FISSION DECAY OF THE ISOSCALAR GIANT QUADRUPOLE RESONANCE IN 24Mg

S. LAWITZKI, D. PADE, B. GONSIOR, C.D. UHLHORN 1

S. BRANDENBURG, M.N. HARAKEH and H.W. WILSCHUT
Kernfysisch Versneller Instituut, 9747 AA Groningen, The Netherlands

Received 11 April 1986

The 24Mg(α, α') 12C + 12C reaction was studied by measuring 12C fragments in coincidence with inelastically scattered α-particles at $E_{\alpha} = 120$ MeV. Both 12C fragments were identified using the $\Delta E - E$ technique. The measured angular correlations indicate that the 12C$_{gs} + ^{12}$C$_{gs}$ decay channel is dominated by decay of $L = 2$ strength, which yields an integrated fraction of 0.14% of the E2 EWSR strength in comparison with 22.2% of the E2 EWSR strength observed in singles inelastic α-scattering experiments in the same excitation energy region.

Since the discovery [1] of the intermediate resonance-like structures as a common phenomenon in light heavy-ion systems (see refs. [2,3], and references therein), especially the 12C + 12C reaction has received great experimental and theoretical attention. In the vicinity of the Coulomb barrier, the excitation functions of various exit channels exhibit a large variety of structures from broad shape-resonances [4] to intermediate structure in the fusion channel [5] and in the inelastic scattering channels [3]. It is not yet clear, whether these structures are to be attributed to entrance channel effects or to compound nuclear states, which serve as "doorway states" for fusion or fission [6].

The dominant isoscalar collective excitation mode of 24Mg in the energy region above the Coulomb barrier of the 12C + 12C channel ($V_c \approx 6$ MeV $\equiv E_{c}(^{24}$Mg) ≈ 20 MeV) is the isoscalar giant quadrupole resonance (GQR). The particle decay (p and α) of the GQR into light nuclei has been the subject of numerous experiments [7–9], whereas the observation of the decay into heavy fragments suffers from great experimental difficulties and therefore has scarcely been studied

[10,11]. The symmetric fission of 24Mg has been investigated [10] with the (e, 12C) reaction at electron energies 21 MeV $\leq E_e \leq 40$ MeV. Large average fission widths were deduced for $L = 0$ and $L = 2$ excitation [10]. Also in the symmetric fission decay of 24Mg induced by inelastic α-scattering measured at large scattering angles [11] the results possibly indicated large fission widths compared to statistical model predictions. Only in the 24Mg nucleus a large part of the GQR is located at an excitation energy above the threshold plus Coulomb barrier ($-Q + E_c$) for a heavy ion decay channel, which in this case is 12C$_{gs} + ^{12}$C$_{gs}$. The fusion reaction channel 12C(12C, γ_0) proceeds through states in 24Mg which are of quadrupole nature [5] and should thus be observed in inelastic α-scattering as part of the GQR.

In this letter we report on an investigation of the 24Mg(α, α') 12C + 12C reaction. The experiments were performed at the AVF cyclotron of the KVI Groningen with a 120 MeV momentum analyzed α-beam. Isotopically enriched (99.7%), self-supporting 24Mg targets [12] with areal densities between 60 μg/cm2 and 150 μg/cm2 were used.

To identify the reaction 24Mg(α, α') 12C + 12C unambiguously, triple coincidences between the inelastically scattered α-particles and both 12C nuclei were
measured. The α-particles were detected in the focal plane of the magnetic spectrograph QMG/2 [13] at a scattering angle of θ_{lab} = 7.1° which corresponds to a center-of-mass angle of θ_{cm} ≈ 8.5°. This scattering angle which lies near the first maxima of the J^{π} = 2^+ and 4^+ angular distributions was chosen to enhance the yield of these multipolarities compared to others. The spectrograph had an opening angle of Δθ = 2.6°, Δφ = 5.6° which corresponds to a solid angle ΔΩ ≈ 4.3 msr. The overall energy resolution achieved for the inelastically scattered α-particles was ΔE ≲ 70 keV.

The 12C fragments were detected in the reaction plane with a setup which consisted of two ΔE − E detector telescopes (tel. 1 and tel. 2), which were placed at three different angle pairs (θ_1 = −45°, θ_2 = 135°), (θ_1 = −70°, θ_2 = 91°) and (θ_1 = 35°, θ_2 = −114°) where the angles are given with respect to the beam axis. The angles at the opposite side of the beam (relative to θ_{cm}) are denoted with a minus sign. These angles correspond (at E_x(24Mg) ≈ 23 MeV) to θ_{cm} ≈ 0°, 30° and 90° in the center-of-mass coordinate system of the recoiling 24Mg* nucleus.

To detect and identify the 12C fragments with kinetic energies in the range 1–15 MeV (depending on detection angle and E_x(24Mg)), the detector telescopes consisted of ΔE-ionization chambers and E-semiconductor detectors. The telescopes covered solid angles of 7 msr (tel. 1) and 54 msr (tel. 2). In one of the measurements (θ_1 = −70°, θ_2 = 91°) tel. 2 was replaced by a semiconductor detector telescope (25 μm ΔE, 2000 μm E-detector) with a solid angle of 64 msr. To minimize the energy loss of the 12C fragments in the target, target angles were chosen such that the directions of the 12C fragments were nearly perpendicular to the target. Coincidences between the focal plane detector of the spectrograph and one or both of the telescopes were recorded on tape event by event as a set of 19 parameters for later off-line analysis.

The differential and double differential cross sections were normalized by comparing measured elastic differential cross sections of the 24Mg(α, α')24Mg reaction to results of optical model calculations. The uncertainty in the absolute differential cross sections due to this normalization procedure is estimated to be less than 10%.

The analysis of the triple coincidences was done off-line. Complete identification of α-particles was obtained in the focal plane detector. In tel. 1 complete identification of the 12C particles could be achieved above 3.5 MeV kinetic energy, while at lower energies it was possible to distinguish heavy ions from low-energy α-particles down to 1.5 MeV.

Because of the very low kinetic energies of the carbon fragments in tel. 2, where most of the fragments had energies below the Bragg-maximum of α-particles in the runs with θ_{cm} ≈ 0° and 30°, an analysis of the total kinetic energies of all detected particles had to be done in order to prove that each event fulfilled the kinematic conditions for breakup of 24Mg* into 12C + 12C. In this manner three types of breakup events could be identified: 24Mg* → 12C_{gs} + 12C_{gs}, 24Mg* → 12C_{gs} + 12C*(2^+, 4.44 MeV) and 24Mg* → 12C*(2^+, 4.44 MeV) + 12C*(2^+, 4.44 MeV). Fig. 1 shows the spectra of each exit channel displayed versus E_x(24Mg). Because of the low statistics the events are summed in 200 keV wide energy bins.

The double differential cross sections d^2σ_{cc}/dΩ_α' dΩ_{cc} deduced from these data are listed in table 1, together with the average angles for breakup in the center-of-mass system. The errors quoted include only statistical errors except for the experiment at θ_{cm} ≈ 0°, where an estimated error for background subtraction has been included. All other errors are believed to be small.

We will limit the following discussion to the decay of 24Mg* into 12C_{gs} + 12C_{gs} because of the rather poor statistics in the other decay channels. In fig. 2, the double differential cross section, summed over the region E_x = 19–29 MeV is plotted versus center-of-mass angle, which is measured with respect to the recoil angle of 24Mg*. The results of angular correlations calculated with the program ANGCOR [14] assuming J^{π} = 2^+ and 4^+ intermediate states in 24Mg are shown for comparison. The angular correlations were calculated with m-substate populations obtained from a DWBA calculation [15] with a collective type (R dU/dr) form factor. Optical model parameters [16], which have been shown to give a good description of both the elastic and inelastic scattering angular distributions of α-particles from 24Mg, were used.

At the α-scattering angle θ_{α'} = 7.1° the symmetry axis for the decay of J^{π} = 2^+ excited states of 24Mg is rotated by ≈30° cm with respect to the recoil axis which is the symmetry axis in a plane wave Born approximation. The theoretical prediction for a 2^+ state...
Fig. 1. α-spectra in coincidence with 12C fragments from the reaction 24Mg(α, α′) 12C + 12C at Eα = 120 MeV, θα = 7.1° for the breakup at three different center-of-mass angles θ = 0° (1), θ ~ 30° (2) and θ ~ 90° (3). Different spectra are for different collected charge. The experimental thresholds for the fission decay of 24Mg which are due to the detection thresholds in the carbon detectors are indicated by arrows.

Table 1

<table>
<thead>
<tr>
<th>Type of event</th>
<th>θ1 [°]</th>
<th>θ2 [°]</th>
<th>θcm [°]</th>
<th>d2 σcc/dΩc dΩcc [μb/str²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-45</td>
<td>135</td>
<td>-1.8</td>
<td>22.9 ± 4.4</td>
</tr>
<tr>
<td></td>
<td>-70</td>
<td>91</td>
<td>31.3</td>
<td>29.9 ± 3.9</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-114</td>
<td>85</td>
<td>4.3 ± 1.9</td>
</tr>
<tr>
<td>B</td>
<td>-45</td>
<td>135</td>
<td>5.6</td>
<td>9.6 ± 3.7</td>
</tr>
<tr>
<td></td>
<td>-70</td>
<td>91</td>
<td>38.9</td>
<td>8.2 ± 2.0</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-114</td>
<td>85.6</td>
<td>8.1 ± 1.6</td>
</tr>
<tr>
<td>C</td>
<td>-45</td>
<td>135</td>
<td>12.5</td>
<td>5.8 ± 2.7</td>
</tr>
<tr>
<td></td>
<td>-70</td>
<td>91</td>
<td>44.8</td>
<td>2.4 ± 1.1</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-114</td>
<td>91</td>
<td>4.0 ± 1.8</td>
</tr>
</tbody>
</table>

a) Center-of-mass angles have been averaged over excitation energy and weighted by the measured triple differential cross section.
fits the data reasonably well, which indicates, that a sizeable fraction of the excited states of ^{24}Mg at this excitation energy have spins $J^\pi = 2^+$. Small admixtures of higher multipoles $J^\pi = 4^+$ etc. decaying into the $^{12}\text{C}_{gs} + ^{12}\text{C}_{gs}$ channel cannot be excluded.

The double differential cross sections were integrated over 4π assuming the predicted shape of the angular correlations and summing over the excitation energy range of 19–29 MeV. We obtain $\frac{d\sigma}{d\Omega_{\alpha'}} = 46.8 \pm 5 \text{ mb/sr}$. To obtain the integrated fraction of thr E2 EWSR, DWBA cross sections for $L = 2$ were calculated in 1 MeV steps for the region 19–29 MeV. The experimental cross sections in 1 MeV bins were compared to these DWBA cross sections. The deformation parameters β_2 obtained in this way were used to determine the $B(E2)$-values employing the radial moments of the real part of the optical potential (see further ref. [17]). These $B(E2)$-values were integrated as a function of excitation energy to obtain the E2 EWSR. The total integrated cross section between 19–29 MeV thus corresponds to a fraction of 0.14% of the E2 EWSR in the $^{12}\text{C}_{gs} + ^{12}\text{C}_{gs}$ channel.

Fig. 3. Comparison of a singles spectrum of inelastically scattered α-particles (a) with inelastic α-scattering followed by symmetric fission into two carbon nuclei in their ground states (b) and the radiative capture cross section for $^{12}\text{C}(^{12}\text{C}, \gamma_0)^{24}\text{Mg}$ (c) of Nathan et al., (ref. [5]).
This is to be compared with a total of 22.2% of the E2 EWSR observed previously by van der Borg et al. \[16\] in ^{24}Mg in the region of 19.03–26.50 MeV excitation energy.

In fig. 3 the cross section $d^2\sigma_{cc}/d\Omega_{c}\cdot dE_x$ derived from the $\theta_{cm} \approx 30^\circ$ measurement is compared with the singles spectrum for the inelastic scattering of α-particles and the $^{12}\text{C} + ^{12}\text{C}$ radiative capture data of Nathan et al. [5]. There is a clear similarity of the structures in the singles and the coincidence spectra, which have been plotted on the same energy scale. Nearly all structures in the singles spectrum can be found in the coincidence data at the same positions and with comparable widths.

Comparing the coincidence spectrum with the radiative capture cross sections for γ_0 decay, which can be considered as the time-reversed reaction, the similarity of the structure remains, though the peak at $E_x = 20.3$ MeV seems to be observed 260 keV lower in the capture data. We note, however, that this peak appears at exactly the same excitation energy as a quasi-molecular resonance observed by Erb et al \[18\].

To a lesser degree the peak at $E_x = 20.9$ MeV is shifted, while the structure at $E_x = 21.9$ MeV is located at the same energy in the fusion and fission channel. The discrepancy between our data and the radiative capture data at the lowest excitation energy in ^{24}Mg, i.e. the resonance at 20.3 MeV, may be related to a difficulty in determining the centroid resonance energy in the radiative capture experiment due to uncertainties in the energy losses of the ^{12}C ions at the lowest bombarding energy.

In conclusion we find strong correlations between the structure of the GQR showing up in the fission decay on the one hand and the $^{12}\text{C}(^{12}\text{C}, \gamma_0)^{24}\text{Mg}$ radiative capture reaction on the other. This emphasizes the role of the GQR as doorway state for fusion and fission \[6\] and connects the intermediate structure of the radiative capture reaction with collective excitations of the ^{24}Mg nucleus. In a macroscopic view of the GQR as an isoscalar vibrational state, this shows an overlap of the wavefunction of this highly collective state with the symmetric heavy ion channel $^{12}\text{C} + ^{12}\text{C}$.

We would like to acknowledge many useful discussions with R.H. Siemssen.

References