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REPORT

Distance over Time in a Maximal Sprint: Understanding
Athletes’ Action Boundaries in Sprinting

Dees B. W. Postmaa,b , Martijn B. Wielingc , Koen A. P. M. Lemminkb and
Frank T. J. M. Zaalb

aHuman Media Interaction, University of Twente, Enschede, The Netherlands; bDepartment of Human
Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The
Netherlands; cHumanities Computing, University of Groningen, Groningen, The Netherlands

ABSTRACT
The present study examined the kinematics of maximal effort sprint
running, mapping the relations among a person’s maximal running
speed, maximum running acceleration and the distance coverable in
a certain amount of time by this person. Thirty-three participants
were recruited to perform a simple sprint task. Both forward and
backward running were considered. Participants’ position, velocity
and acceleration data were obtained using a Local Positioning
Measurement system. Participants’ speed-acceleration profiles turned
out to be markedly non-linear. To account for these non-linear pat-
terns, we propose a new macroscopic model on the kinematics of
sprint running. Second, we examined whether target distance was of
influence on the evolution of participants’ running speeds over time.
Overall, no such effect on running velocity was present, except for a
‘finish-line effect’. Finally, we studied how variation in individuals’
maximum running velocities and accelerations related to differences
in their action boundaries. The findings are discussed in the context
of affordance-based control in running to catch fly balls.

KEYWORDS
Action boundaries;
sprinting; interception;
Generalized
Additive Modelling

Introduction

Will he be able to make that catch? Spectators of baseball games, for instance, might
watch a running outfielder with excitement, eager to find out the answer to this ques-
tion. Will he be able to reach the ball before it hits the ground? Given his abilities, will
the outfielder have enough time to reach the location where the ball will land?
Expressed in this way, it is clear that the affordance of interceptability should be cap-
tured by the relations among the outfielder’s running abilities, the distance to be cov-
ered and the time before the ball hits the ground (Oudejans et al., 1996; Postma et al.,
2018; Steinmetz et al., 2020). The present contribution addresses these relations. More
specifically, we ask the question of how much time is needed to cover a certain distance
(or, alternatively, how much distance can be covered in a certain time), and how this is
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related to the maximum running speed and running acceleration that a person can
attain. The issue is broader than situations of interception of projectiles such as balls:
think of examples such as crossing streets (Oudejans et al., 1996) and catching busses.
What all these situations have in common is that they all revolve around the issue of
being at some place in the right time or trying to avoid this.
The issue of what determines the maximum distance that can be covered in a fixed

time has been addressed primarily in studies into fly-ball catching. The results from
these studies (Fajen et al., 2011; Oudejans et al., 1996; Postma et al., 2018) seem to sug-
gest that it is not a person’s maximum speed nor his or her maximum acceleration per
se that determines the action boundary of running. For example, Oudejans et al. (1996)
determined the boundary between catchable and uncatchable fly balls (or fly balls
judged as such). In their analyses, distance-over-time (i.e. required velocity) and dis-
tance-over-time-squared (i.e. required acceleration) better captured the observed boun-
daries than distance did, whereas the fits based on these velocity and acceleration
measures were of similar quality. Fajen et al. (2011), in a follow-up on the Oudejans
et al. (1996) study, introduced an alternative to the required-velocity measure. They
determined, per participant, at each point in time the greatest distance that the partici-
pant had covered. They used this to compute, for each trial, the difference in the time
needed to cover the distance to the ball’s landing location and flight time of the ball,
which was called ‘time-to-spare’. Using this time-to-spare as a basis for drawing the
boundaries between catchable and uncatchable balls led to similar results as using
required velocity (for the conditions that were compared, see Fajen et al., 2011). Finally,
Postma et al. (2018) used the maximum distance that a participant had been able to
cover during the flight time of the balls (which was roughly constant in their experi-
ment) to characterize the boundary between catchable and uncatchable fly balls. Their
analyses showed that this ‘locomotor range’ led to better fits than required velocity or
required acceleration. Taken together, these studies indicate that the distance that play-
ers can run in a certain time does not seem to be determined exclusively by either the
maximum velocity or the maximum acceleration that they are able to reach. Still, both
variables seem to play a role in defining this maximum distance.
Already in 1927, Hill and colleagues studied the dynamics of sprint running, specific-

ally in the context of athletics (Furusawa et al., 1927; Hill, 1927). Hill and colleagues
derived a mono-exponential relationship that described the velocity-time relation of an
athletes’ center of mass in maximal-effort sprinting. From their model it is predicted (1)
that maximal acceleration is seen right at the start of the run and (2) that an inverse
linear relationship exists between running speed and acceleration. While proven effect-
ive for athletics, Hill’s characterization of sprint running seems not readily applicable to
the context of locomotor interception tasks. First, because agents in locomotor intercep-
tion tasks are typically unaided by starting blocks and secondly because the direction of
motion is not always known a priori (e.g., in baseball, an outfielder does not know
which way to run until the ball is hit). We expect that this will mean that players will
not reach their maximum acceleration instantaneously but probably somewhat later in
the run. The implication of this would be that the relation between acceleration and vel-
ocity, when asking players to run at their maximum abilities, will not be entirely linear
either (we expressly investigate this below). Furthermore, some interception tasks might
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require agents to run in other directions than the forward-direction. Running backwards
to intercept a ball or an opponent is common in sports like soccer, basketball, and foot-
ball but is not explicitly covered by the Hill model. Finally, the task ecology of the
aforementioned sports settings is different from athletic sprinting. Indeed, in many
team sports, sprints are typically short and explosive; seldomly do athletes sprint for
hundred meters or more. This difference in task (ecology) might impact the way they
cover a certain distance to make an interception. Thus, to characterize the action boun-
daries in interceptive tasks, further investigation into the macro-dynamics of running is
required—for short and long distances, running backwards and forwards.
To map the relation among maximum velocity, maximum acceleration, and the dis-

tance coverable within a certain timeframe, we designed a simple sprinting experiment
that was general enough to shed light on agents’ action boundaries for various interceptive
tasks, yet specific enough to represent those tasks. We collected data of participants per-
forming maximal-effort sprints. No starting blocks were used, and we examined different
modes of locomotion (forwards and backwards) and different target distances. As a first
objective, we set out to examine whether an inverse linear relationship was indeed appar-
ent for sprinting in the forward direction. The results show that maximal running speed
is non-linearly related to acceleration in the context of the current sprinting task. This was
the case for all target distances (7.5–60 meters). To account for these non-linear patterns,
we propose a new macroscopic model on the kinematics of sprint running. This new
model also explicitly covers the macro-dynamics of backward sprinting, a mode of loco-
motion common in many (sports related) interceptive tasks. Model performance is eval-
uated for both forward sprinting and backward sprinting. We show that our alternative
model provides an accurate characterization of the dynamics of running. As such, it shows
to be promising for understanding agents’ action boundaries in various interceptive tasks.

Methods

Participants

Thirty-three people (30 men and 3 women) participated in this study. On average, par-
ticipants were 21 years old (SD¼ 1.2). Participants were healthy individuals and reported
no injuries that could affect their performance during the experiment. All participants
had prior experience with running on artificial grass, for example in the context of (rec-
reational) soccer or field hockey. Prior to the experiment, all participants were informed
about the procedure of the experiment both in writing and orally. The experiment was
approved by the Ethics Committee of the Center for Human Movement Sciences
(University Medical Center Groningen, the Netherlands), and the protocol was in
accordance with the Declaration of Helsinki.

Setup and apparatus

The experiment took place on artificial turf at one of the practice fields of a professional
soccer club (FC Groningen, The Netherlands). Participants carried out their sprints in
(randomized) groups of three to six people. Participants were all assigned an individual
lane. Every lane was exactly 5 meters wide. Pylons were placed along the long side of
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the lanes to demarcate different target distances: 3.75, 7.5, 15, 30 and 60 meters. The
starting line was the same over all participants and trials and was set at 0 meters. Right
behind the starting line, at the centerline of every lane, a pylon was positioned at minus
one meter.
Position data were recorded using the Local Positioning Measurement (LPM-) system

(Inmotio Object Tracking B.V., Amsterdam, The Netherlands). Position data were
obtained with a sample frequency of 62.5Hz. Two video cameras recorded the experi-
ment: One camera provided close-up footage of the starting line, the other captured the
entire field. The camera that made close-up footage of the field was used to record the
starting signal for later analysis. Both cameras were Full-HD and recorded the experi-
ment at 30Hz.

Design

The experiment had a repeated-measures, block-randomized design (4 conditions � 4 tar-
gets � 2 repetitions). Participants performed a total of 32 maximal-effort sprints over four
different conditions. In the forward-condition participants were required to cover different
distances (7.5, 15, 30 and 60 meters) as fast as possible, sprinting forwards. In the back-
ward-condition participants were again required to cover different distances (3.75, 7.5, 15
and 30 meters1), however they were now required to do so sprinting backwards.
Participants also performed a ‘compulsory-turn condition’ and an ‘optional-turn condition’.
However, these two conditions will not be considered for the present contribution.

Procedure

The conditions were presented in a fixed sequence: Participants started out with trials
from the forward-condition, followed by trials from the backward- and the compulsory-
turn conditions to finally perform the last eight trials from the optional-turn condition.
Trials from the backward- and the compulsory-turn condition were intermixed and pre-
sented in alternating order. For the backward-condition, participants were instructed to
keep running until they had the designated finish pylons in their (peripheral) sight, this
was to motivate participants to keep up their efforts until they had actually reached the
finish line.
For all conditions, participants were required to start from standstill in an upright

position with both feet positioned directly underneath their shoulders. When the start-
ing signal was given, they were required to start sprinting immediately. The starting sig-
nal was an auditory cue, produced by striking two wooden planks forcefully against
each other. This was done out of sight of the participants so no visual anticipation on
the start-signal would occur. At the same time, the wooden planks served as a visual
cue that could be used in data analysis to demarcate the start of each trial. In between
trials, participants were given three minutes rest to allow for sufficient recovery. Also,

1Note that the series of target distances for backward sprinting is slightly different from the series for forward sprinting.
We reasoned that in most interceptive tasks, agents would never run 60 meters backwards. Arguably, agents would
neither run 60 meters forwards to make an interception, however we also wanted to sample the extreme cases (e.g.
‘The Catch’ by Willie Mays – Adair, 2002, p. 101).
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to avoid injuries, participants were required to perform a scripted and supervised ten-
minute, moderate intensity warm-up prior to the experiment.

Data analysis

Raw position-data with timestamps, along with some auxiliary data, like participants’ trans-
ponder ID’s, were imported into MATLAB (MathWorks R2019a) and R (R Core Team,
2019) for further analysis. We intended to use the visual cue, given by one of the experi-
menters on the field, to demarcate the beginning of each trial, but this turned out not to be
viable. With the LPM-software, events of interest could only be marked with limited tem-
poral accuracy (i.e. accurate to about ± 200–300ms). Therefore, the start of every trial was
taken to be the moment a participant reached a running velocity greater than 1ms�1. As
such, the start of every trial was determined individually, rendering response time to be
irrelevant for further analyses. The end of every trial was taken to be the instant participants
reached the total distance they had to cover, that is when they reached the finish line.

Linearity between speed and acceleration
As a first objective, we set out to examine whether an inverse linear relation exists between
running speed and acceleration, as would be predicted from Hill’s (Furusawa et al., 1927;
Hill, 1927) mono-exponential relation on athletic sprint running. As the inverse-linear rela-
tionship was only explicitly hypothesized for forward running, only trials from the forward-
condition were considered for this analysis. Running speed and acceleration were calculated
by differentiating participants’ position-data. Generalized Additive Mixed Modeling
(GAMM) was used to test for linearity between running speed and acceleration.
GAMM is a powerful and flexible regression technique (Hastie & Tribshirani, 1990;

Wood, 2017). As an extension of mixed-effects regression, it is able to account for
nested dependencies in the data. The present experiment is designed such that for every
condition, every participant performs two sprints per target distance. As such, part of
the variance in the data is inherently linked to individual participants and part of the
variance is inherently linked to the different target distances. Mixed-effects regression
models (and Generalized Additive Mixed Models, GAMMs, by extension) are able to
bring such dependencies into the model, mitigating overconfidence in p-values.
Furthermore, GAMMs (as implemented in the R package mgcv—Wood, 2003, 2004,
2011, 2017; Wood et al., 2016) are able to correct for autocorrelation in the residuals,
which is crucial in analyzing time-series data. Finally, and perhaps most importantly,
GAMMs explicitly allow for nonlinear relationships to be modeled. Frequently, the rela-
tion between the dependent variable and independent variables is not linear. Yet, con-
ventional regression techniques typically do not allow for departures from linearity
unless the shape of the non-linear pattern is explicitly specified a priori (e.g. with quad-
ratic or logarithmic functions). With GAMMs, non-linear patterns in the data can be
modeled through ‘smooths’. By default, the mgcv-package employs thin-plate regression
splines to model nonlinear patterns in the data. The degree of smoothness is determined
by the number of (increasingly complex non-linear) basis functions that are used to
characterize the nonlinear pattern. Rather than fitting the best nonlinear pattern,
GAMMs penalize nonlinearity in order to prevent overfitting. The result of this
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approach is that GAMMs will only identify a nonlinear pattern if there is enough sup-
port for its presence in the data (which is also validated internally via cross-validation).
One approach to formally test for linearity using GAMMs is to fit and compare two
models: One for which the relationship between the dependent and the independent
variable is forced to be linear and one for which nonlinear relationships are also
allowed.2 A model specification without smoothing functions will produce a linear
model while a model specification with smoothing functions will produce a nonlinear
model if the data supports it (see also: Wieling, 2018).
For each of the four target distances of the forward-condition, both a ‘linear’ and a ‘non-

linear model’ were created. The latter model allowed for the modeling of non-linear pat-
terns in the data by using a thin-plate regression spline with (at most) ten basis functions.
The former model employed no such smoothing functions which forces the relationship
between velocity and acceleration to be modeled by a linear function. In this procedure, we
only considered the best attempt of every participant per target condition. This was done,
so that participants’ velocity profiles could be normalized in order to prevent spurious fits.
Both models were fit using maximum likelihood estimation. This allowed for direct model
comparison using the function compareML from the itsadug-package (van Rij et al., 2017).
To account for alpha-inflation due to multiple testing, a Bonferroni correction was applied.
Apart from the intended difference in linearity, the model specifications for the linear
model and the nonlinear model were the same for all target distances. For more informa-
tion on the mixed model framework and specifically GAMMs, see for example:
Tagliamonte & Baayen, 2012; Wieling, 2018; Winter, 2013; Winter & Wieling, 2016.

Determining the effect of target distance on participants’ velocity profiles
People might cover certain distances differently depending on the total distance that
needs to be covered. In our experiment for instance, participants might have covered
the first 7.5 meters of a 15-meter dash differently from the first 7.5 meters of a 60-meter
dash. As such, we used GAMMs to check for differences in participants’ velocity profiles
for different target distances. To test for such potential differences, we examined the
running data from the forward-condition. With GAMMs, it is possible to identify the
range over which two (nonlinear) patterns are significantly different. The velocity pro-
files over the first 7.5 meters of all target distances were compared; the velocity profiles
over the first 15 meters of all but the 7.5-meter target distance were compared and the
velocity profiles over the first 30 meters of the 30-meter dash and the 60-meter dash
were compared. All trials of all participants were considered.

Results

For final analysis, data from two participants were excluded. Data from one participant
was incomplete due to technical difficulties related to one of the LPM-transponders,
and one participant had to quit the experiment prematurely due to an unreported,

2But note that a generalized additive mixed model which shows a non-linear effect is already evidence for this (as a
linear effect would be identified if no nonlinear pattern is present).
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preexisting injury. As such, the final analysis was performed on data from all trials of
the remaining 31 participants.

Linearity of running speed and acceleration

As a first objective, we set out to examine whether Hill’s presumed inverse linear rela-
tion between running speed and running acceleration in a maximal-effort sprint was
present. Figure 1 presents normalized running acceleration as a function of normalized
running speed for each of the four target distances.3 Using GAMMs, both a linear and
a nonlinear model were fitted to data from the forward-condition. For each of the four
target distances (i.e. 7.5, 15, 30 and 60 meters), the nonlinear model provided a signifi-
cantly better fit to the data than its linear counterpart. The difference between the two
models was highly significant with p < 0:001 for the 7.5, 15, 30 and 60-meter dash
(v2 1ð Þ ¼ 143; v2 1ð Þ ¼ 155; v2 1ð Þ ¼ 151 and v2 1ð Þ ¼ 226, respectively).

The effect of target distance on participants’ velocity-profiles

Having established the nonlinearity of the relation between velocity and acceleration, we
examined whether target distance influenced participants’ sprint behavior. Subtle differen-
ces might exist for the way agents cover different distances. Distinct pacing strategies may
be employed for various target distances. To test this, we constructed GAM models to

Figure 1. Sprint profiles from the forward-condition (condition 1). Normalized running velocity is on
the abscissa and normalized running acceleration is on the ordinate. Both running velocity and accel-
eration have been normalized by scaling all values to participants’ maximal running velocity and
acceleration, respectively. The velocity-acceleration profiles are split out by target distance: Panel A
represents all trials from the 7.5-meter dash; panel B represents all trials from the 15-meter dash;
panel C represents all trials from the 30-meter dash, and panel D represents all trials from the 60-
meter dash.

3For the creation of Figure 1, velocity and acceleration data have been smoothed using a Gaussian filter (see also
section ‘A new macroscopic model on the kinematics of sprint running’.
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make direct comparisons between different target distances. Figure 2(A) shows velocity
profiles of the first 7.5 meters of all trials of the forward-condition, for all four target dis-
tances. From the fitted velocity profiles (solid lines) with 95% confidence intervals (shaded
areas), it can be seen that participants’ velocity profiles during their first 7.5m of running
are highly similar for the different target distances. Only a small, but marked, deviation
can be observed for the 7.5-meter dash. While the velocity profiles for the 15-meter dash,
the 30-meter dash and the 60-meter increase continuously throughout the first 7.5 meters
of the trial, the velocity profile for the 7.5-meter dash starts to level off at around
five meters.
On the basis of the fitted confidence intervals, velocity profiles of different target dis-

tances can be directly compared. Figure 2(B) shows the difference curve for the velocity
profiles of the 7.5-meter dash and the 15-meter dash. The red (dotted) lines represent
the range of positions for which the difference between the two velocity profiles (7.5-
meter dash minus the 15-meter dash) is significantly different from zero. Beyond 5.2
meters, the average running velocity for the 7.5-meter dash is significantly lower than
for the 15-meter dash. The average difference increases up to about �0.8ms�1 toward
the end of the trial. Based on the fitted values in Figure 2(A), two other comparisons
were made: The 7.5-meter dash versus the 30-meter dash and the 7.5-meter dash versus
the 60-meter dash. Significant differences, comparable to those in Figure 2(B), were
found for both. Their respective observed windows of significant difference were:
5.2–7.5 meters and 5.0–7.5 meters. Following the same rationale, pair-wise comparisons
were also made for the 15-meter dash and the 30-meter dash (Table 1, see also
Appendix A). The results were consistent: Whenever participants closed in on the finish
line, their running speeds declined. Here, we refrain from providing a full discussion on
model specification, model performance and technical implementation of the various
GAM-models. For now, note that all effects, fixed or random, were significant and that
all models captured at least 99.4% of the variance.
Having established that a nonlinear pattern exists for sprint running in the context of

interception and that target distance is only of influence on participants’ velocity

Figure 2. (A) Velocity profiles over the first 7.5 meter for sprints with different target distances: 7.5-
meter dash (red), 15-meter dash (cyan), 30-meter dash (dark grey) and 60-meter dash (green). Dotted
curves represent measured running speed for different target distances, while unbroken curves, with
95% confidence intervals, represent fitted values. Generalized Additive Modeling was used to determine
the fitted values. (B) Difference curve for the velocity profiles of the 7.5-meter dash and the 15-meter
dash. The average (curved line) and the 95% confidence interval (shaded region) are provided. Position
(m) is on the abscissa and the estimated difference in velocity (m/s) is on the ordinate. The area
demarcated by the red (dotted) lines represents the range of positions for which the difference
between the velocity profiles (7.5-meter dash minus 15-meter dash) is significantly different from zero.
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profiles in the context of sprinting toward a finish line, we will now attempt to charac-
terize this non-linear relation, using participants’ (maximum) running speed and accel-
eration as key variables.

A new macroscopic model on the kinematics of sprint running

Figure 1 presents normalized running acceleration as a function of normalized running
speed for each of the four target distances. Over the next paragraphs, we will take a
closer look at participants’ velocity-acceleration profiles to characterize the nonlinear
patterns observed. A convenient and intuitive way to characterize the patterns observed
in Figure 1 would be with the use of polynomials. Equation (1) provides a formulation
for a family of functions that can be used to approximate acceleration (€x, on the y-axis
of Figure 1) as a function of running velocity ( _x, on the x-axis of Figure 1) in max-
imal-effort sprint running (see also Figure 3).

€x ¼ a _x þ cð Þn�2 � _x � _xmaxð Þ2 ! _x j 0 � _x � _xmaxg; a > 0; c > 0; n > 2f (1)

where a and c are constants, n is the total degree of the polynomial and _xmax is the
maximum running speed that an athlete can achieve. Changes in constant c cause hori-
zontal stretching relative to point _x ¼ _xmax, causing the polynomial to intersect the y-
axis at greater values for €x: When constant c equals zero the origin of the function lies
at ð0, 0Þ: Changes in n cause the shape of the polynomial function to change (see also:
Figure 3). Finally, the a-parameter is used to constrain the polynomial so that acceler-
ation (€x) is never greater than an athlete’s maximal acceleration (€xmax). Please note that
a is not a ‘free parameter’ since it is constrained by the values of _xmax, €xmax, n and c
(see Appendix B for the derivation):

a ¼ €xmax

n�2ð Þ _xmax�2c
n þ c

� �n�2
n�2ð Þ _xmax�2c

n � _xmax

� �2 (2)

We performed an optimization procedure to find the optimal values for n and c:
Optimization was performed on the basis of goodness of fit, assessed by the coefficient
of determination ðR2). For optimization, processed data rather than raw data were used.
The degree of the polynomial (n) was systematically varied between 2 and 10 with a
step size of 0.1 and the horizontal stretch factor (c) was systematically varied between 0
and 100% of maximal running speed with a step size of 1%. The optimization procedure
was executed separately for trials of the forward-condition and trials of the backward-

Table 1. Pair-wise comparison of velocity profiles.
Comparator target distance

Target distance 15 m 30 m 60 m

7.5 m 2.3 2.3 2.5
15 m – 3.1 3.4
30 m – – 4.1

Note. This table shows the extent of the observed ‘finish-line effect’ for different target distances. That is, this table
shows the distance to the finish line for which the velocity profiles of any two target distances were significantly dif-
ferent from zero (window of significant difference). For example, the velocity profiles of the first 7.5 meters of the
7.5-meter dash were significantly different from the velocity profiles of the first 7.5 meters of the 15-meter sprint for
the final 2.3 meters to reaching the finish line (first row, first column).
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condition. For every trial of every participant the coefficient of determination ðR2) was
calculated. R2’s were then averaged over all trials of all participants to obtain an average
coefficient of determination for every combination of n and c: With this procedure the
best combination for n and c in terms of R2 could be identified.
We found that a number of different combinations of n and c performed equally well

(for both conditions). This was caused by an interdependence between n and c: An
increase in n caused the apex of the polynomial to shift rightward, whereas an increase in
c caused the apex of the polynomial to shift leftward. Thus, the effects of n and c cancel
each other out when it comes to characterizing the local maximum in the data (see
Appendix C for a visual illustration of this effect). Thus, solely based on the coefficient of
determination, no principled decision could be made in selecting one combination of n
and c over another. Given the present data set, there was one particular combination for n
and c (for both conditions) that stood out when taking model complexity into account:
n ¼ 3:2, c ¼ 0: For this combination, the effect for one of the two “free” parameters (c)
is canceled, thus effectively reducing the number of free parameters by half without loss of
explanatory power. Based on this observation, we selected n ¼ 3:2 and c ¼ 0 to model the
dynamics of sprint running, which simplifies Eq. (1) to hold4:

€x ¼ a _x1:2 � _x � _xmaxð Þ2 ! _x j 0 � _x � _xmaxg; a > 0f (3)

Figure 3. Exemplary plot showing polynomials of the form specified by Eq. (4). The polynomial func-
tions displayed here differ in order (n) and in constant (c). In this example, the a-parameter was cal-
culated, for every combination of n and c, to keep maximum running velocity ( _xmax) and maximum
running acceleration (€xmax) constant at 10 ms�1 and 7.5 ms�2 respectively.

4Please note that the optimization procedure was performed only on data for which running velocity was greater than
1ms-1. With the LPM-system, we could not accurately assess running speeds and accelerations below that threshold
(see also the discussion section). So, for the present data, Eq. (3) is the most parsimonious. Future research, however,
should point out whether Eq. (3) also holds for lower running speeds.
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Using Eq. (3) to model acceleration in sprint running, the average coefficient of
determination for trials of the forward-condition and for trials of the backward-condi-
tion was found to be 0.92 and 0.91, respectively.
Next, we set out to validate Eq. (3) (n ¼ 3:2). Through numerical simulation

(Simulink, MathWorks) position, velocity, and acceleration were calculated from Eq.
(3). Preliminary inspection of the fits between the model and the data showed to be
promising. Figure 4 shows a representative trial for one participant performing a
30-meter dash in the forward-condition. The model closely approximates position
(Figure 4A), velocity (Figure 4B) and acceleration (Figure 4C) over time. This close fit
between the model and the data was further confirmed by calculating the coefficient of
determination for all trials of the forward and backward conditions. Table 2 lists the

Figure 4. Time series data of position (A), velocity (B) and acceleration (C) for one representative trial
(forward-condition, 30-meter dash). The solid blue lines represent the data and the red dashed lines
represent the model’s simulation. Goodness of fit (R2) is provided for each kinematic measure.

Table 2. Model goodness of fit (R2) for position, velocity and acceleration for different target distan-
ces and running directions.

Target distance

Forward Backward

7.5 m 15 m 30 m 60 m 3.75 m 7.5 m 15 m 30 m

Position 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Velocity 0.98 0.99 0.98 0.95 0.98 0.98 0.97 0.95
Acceleration 0.93 0.94 0.90 0.91 0.94 0.94 0.89 0.87
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average R2-scores for position, velocity and acceleration, split out by target distance, for
the forward-condition and the backward-condition. It is clear that the model provides a
good description of the various kinematic measures that are related to performing a
maximal-effort sprint. R2-scores are even close to perfect for the distance-over-time
relationship. When considering the average error in distance over time, for trials of the
forward and the backward condition, the model was never off by more than 5.0% of the
target distance both for the forward condition as well as for the backward condition.

Figure 5. Modeled action boundaries of all participants expressed in terms of position (panel A); vel-
ocity (panel B); acceleration (panel C) and acceleration-over-velocity (panel D). The bold lines in red
highlight the fastest participant (upper line), the slowest participant (lower line) and an average par-
ticipant (middle line).
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For the 60-meter dash of the forward condition, the model was even accurate within
1%, meaning that the model was never off by more than 37 cm.

Forwards and backwards running compared

The data show that forward running and backward running are distinctly different in
terms of absolute performance. Participants’ peak running velocity was significantly
higher [t(30) ¼ 39.9, p< 0.001] in the forward running condition (M¼ 7.63; SD¼ 0.57)
than in the backward running condition (M¼ 5.20; SD¼ 0.58). Similarly, participants’
peak running acceleration was significantly higher [t(30) ¼ 14.1, p< 0.001] in the for-
ward running condition (M¼ 4.58; SD¼ 0.55) than in the backward running condition
(M¼ 3.35; SD¼ 0.28). However, when looking at the way in which the macro-dynamics
of running evolve over the course of a sprint, the apparent differences between forward
running and backward running are disappear. Table 2 shows the goodness of fit for
position, velocity, and acceleration for both forward running and backward running—
hardly any differences in the coefficients of determination can be observed between
both conditions. Thus, indicating that the macro-dynamics of forward running are
highly similar in form to the macro-dynamics of backward running. The only difference
between the two conditions is in the maximal velocities and accelerations that
are obtained.

Individual differences in the kinematics of sprint running

Having validated the model, we now turn to its interpretation. How do maximal run-
ning speed and maximal running acceleration relate to influence the maximal distance
that can be covered over time? Figure 5 shows the modeled action boundaries of all
participants, with the slowest participant, the fastest participant and an average partici-
pant highlighted. From panel A, it can be seen that the fastest participant and the slow-
est participant are almost three seconds apart in crossing the 60-meter finish line.
Looking at panel B, it can be seen that over the first two seconds, the faster participant
develops speed faster than the slower participant. This development plateaus after about
two seconds, as can also be seen from the acceleration profiles in panel C. After about
two seconds, the acceleration profiles of the fast and the slow participant start to con-
verge and after three seconds the difference in acceleration between the fast and the
slow participant is almost imperceptible. This means that around three seconds, partici-
pants have almost reached their top speed. Consequently, after that, all differences in
performance are almost exclusively attributable to differences in top-speed. Before that,
acceleration also plays a marked role (see also Figure 6).
This brings us to the final question of how maximal running speed and maximal run-

ning acceleration are related. Figure 6(A) shows a scatterplot of maximal running speed
and maximal running acceleration (R2 ¼ 0:58). From the plot it can be seen that there
is a moderate positive relationship between maximal running speed and maximal run-
ning acceleration: Participants that boast high peak-velocities typically also boast high
peak-accelerations. The relationship however is not perfect. Participants can exhibit
similar peak-velocities while exhibiting dissimilar peak-accelerations and vice versa. This
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phenomenon is highlighted in Figure 6(A) by the orange and cyan dyads, respectively.
Using Eq. (3), it can be demonstrated how individual differences in peak running vel-
ocity and peak running acceleration cause for markedly different running dynamics.
From panels B, D, F and H, it can be seen how differences in peak running velocity
translate to the macro-dynamics of running. The participant (in the orange dyad) with
the greater top-speed covers more distance over time (panel B); has a higher overall
running speed (panel D) and accelerates over a longer period of time (panel F). Finally,
it can be seen that peak-acceleration is reached at a higher velocity for the faster runner
than for the slower one. Close examination of panel B learns that after 1 second, the dif-
ference between the two runners is 0.05 meters; after 2 seconds this has increased to
0.47 meters and after 3 seconds this difference is 1.60 meters. Conversely, from panels
C, E, G, and I of Figure 6, it can be seen how differences in peak running acceleration
(cyan dyad) translate to the macro-dynamics of running. The runner with the greater
acceleration covers more distance over time (panel C); has a higher overall velocity
(panel E) and accelerates more intensely (panel G). While the difference in finish-time
is less pronounced for the cyan pair than for the orange pair, the differences in the ini-
tial phases of the sprint are in fact more pronounced for the cyan pair. Whereas the
orange pair differed 0.05 meter at 1 second and 0.47 meters at 2 seconds, the cyan pair
differed 0.54 and 1.18 meters at those very same moments. At three seconds, the differ-
ences between the dyads are comparable again at 1.60 meters and 1.50 meters, respect-
ively. Clearly, for short distances, having great accelerative capabilities pays off; while
for larger distances having a great top-speed is favorable.

Discussion

The main finding of the present contribution is that the action boundary in maximal
effort sprint running is determined by the current running speed of the agent in com-
bination with their maximal running speed and maximal running acceleration. This
finding is in line with previous research which showed that neither kinematic quality on
its own could reliably capture the action boundary in running (Fajen et al., 2011;
Oudejans et al., 1996; Postma et al., 2018). Furthermore, we found that the way max-
imal running speed and maximal running acceleration relate to determine the action
boundary in running is unique for every individual. It was found that the moderate
positive relationship between maximal running speed and maximal running acceleration

3

Figure 6. Compound figure showing the relationship between maximal running velocity, maximal
running acceleration and the distance coverable over time for forward running. Panel A shows a scat-
terplot of the observed maximal running velocity and acceleration of participants. Dashed lines repre-
sent the median values for running speed (vertical) and running acceleration (horizontal). Exemplary
dyads are highlighted for illustrational purposes. The members of the orange dyad have similar values
for peak-acceleration and dissimilar values for peak-velocity. The members of the cyan dyad have
similar values for peak-velocity and dissimilar values for peak-acceleration. Panels B-I show the mod-
eled macro-dynamics of sprint-running for the orange dyad (left-hand side) and the cyan dyad (right-
hand side). The action boundaries for both dyads are illustrated in terms of position (panels B and C);
velocity (panels D and E); acceleration (panels F and G); and acceleration-over-velocity (panels H and
I). The orange graphs represent the orange dyad, and the cyan graphs represent the cyan dyad.
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harbored wide individual variation: Participants with comparable maximal running
speeds might show distinctly differing maximal accelerations, and vice versa. As such,
the resulting locomotor boundaries are unique to every individual as well. Finally, we
found that participants did not employ different pacing strategies for covering different
target distances. Taken together, the present findings highlight the fact that action
boundaries are individual-specific qualities that are dynamic in nature.

Model characteristics

While the results showed that the model was well able to characterize the kinematics of
maximal effort sprint running, we were unable to accurately model the very first part of
the sprint. More specifically, running speeds between 0 and 1ms�1 could not accurately
be measured (see also: Ogris et al., 2012; Stevens et al., 2014). As a result, the exact
value of n and c could only be narrowed down to a range of possible values. Future
research has to point out what the speed-acceleration profile looks like for the very first
part of the sprint, so the exact value of n and c can be determined. The relevance of
this endeavor would go beyond mere parameter optimization. The decision to engage in
interceptive behavior is informed by (optic) information that specifies whether or not it
is (still) within the agents’ action possibilities to get to the future interception location
in time. As such, an accurate characterization of agents’ locomotor abilities at (near)
standstill is needed to understand why agents initiate running under certain circumstan-
ces, but not in others.
Another issue pertaining to the characterization of the model is about the ecological

grounding of its parameters: To what extent can the parameters of the model be traced
back to behaviorally relevant characteristics of the agent-environment system? The
answer to this question is two-fold. First, maximal running speed and maximal running
acceleration as well as current running speed can be directly related to the agent: _xmax,
€xmax and _x, respectively. Second, parameter a functions to set the local maximum of
the curve such that it corresponds to the maximum rate of acceleration of the partici-
pant. This parameter is constrained by _xmax, €xmax and n (see also Appendix B).
Together, these variables model the macro-dynamics of sprint-running in an ecologic-
ally valid manner. Still, a discussion is to be held about the order of the polynomial, n:
As already mentioned above, we were unable to definitively characterize the order of
the polynomial function, based on the current data. That is to say, based on our current
analyses, the order of the model is estimated to lie between 3.2 and 6.9. Which makes
that the choice for n ¼ 3:2 was not motivated by ecological considerations but rather by
modeling considerations, i.e., parsimony. Knowing agents’ maximal acceleration at
standstill would help to further constrain the polynomial function, allowing for a more
ecological grounding of the order of the polynomial.
Finally, the model was specified such that it allowed for an accurate characterization

of participants’ accelerative qualities. Their decelerative qualities were not considered in
the present context. Consequently, the model is not able to account for any decelera-
tions that might be inherent to interceptive behaviors. The model is for instance unable
to capture the finish-line effect or the slight oscillations in acceleration that can be
observed when participants run at or near their maximal speed (see Figure 4C). Still,
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some interceptive behaviors might require rapid turns and quick starting and stopping.
Such behaviors are prevalent in team sports, such as basketball. If one seeks to under-
stand such behaviors, the model needs to be extended to include an account on the
maximal rate of deceleration and the maximal rate of turning. It is likely that these
three are dynamically related to one another: The maximal rate of turning and the max-
imal rate of deceleration are for instance dependent on current running speed. Future
investigations should point out how these qualities relate to understand the action
boundaries in agile (interceptive) behaviors.

Task ecology and representativeness

The aim of the present contribution was to model the action boundaries involved in
interceptive behavior. To that end, we investigated various forms of sprinting that could
be considered representative for the kind of running behavior that might be observed in
interception tasks like running to catch a baseball and running to intercept an advanc-
ing quarterback. We investigated different modes of locomotion (forward and backward
running) and we investigated various target distances. Still, the ecology of the current
experimental setup was not fully representative of the task ecology (cf. Brunswick, 1956)
of interceptive tasks like fly-ball catching and gap-crossing, implying that the results
should be interpreted with care. Most interceptive tasks involve some form of coinci-
dence timing (i.e., the temporal-spatial coordination of movement relative to something
or someone). In the current experimental setup, the temporal aspect was not repre-
sented. While participants were told to get to the finish line as fast as possible, there
were no demands on ‘timing’: any and all running speeds would eventually lead partici-
pants to cross the finish line. Put differently, their crossing of the finish line was not
dependent on their temporal-spatial coordination relative to it. Besides this timing-
element, social and competitive elements might have affected the representativeness of
our task. From informal observations, we learned that participants tended to compete
with others (even though this was never instructed). Such complex social interactions
are likely not present, or present in a different way, when running to catch a fly ball.
Together, such factors might have caused participants to organize their movements dif-
ferently from the interceptive tasks we aimed to model. The extent to which the identi-
fied relationship is subject to task ecology is an (outstanding) empirical question. In
future research, we aim to address this matter by recording (and modeling) maximal
effort sprints for different task ecologies and evaluating their differences.

Implications for affordance-based control modeling

Action boundaries play an important role in modeling Affordance-Based Control strategies
(Fajen, 2007, 2013). Action boundaries separate action possibilities from action impossibil-
ities. As such, having modeled the action boundary for running might proof a valuable
first step toward the formulation of Affordance-Based Control models for interceptive
behaviors. The present findings show that it is important to acknowledge the fact that
(locomotor) action boundaries are dynamic in nature. Previous modeling attempts have
often approximated action boundaries as fixed, singular values. The current results come
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to show that such approximations might not do justice to the biomechanical factors that
limit our action possibilities. Further, it is important to recognize that the present model
should not be taken to represent the affordance for interception just yet. Perception is of
affordances (Gibson, 1979). Typically, affordances are specified as the ratio between some
ideal value and a corresponding maximum in the same metric. For braking a car to a safe
stop for instance, the affordance for safe stopping is specified as the ratio between ideal
deceleration (dideal) and maximal deceleration (dmax); where ideal deceleration is the rate
of deceleration that would bring a car to a safe stop without having to make additional
braking adjustments (Fajen, 2005a, 2005b, 2005c, 2007). When the ratio of ideal deceler-
ation over maximal deceleration is smaller than 1; safe braking is afforded. Conversely,
when the ratio of ideal deceleration and maximal deceleration is greater than 1; safe brak-
ing is no longer afforded.5 Through perceptual (re)calibration, motorists learn to relate
ideal deceleration to maximal deceleration, allowing them to get better attuned to their
environments and what it means to them in terms of safe braking. Similar principles
might hold for interception as well, allowing potential affordance-based control strategies
for interception to be defined as the ratio of xideal over xmax: Where x is a placeholder for
speed, acceleration, or some other (compound) kinematic measure. Once xideal has been
captured in terms of its perceptual variables, it can be related to its corresponding action
boundary. In the next paragraph, we will exemplify how this might work for an actual
interception task by considering the fly-ball paradigm.
The fly-ball paradigm concerns the case of an outfielder running to catch a fly ball.

To arrive at an affordance-based control strategy for the fly-ball paradigm, a measure is
needed that perceptually specifies what action is required from the outfielder to make a
successful catch (xideal). In case of the fly-ball paradigm, this required measure can be
obtained from the work of Rozendaal and Van Soest (2003), who posited the ‘exact
Optical Acceleration Cancellation’ (exact OAC) strategy. From this strategy, the rate of
acceleration that is required from the outfielder to get to the right place in the right
time to make a catch (aideal) can be obtained.6 Through perceptual calibration, aideal can
be scaled to an outfielder’s maximal acceleration, which we established in the present
contribution, see Eq. (3). This maximal acceleration can be denoted as amax: Thus,
affordance-based control for running to catch fly balls might be formalized as the ratio
of ideal acceleration over maximal acceleration. When the ratio of aideal over amax is
smaller than 1; catching is afforded. Conversely, when the ratio of aideal over amax is
greater than 1; catching is not afforded.
To date, the problem in formalizing an affordance-based control strategy for running

to catch fly balls has been the inability to accurately characterize outfielders’ action
boundaries. Previous studies have been unable to unequivocally pinpoint the variable(s)
that limit catching performance in running to catch fly balls (Fajen et al., 2011;
Oudejans et al., 1996; Postma et al., 2018). Equation (3) advances the state of the art by
reliably modeling the action boundaries in sprint running (amax), both for forward run-
ning as for backward running. As detailed above, pairing amax to aideal would provide a
first formalization of an affordance based control strategy in running to catch fly balls.

5It is important to note that ideal deceleration can be directly perceived by the motorist (Fajen, 2005a).
6In its original formulation, the rate of acceleration is not given in optical terms, but all terms can be captured in
optical variables.
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Here, we do not wish to make any claims about the control strategies that outfielders
use in practice rather, we wish to illustrate the merits of having characterized the action
boundary for sprint running in the context of affordance-based control and interceptive
tasks. Future research has to show whether outfielders indeed control their locomotor
behavior in a way is consistent with the use of the ratio of aideal over amax:

Conclusion

In the present contribution, we studied the dynamics of maximal-effort sprint running in
the context of running to catch fly balls. The aim was to map the relation among max-
imum velocity, maximum acceleration, and the distance coverable over time. First, we
established that Hill’s model on the dynamics of running in athletic sprinting was not dir-
ectly transferable to most interceptive tasks; a marked difference was observed between
the dynamics of athletic sprinting and the dynamics exhibited by participants in the pre-
sent study. This led us to propose an alternative model, specifically designed to capture
the dynamics of sprinting, both forwards and backwards, in the context of interceptive
tasks. With this model, we were able to make highly reliable predictions of participants’
position-, velocity- and acceleration over time. Furthermore, using Generalized Additive
Mixed Modeling, we were able to establish that target distance was of no profound influ-
ence on the dynamics of sprint running, rendering our alternative model valid for target
distances up to 60 meters. Finally, we showed that action boundaries are agent-specific
and not to mention dynamic. Every individual has unique kinematic profiles that can be
traced back to individual differences in kinematic qualities (e.g., maximal running speed
and maximal running acceleration). With the present contribution, we have tried to ease
the scientific process of formalizing Affordance-Based Control strategies for interception
tasks. Also, the present work might also serve as a route-to-discovery for the specification
of higher-order action boundaries.
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Appendix A

Participants’ running velocity declined toward the finish-line with an order of magnitude similar
to the decline observed in Figure 2. With respect to differences in running velocity over the first
15 meters of the 15-, 30- and 60-meter dash, we found a significant window of difference
(11.9–15 meters) for the comparison of the 15-meter dash with the 30-meter dash as well as a

Figure A1. Difference curve for the velocity profiles of the 15-meter dash and the 30-meter dash. The
average (curved line) and the 95% confidence interval (shaded region) are provided. Position (m) is
on the abscissa and the estimated difference in velocity (m/s) is on the ordinate. The area demarcated
by the red (dotted) lines represents the range of positions for which the difference between the vel-
ocity profiles (15-meter dash minus 30-meter dash) is significantly different from zero.

Figure A2. Difference curve for the velocity profiles of the 15-meter dash and the 60-meter dash. The
average (curved line) and the 95% confidence interval (shaded region) are provided. Position (m) is
on the abscissa and the estimated difference in velocity (m/s) is on the ordinate. The area demarcated
by the red (dotted) lines represents the range of positions for which the difference between the vel-
ocity profiles (15-meter dash minus 60-meter dash) is significantly different from zero.
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significant window of difference (11.6–15 meters) for the comparison of the 15-meter dash with
the 60-meter dash. Leaving the comparison of running velocity over the first 30 meters of the
30-meter dash with the 60-meter dash. For this comparison, we found a significant window of
difference of 25.9 to 30 meters. For all analyses presented here, the alpha-level was corrected for
using a Bonferroni-correction.

Appendix B

The a-parameter can be derived by setting the first derivative of Eq. (4) to zero and solving for
_x, providing:

_x ¼ n� 2ð Þ _xmax � 2c
n

(B1)

Equation (B1) provides the _x-coordinate for which €x ¼ €xmax: Knowing the _x-coordinate for
which €x is maximal allows for the a-parameter in Eq. (4) to be established. For €x ¼ €xmax, the
a-parameter is given by:

a ¼ €xmax

n�2ð Þ _xmax�2c
n þ c

� �n�2
n�2ð Þ _xmax�2c

n � _xmax

� �2 (B2)

Subsequently entering Eq. (B2) into Eq. (4) provides:

€x ¼ €xmax

n�2ð Þ _xmax�2c
n þ c

� �n�2
n�2ð Þ _xmax�2c

n � _xmax

� �2 ð _x þ cÞn�2 _x � _xmaxð Þ2 (B3)

Equation (B3) is a reformulation of Eq. (4) in which the a-parameter is described in terms of:
€xmax, _xmax, n and c:

Figure A3. Difference curve for the velocity profiles of the 30-meter dash and the 60-meter dash. The
average (curved line) and the 95% confidence interval (shaded region) are provided. Position (m) is
on the abscissa and the estimated difference in velocity (m/s) is on the ordinate. The area demarcated
by the red (dotted) lines represents the range of positions for which the difference between the vel-
ocity profiles (30-meter dash minus 60-meter dash) is significantly different from zero.
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Appendix C

Figure C1. Best performing model specifications in terms of R2 for all trials of all participants on the
30-meter dash of the forward-condition, with running velocity on the abscissa and running acceler-
ation on the ordinate. Both running velocity and acceleration have been normalized by scaling all val-
ues to participants’ maximal running velocity and acceleration, respectively. Semitransparent black
lines represent participants’ data, colored lines represent different model specifications (i.e. different
values for n and c). A red-yellow gradient is used to represent different model specifications; the red
side of the spectrum specifies low values for n and c (from: n ¼ 3:2 and c ¼ 0) and the yellow side
of the spectrum specifies higher values for n and c (up to: n ¼ 6:9 and c ¼ 100%).
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