methanol (0.1 M TBA(OTf)) (red line) and after addition of 1 vol % acetonitrile (black line).

6.2.1 Reaction of 1 with stoichiometric \(\text{H}_2\text{O}_2 \) and homolysis of O-O bond of \([\text{N4PyFe}^{\text{III}}\text{OOH}]^{2+}\)

Addition of 0.6 equiv of \(\text{H}_2\text{O}_2 \) to 2 results in immediate (< 2 s) conversion to \([\text{N4PyFe}^{\text{III}}\text{OCH}_3]\)\(^+\) (5a) with its characteristic X-Band EPR spectrum at \(g = 2.29, 2.12, \) and 1.96.\(^{29}\) With 1.2 equiv of \(\text{H}_2\text{O}_2 \), \([\text{N4PyFe}^{\text{II}}\text{OOH}]^{2+}\) (3) is obtained in minor amounts both by UV/Vis absorption and EPR spectroscopy (\(g = 2.16, 2.11 \) and 1.98,\(^{21}\) Figure 102). Addition of 2 equiv \(\text{H}_2\text{O}_2 \) to 2 results in the formation of \([\text{N4PyFe}^{\text{II}}\text{OOH}]^{2+}\) (3) (Figure 103) by ligand exchange over 50 s at room temperature reaching a maximum of 14% (based on the absorbance at 550 nm, Figure 103-I)
before decreasing again over 1000 s. The decrease in absorbance at 550 nm (of 3) proceeds concomitant with an increase in absorbance at 692 nm due to Fe^{III}O (4, Figure 103-II/III). 4 reacts rapidly (200 s) with even stoichiometric H_2O_2 (vide infra) and, therefore, its appearance indicates that the concentration of H_2O_2 in solution is already negligible by 80 s (vide infra). The absorbance at 692 nm remains almost constant over 200 s during the decay of 3, before decreasing also concomitant with formation of more $[(N4Py)Fe^{III-OCH_3}]^{2+}$ (5a). These data are consistent with equilibration between 5a and 3 followed by O-O bond homolysis to form 4, which in the presence of H_2O_2 is reduced to 5a rapidly. Once sufficient H_2O_2 is consumed the concentration of 4 is determined by the rate of its formation from 3 and the rate of its reaction with methanol (vide infra).

The rate of formation of 4 through homolysis of the O-O bond of $[(N4Py)Fe^{III-OOH}]^2+$ (3) under these conditions is low (< 2.2 × 10$^{-4}$ s$^{-1}$, vide infra), which is consistent with the reaction’s endergonicity; calculated at 19.1 kcal mol$^{-1}$. The value is also consistent with the reported value calculated for the related homolytic cleavage in activated Fe-bleomycin.18,30

Figure 102. UV-vis absorption spectrum of 1 (0.1 mM) in methanol (black) after addition of 0.6 equiv H_2O_2 (red); Inset shows the X-band EPR spectra for the flash frozen of the corresponding reaction solution at 77 K.

Figure 103. (left) UV-vis absorption spectrum of 2a (0.25 mM) in methanol before (black) and after addition of 2 equiv H_2O_2 at 21 °C. (Right) Corresponding change in absorbance over time at 550 and 692 nm. Pathlength used was 2 cm.

(1) $[(N4Py)Fe^{IV-OOH}]^{2+} \rightarrow [(N4Py)Fe^{IV}(O)]^{2+} + \cdot OH$

$\Delta G = 19.1$ kcal mol$^{-1}$
6.2.2 Disproportionation of H\textsubscript{2}O\textsubscript{2} by 1 in methanol

Addition of excess H\textsubscript{2}O\textsubscript{2} (> 40 equiv) to 1 in methanol results in immediate oxidation to 5\textsubscript{a} (i.e., a complete loss in absorbance at 450 nm within the mixing time, 2 s; Figure 104). The oxidation is followed by full conversion of 5\textsubscript{a} to [(N4Py)FeIII-OOH]2+ (3) over 5-10 s. The second order rate constant for the formation of 3 from 5\textsubscript{a}, determined under pseudo-first order conditions (2.5 to 50 mM H\textsubscript{2}O\textsubscript{2}, Figure 105), is 10.5 (± 0.1) M-1 s-1 at 21 °C, consistent with the exothermicity (-10.2 kcal·mol-1) and low barrier for the exchange of the 6th ligand.

\[
(2) \quad [(\text{N}4\text{Py})\text{Fe}^{\text{III}}\text{OOH}]^{2+} + \text{H}_2\text{O}_2 \rightarrow [(\text{N}4\text{Py})\text{Fe}^{\text{III}}\text{OOH)]}^{2+} + \text{CH}_3\text{OH}
\]

\[\Delta G = -10.2 \text{ kcal mol}^{-1}\]

Figure 104. UV-vis absorption spectrum of 1 (0.5 mM) upon addition of 50 equiv H\textsubscript{2}O\textsubscript{2}. Inset is the corresponding absorbance changing with time.

Figure 105. Concentration of [(N4Py)FeIII-OOH]2+ (3, from absorbance at 550 nm) against log(time) for various amounts of H\textsubscript{2}O\textsubscript{2} added (5 (red), 10 (black), 20 (blue), 40 (pink), and 400 (khaki) equiv) to 1 (0.56 mM) at 21 °C (left). The pseudo-first order rate constant \(k_{\text{obs}}\) for the formation of [(N4Py)FeIII-OOH]2+ vs concentration of H\textsubscript{2}O\textsubscript{2} (right).

EPR spectra of samples flash frozen to 77 K (Figure 106) immediately after addition of an excess of H\textsubscript{2}O\textsubscript{2} show two well-resolved S = ½ signals, characteristic of 3 (major species) and 5\textsubscript{a} (minor species). Samples, flash frozen after 18 min, show that the signals of 3 are diminished with the concomitant increase in the signals of 5\textsubscript{a} and at ca. 50 min, the signals of 3 are absent, leaving only those of 5\textsubscript{a}.
Figure 106. X-band EPR spectra (recorded at 77 K) of the reaction mixture of 2a (1 mM) with 50 equiv \(\text{H}_2\text{O}_2 \) in methanol. (left) EPR spectrum 37 s after addition of \(\text{H}_2\text{O}_2 \), (middle) 18 min after addition, (right) after complete decay of \(\text{Fe}^{\text{III}}\text{-OOH} \) (50 min). Microwave Frequency 9.46 GHz, Power 63.5 mW.

Notably, both the maximum extent of formation of 3 and the time between addition of \(\text{H}_2\text{O}_2 \) and the start of the subsequent decrease in the absorbance of 3 are dependent on the initial concentration of \(\text{H}_2\text{O}_2 \) (Figure 105). These data indicate that \(\text{H}_2\text{O}_2 \) consumption is relatively similar to the rate of formation 3 from 5a. The rate of decrease of the absorbance due to 3 is independent of the initial \(\text{H}_2\text{O}_2 \) concentration (Figure 107), because the decay occurs only after essentially all of the \(\text{H}_2\text{O}_2 \) has been consumed, confirmed by Raman spectroscopy (\(\lambda_{\text{exc}} = 785 \text{ nm} \), Figure 108). Time resolved Raman spectroscopy shows that the concentration of \(\text{H}_2\text{O}_2 \) decreases from \(t = 0 \) while the resonantly enhanced bands of 3 (\(\text{Fe}^{\text{III}}\text{-OOH} \)) at 632, 650, 670 and 798 cm\(^{-1}\) do not decrease in intensity until the signal (\(\nu(\text{O-O}) \)) from \(\text{H}_2\text{O}_2 \) at 872 cm\(^{-1}\) has decreased to near-stoichiometric levels at least (i.e. below the limit of detection of ca. 10 mM, Figure 109).

Figure 107. The decay of \([(\text{N4Py})\text{Fe(III)}(\text{OOH})]^2^+ \) after the threshold (absorbance at 550 nm decrease to 0.2,) of the reaction of 1 (0.56 mM) with \(\text{H}_2\text{O}_2 \) (2.5 to 50 mM)) at 21 °C.
Figure 108. (left) Raman spectra of 1 (ca. 5 mM) in methanol over time after addition of 50 equiv H₂O₂ at λ_{exc} = 785 nm and (right) change in intensity of Raman bands at 872 cm⁻¹ (of H₂O₂) and 632 cm⁻¹ (of 3) over time at 21 °C. Spectra correspond to data points shown.

Figure 109. Calibration curve for Raman intensity at 872 cm⁻¹ (λ_{exc} = 785 nm) with respect to concentration of H₂O₂.

6.2.3 Regeneration of Fe³⁺-OOH and O₂ evolution

As for the absorption at 550 nm and its EPR signals, the characteristic Raman bands of 3 appear within the time resolution of the measurement (< 60 s) upon addition of excess H₂O₂, and maintain their intensity until the H₂O₂ has been consumed. These data are consistent with the continuous regeneration of 3 from [(N4Py)Fe³⁺-OR]²⁺ (where R = H or CH₃) and H₂O₂; i.e. that 3 is the resting state in the cycle and that the formation of 3 from 2 is a rapid equilibrium prior to the rate determining step in the reaction.
Headspace analysis by Raman spectroscopy (Figure 110) confirms generation of O$_2$ at a rate corresponding to the rate of decrease of H$_2$O$_2$.

Figure 110. (Left) Raman spectra ($\lambda_{\text{exc}} = 532$ nm) obtained from the head space above the reaction mixture containing 1 (0.25 mM) and 200 mM H$_2$O$_2$ in methanol at 21 °C. (Right) Change in intensity of Raman band at 1555 cm$^{-1}$ of O$_2$ (head space, red, $\lambda_{\text{exc}} = 532$ nm, internal reference was 2329 cm$^{-1}$ band at N$_2$) and at 872 cm$^{-1}$ for H$_2$O$_2$ (liquid phase, black, $\lambda_{\text{exc}} = 785$ nm).

The relation between the rate of consumption of H$_2$O$_2$ and concentration of 3 is apparent when H$_2$O$_2$ is present in excess (>50 equiv). The concentration of 3 remains constant (> 80% of total iron concentration) for a period of time, the duration of which is dependent on the initial concentration of 2 (Figure 111). The concentration of H$_2$O$_2$, determined by Raman spectroscopy, during this period shows an exponential decay (Figure 112). The observed rate constant (k_{obs}) for the decomposition of H$_2$O$_2$ is linearly dependent on the catalyst concentration (i.e. [3], Figure 112), with a second order rate constant of 0.8 M$^{-1}$ s$^{-1}$ at 21 °C (Figure 112). The rate constant is less than that for the formation of 3 (10.5 ± 0.1 M$^{-1}$ s$^{-1}$) and thus in agreement with 3 as the resting state in the catalytic cycle under steady state conditions.
H₂O₂ Disproportionation by Iron(III)-hydroperoxyl Intermediates

Figure 111. Normalized UV-vis absorbance at 550 nm of reaction of 1 (1.0 mM in red, 0.25 mM in black) with H₂O₂ (200 mM).

Figure 112. (left) Decrease in the concentration of H₂O₂ with time following addition of H₂O₂ (200 mM) to 1 (0.25 mM) at 21 °C. (right) Plot of the pseudo-first-order rate kₘₐₜ versus concentration of 1.

6.2.4 Reaction of [(N4Py)Fe IV=O]²⁺ (4) with methanol and H₂O₂

The self-decay rate of 4 (prepared independently) due to reaction with solvent is low in acetonitrile,²⁷ but is significant in methanol (Figure 113). In methanol, the NIR absorbance of 4 decays exponentially over 1000 s with the concomitant production of 1 equiv of 5a (Fe III-OCH₃) and 0.5 equiv formaldehyde. The kinetic isotope effect for this decay in CD₃OD is ca. 10,³¹(Figure 113). OH/OD exchange has no effect on this rate, which is consistent with the competence of 4 in the oxidation of methanol with a rate determining hydrogen atom abstraction (HAT) step at the C-H bond.

Addition of 1 equiv H₂O₂ to 4 (Fe IV=O) in methanol results in conversion to 5a (Fe III-OCH₃) within 200 s, in agreement with data reported in acetonitrile (second order rate constant of 8 M⁻¹ s⁻¹ at 21 °C),²⁷ and ca. 10 times faster than the reaction of 4 with CH₃OH. However, in stark contrast with the 2:1 ratio of H₂O₂/4 required in acetonitrile²⁷ for full reduction of 4 to the Fe III state, in methanol only 1 equiv H₂O₂ is required (Figure 113).
Figure 113. Absorbance of 4 (1 mM) at 692 nm in CH\textsubscript{3}OH (blue), CH\textsubscript{3}OD (red), and CD\textsubscript{3}OD (black) with time in the (a) absence and (b) presence of 1 equiv H\textsubscript{2}O\textsubscript{2}.

The OH/OD kinetic isotope effect observed in the reduction of 4 with H\textsubscript{2}O\textsubscript{2} is masked to some extent by the competing reaction of 4 with CH\textsubscript{3}OD (vide supra), but is nevertheless consistent with a HAT mechanism.

In CD\textsubscript{3}OD, deuterium atom abstraction (from C-D) by 4 does not occur to a significant extent on the time scale of the reaction of 4 with 1 equiv D\textsubscript{2}O\textsubscript{2} and consequently the initial rate (< 0.5 h) represents better the latter reaction. Examination of the decay in absorbance at 692 nm provides an important observation. In contrast to that observed in CH\textsubscript{3}OH and CH\textsubscript{3}OD, in CD\textsubscript{3}OD the decay of 4 is biphasic with an initial fast phase over 1000 s, during which all of the D\textsubscript{2}O\textsubscript{2} is consumed followed by a slower phase in which the rate of decay of 4 is essentially the rate of its reaction with CD\textsubscript{3}OD. These data indicate that D\textsubscript{2}O\textsubscript{2} is reduced through an alternative pathway, i.e., the FeIII species formed initially competes with 4 in the reduction of D\textsubscript{2}O\textsubscript{2}. The reduction in efficiency, in terms of number of equivalents of hydrogen peroxide needed to reduce 4 is similar to that observed in acetonitrile.27

With excess H\textsubscript{2}O\textsubscript{2} (40 equiv) in CH\textsubscript{3}OH, the characteristic NIR absorbance of 4 disappears over 10 s, while that of 3 (FeIII-OOH, Figure 114) appears concomitantly. These data indicate that the reduction of 4 to 5a by H\textsubscript{2}O\textsubscript{2} is followed by ligand exchange with H\textsubscript{2}O\textsubscript{2} to form 3. Thereafter, the spectral changes are essentially the same as observed upon addition of H\textsubscript{2}O\textsubscript{2} to 1 in methanol.
Figure 114. (a) UV-vis absorption spectrum of 4 (1 mM) after addition of 40 equiv H$_2$O$_2$ in CH$_3$OH. The changes of the absorbance at 550 nm (black) and 800 nm (red) between 0 - 150 s (b) and the changes after 150 s (c) are shown separately.

In summary, the rate of reaction of 4 follows the order H$_2$O$_2$ (in CH$_3$OH) > D$_2$O$_2$ (in CH$_3$OD) > D$_2$O$_2$ (in CD$_3$OD). Notably, the presence of even 1 equiv of H$_2$O$_2$ precludes the presence of 4 in methanol, rationalizing the fact that 4 can be observed only when the concentration of H$_2$O$_2$ is sub-stoichiometric. The rate of reduction of 4 by H$_2$O$_2$ in acetonitrile was reported by Braymer et al. to be insensitive to deuteration (i.e. D$_2$O$_2$). In retrospect this observation can be understood by considering the need for excess H$_2$O$_2$ in that case and that 4 is not the sole species capable of reacting with H$_2$O$_2$.

6.2.5 Mechanistic considerations

The paradigm for oxidation catalysis with complexes such as 1 and H$_2$O$_2$ is rapid oxidation to the ferric state and formation of hydroperoxido complexes (e.g., [(N4Py)FeIII=OOH]$^{2+}$, 3). Homolytic cleavage of the O-O bond in 3 yields [(N4Py)FeIV=O]$^{2+}$ (4) and a hydroxyl radical, both of which are responsible for oxidation of organic substrates. In the present case, only 3, and not 4, is observed in the presence of H$_2$O$_2$, which is consistent with the homolytic cleavage of the O-O bond in 3 as rate determining.

The efficiency in the oxidation of organic substrates is diminished substantially in the presence of excess H$_2$O$_2$ due to disproportionation to H$_2$O and O$_2$. In the present study, independently prepared 4 is shown to be reduced to the ferric state in methanol rapidly upon addition of H$_2$O$_2$. Hence, the fact that 4 is not observed in the presence of excess H$_2$O$_2$ can be ascribed to this reaction pathway ((b) in Scheme 12). Indeed, [(N4Py)FeIV=O]$^{2+}$ (4) reacts with H$_2$O$_2$ ($k = 8$ M$^{-1}$ s$^{-1}$) much more rapidly than the observed rate of decomposition of H$_2$O$_2$ ($k = 0.8$ M$^{-1}$ s$^{-1}$). However, for pathway (b) (Scheme 12) to be kinetically possible the rate of the O-O bond homolysis of 3 must also be sufficiently rapid to account for the rate of decomposition of H$_2$O$_2$.

In the present study several observations cast doubt on the validity of pathway (b). In methanol, the formation of 4 from 3 is observed once (nearly) all H$_2$O$_2$ has been consumed, however, the rate of this reaction is much lower (< 3.0 x 10$^{-3}$ s$^{-1}$) than expected (Figure 103). DFT
calculations (vide infra) indicate that the cleavage of the O-O bond is substantially uphill, and is accompanied by a low barrier to return to 3 (and hence has an intrinsically substantial thermal barrier). Consequently the rate of formation of \([(N4Py)Fe^{IV}=O]^{2+} \) (4) is insufficient to account for the decomposition of \(\text{H}_2\text{O}_2 \) when present in excess. This conclusion holds the further consequence that the formation of 4 and hence the oxidation of organic substrates by 4 is not competitive with oxidation of \(\text{H}_2\text{O}_2 \) by 3 (pathway (a), Scheme 12). The consequence of this is that the oxidation of organic substrates is only competitive under conditions of low \(\text{H}_2\text{O}_2 \) concentration.

Scheme 12. Possible mechanism for the reaction of 1 with excess \(\text{H}_2\text{O}_2 \).

6.2.6 DFT calculations

The mechanism and comparison of two possible pathways for the reaction of 3 with \(\text{H}_2\text{O}_2 \) were explored through DFT calculations. Geometry optimization and frequency calculations were carried out at BP86-D3/TZ2P, with subsequent single point energies at S12g/TZ2P, including COSMO-ZORA self-consistently at all stages. All data are listed in Supporting information.

The doublet ground-state calculated for 3 is in accordance with experiments, however, for consistency, the reaction pathways a and b (Scheme 12) were calculated in all three possible spin states: doublet, quartet and sextet (Figure 115). For both pathways the reaction barriers are much lower in the low-spin state than the other two spin states, and hence the discussion below considered only the low spin states (Figure 116 and Figure 117).

Figure 115. Comparison of energy profiles (in kcal mol\(^{-1}\)) of pathway a (left) and pathway b (right) in different spin states: doublet (black), quartet (red) and sextet (blue), as obtained at the S12g/TZ2P//BP86-D3/TZ2P level.
For the disproportionation pathway (a), the reactants, $\text{3} + \text{H}_2\text{O}_2$, form initially a reactant complex (RC) where the peroxide is bound to the iron complex weakly. This step is followed (in TS1) by hydrogen atom abstraction from the peroxide towards the distal OH group of 3, and simultaneously cleavage of the O-OH bond of 3 takes place with a barrier of only 3.2 kcal mol$^{-1}$. In this TS, the O-OH bond in 3 elongates from 1.60 to 2.14 Å, together with a shortening of the H-(OH) distance to 1.45 Å. This is followed by a highly exergonic (-31.6 kcal mol$^{-1}$) completion of the hydrogen atom transfer process to form H_2O in the intermediate (INT). Simultaneously, the O-O bond of the peroxide shortens from 1.49 Å to 1.35 Å. Formation to the product from INT involves a second hydrogen atom abstraction (barrierless in terms of Gibbs free energy, -1.0 kcal mol$^{-1}$, +1.1 kcal·mol$^{-1}$ in electronic energy) in which the remaining hydrogen of the peroxide is transferred to the oxygen coordinated to iron. This second HAT is exergonic by ca. -17.0 kcal·mol$^{-1}$, and finally leads to the products $\text{Fe}^{\text{III}}\cdot\text{OH} + \text{H}_2\text{O} + \text{O}_2$.

In contrast, the homolysis pathway b, initially forms a similar weakly-bound complex in the RC_{homo}. However, the activation barrier (10.7 kcal mol$^{-1}$) for homolytic cleaving of the O-OH bond of 3 in TS$_{\text{homo}}$ alone to form $\text{Fe}^{\text{IV}}\cdot=\text{O}$ is much higher than that in pathway a. The O-OH bond in 3 elongates from 1.51 to 2.63 Å with hardly any change in the structure of the peroxide, i.e., the peroxide does not participate actively in the reaction, but merely acts as hydrogen-bond donor. More importantly, the product for this homolytic pathway (b), P_{homo}, is so close in energy to the TS$_{\text{homo}}$ (< 2 kcal mol$^{-1}$) that it readily undergoes the reverse reaction to the initial reactants.

These data are consistent with the observed low rate at which 4 forms from 3, and the rapid consumption of H_2O_2 by direct reaction of 3 with hydrogen peroxide in the disproportionation pathway (a).

Figure 116. Comparison of energy profiles (in kcal mol$^{-1}$) of pathway (a) (catalase, in red) and pathway (b) (homolysis, in black), as obtained at the S12g/TZ2P//BP86-D3/TDZP level.
In summary, there are two pathways that should be considered for the decay of 3. The first is a unimolecular homolysis to form 4 \((\text{Fe}^{IV}=\text{O}) \) and a hydroxyl radical. This process is slow and only occurs at low concentrations of \(\text{H}_2\text{O}_2 \), in which \(\text{H}_2\text{O}_2 \) is outside of the solvation sphere of 3. In this case, both 4 \((\text{Fe}^{IV}=\text{O}) \) and \(\text{HO}^- \) are eventually formed and are responsible for the oxidation of organic substrates (i.e. methanol), and hence it is a productive reaction. In the presence of excess \(\text{H}_2\text{O}_2 \), i.e. within the solvation sphere of 3, the formation of two H-bonds supports the breaking of the O-O bond of 3, and either stabilizes (i) the formation of 4 (“insertion” of \(\text{H}_2\text{O}_2 \) into the O-O bond of 3 or (ii) through HAT from \(\text{H}_2\text{O}_2 \) to form water and \(\text{HOO}^- \), and in a subsequent step, a second HAT from \(\text{HOO}^- \) by \(\text{Fe}^{IV}=\text{O} \) leads to the formation of \([(\text{L})\text{Fe}^{III}(\text{OH})]^{2+} \) (5b) and dioxygen (see Scheme 13).

Our computational study shows that the barrier for reaction (i) is substantial and endergonic (10.7 kcal·mol\(^{-1}\)), even with stabilization through H-bonding with \(\text{H}_2\text{O}_2 \). The barrier for pathway (ii) is much lower (ca. 3.2 kcal·mol\(^{-1}\)), and leads to the generation of dioxygen (observed experimentally). Hence, in the presence of \(\text{H}_2\text{O}_2 \), 3 is almost exclusively transformed into 5b, and with subsequent solvent exchange to 5a (and subsequently through the exchange of methoxido by another \(\text{H}_2\text{O}_2 \) back to 3). Therefore, in the presence of excess \(\text{H}_2\text{O}_2 \), disproportionation into \(\text{H}_2\text{O} \) and \(\text{O}_2 \) is the more energetically favored pathway.
Scheme 13. Homolysis of the O-O bond in 3 to form 4 vs reaction of 3 with H$_2$O$_2$.

Regardless of the pathway, the observed reactivity presents a dichotomy towards the use of complexes such as 2a for oxidation catalysis. 3 (FeIII-OOH) does not appear to react directly with organic substrates, and hence formation of 4 (FeIV=O) and a hydroxyl radical from 3 through O-O bond homolysis is required. However, both 3 (FeIII-OOH), and 4 (FeIV=O) react with H$_2$O$_2$ more readily than with organic substrates (e.g., methanol). Therefore, ideally the steady state concentration of H$_2$O$_2$ should be held as low as possible, yet still sufficiently high to generate 3 and, form 4 (FeIV=O)/HO$^\cdot$. Hence, the rate of addition of H$_2$O$_2$ should affect the relative efficiency of 2a in the oxidation of organic substrates, as shown below for the oxidation of methanol.

6.2.7 Competition between the oxidation of methanol and H$_2$O$_2$ disproportionation catalyzed by 2a

The oxidation of methanol to methanal occurs concomitantly with the conversion of 4 (FeIV=O) to [(N4Py)FeII-OCH$_3$]$^{2+}$ (vide supra). However, the rate of this reaction is sufficiently low to exclude it as being an important pathway for 2a in the presence of excess H$_2$O$_2$ (i.e. both FeIII-OOH and 4 (FeIV=O) react much more rapidly with H$_2$O$_2$ than with methanol). A number of competing kinetically competent pathways are thus available in the reaction of 2a with H$_2$O$_2$ and variation in the steady state concentrations of reaction components should indicate the relative importance of each of these pathways.
Figure 118. Oxidation of methanol (solvent) with H₂O₂ catalyzed by 1 (0.25 mM). HCHO was quantified colorimetrically. The number of equiv H₂O₂ is w.r.t to 2. Slow addition of H₂O₂ indicates a rate of addition of 0.4 equiv. min⁻¹, bar 3/4.

With an 800 fold excess of H₂O₂, ca. 28 % of H₂O₂ is disproportionated to H₂O and O₂, with only 2 % generating formaldehyde (Figure 118, bar 1). Addition of fewer equivalents of H₂O₂ (bar 2) results in a substantial increase in the efficiency in the use of H₂O₂ to oxidize methanol, which increases further by addition of the same amount of H₂O₂ slowly. Adding fewer equivalents slowly over the same time does not increase efficiency further nor does a change in the concentration of the catalyst (0.25 vs 0.125 mM, bars 4 and 5, respectively), since overall conversion rates are controlled by the rate of addition. These data are consistent with the self-decay rate of 4 (Fe⁴⁺=O), vide supra, setting the upper limit for the rate of addition of oxidant to achieve maximum efficiency.

6.3 Conclusions

The species accepted, i.e. Fe⁴⁺=O, to be responsible for the oxidation of organic substrates by most non-heme iron catalysts is formed from an Fe³⁺-OOH precursor through O-O bond homolysis, liberating an hydroxyl radical concomitantly. Que and co-workers² have noted that in systems where low spin Fe³⁺-OOH species are generated (with excess H₂O₂) and observed, the corresponding Fe⁴⁺=O species is not observed.

Here we show that in the case of non-heme N5 coordinated iron complexes that form observable Fe³⁺-OOH species, two key reasons can be invoked, to rationalize the absence of a corresponding Fe⁴⁺=O species. The first is that even if it does form, it reacts rapidly and unproductively with H₂O₂ rather than with an organic substrate. Secondly, and unexpectedly, Fe³⁺-OOH (3) reacts more rapidly with H₂O₂ than it undergoes O-O bond homolysis to form an Fe⁴⁺=O species in the first place.

Ligand exchange, i.e. Fe³⁺-OR to Fe³⁺-OOH (3), precedes the oxidation of both organic substrates (equation 2) and H₂O₂ (equation 4). In the present study we show that O-O bond homolysis is relatively slow and not competitive with the oxidation of H₂O₂ to O₂ by 3. The reaction bifurcation seen for Fe³⁺-OOH presents a dichotomy in that H₂O₂ must be present in order to form Fe⁴⁺=O (4), but the steady state concentration of H₂O₂ should be less than that of Fe³⁺-OOH (3), in order for O-O bond homolysis to form Fe⁴⁺=O and an HO • radical can take place and hence oxidation of organic substrates. Hence, efficiency w.r.t. oxidation of organic substrates...
is increased, as observed in the present study, by maintaining low steady state concentrations of H$_2$O$_2$.

In conclusion, we show that in the oxidation of organic substrates by reactive iron species (Fe(IV)=O and Fe(III)OOH) competes with the reaction of these same species with H$_2$O$_2$ and hence wasteful disproportionation of the terminal oxidant. A substantial increase in oxidant efficiency is achieved by maintaining a pseudo steady state concentration of H$_2$O$_2$ that is below that of the catalyst itself. Furthermore, far from only being a meta-stable intermediate on route to an FeIV=O species, the FeIII-OOH complex is kinetically competent in its reaction with H$_2$O$_2$. The conclusions reached in the present study have implications in regard to our approach to oxidation catalysis with iron catalysts with pentadentate ligands and in a wider perspective hold implications for the mechanisms invoked for catalase type reactions in both biomimetic and bioinorganic systems.

6.4 Experimental section

Synthesis. The ligand 1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine (N4Py), and [(N4Py)FeIV][FeIV=O](PF$_6$)$_2$ were prepared as reported previously. Commercially available chemicals were purchased from Sigma Aldrich without further purification. All solvents used for spectroscopy were of UVASOL (Merck) grade.

Computational details

Computational studies were performed using ADF and QUILD, as reported earlier. Briefly, geometry optimization and frequency calculation were performed using an unrestricted density functional BP86-D$_3$ using a triple-zeta valence plus polarization basis set on iron combined with a double-zeta valence plus polarization on all other atoms (TDZP). Single-point energy calculations on these geometries were made with the S12g spin-state consistent functional in a triple-zeta valence plus double polarization (TZ2P) basis set. Free energy corrections (ΔG) were obtained from the BP86-D$_3$ data and are corrected for zero point energy (ZPE), thermal and entropic corrections were made from frequency calculations at 298 K. The solvation energy was considered using methanol as a solvent with the COSMO solvation model as implemented in ADF.

6.5 Acknowledgements

We thank Dr. Davide Angelone and Prof. Marcel Swart for the help with DFT calculations, Dr. Apparao Draksharapu Dr. Duenpen Unjaroen, Dr. Sandeep K. Padamati, and Dr. Ronald Hage for technical assistance and discussion, Prof. Carole Duboc for EPR studies and guidance in this projects. The Ministry of Education, Culture and Science of the Netherlands (Gravity program 024.001.035, WRB), Ubbo Emmius fund (AD), the European research council (W.R.B), COST association action CM1305 ECOSTBio, the labex arcane (ANR-11-LABX-003), MINECO (CTQ2014-59212-P and CTQ2015-70851-ERC, M.S.), GenCat (2014SGR1202, M.S.), FEDER (UNGI10-4E-801, M.S.), and the Chinese Scholarship Council (J.C.) are acknowledged for financial support.

6.6 References

(12), 2152.

H$_2$O$_2$ Disproportionation by Iron(III)-hydroperoxyl Intermediates

