Spin-isospin responses of Ga-71 for solar neutrinos studied by Ga-71(He-3,t gamma)Ge-71 reaction

Ejiri, H; Akimune, H; Arimoto, Y; Daito, I; Fujimura, H; Fujita, Y; Fujiwara, M; Fushimi, K; Greenfield, M B; Harakeh, M N

Published in:
Physics Letters B

DOI:
10.1016/S0370-2693(98)00673-X

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1998

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Spin-isospin responses of 71Ga for solar neutrinos studied by 71Ga$(^3$He,$t\gamma)^{71}$Ge reaction

H. Ejiri a, H. Akimune a, Y. Arimoto a, I. Daito a, H. Fujimura a, Y. Fujita b, M. Fujiwara a, K. Fushimi c, M.B. Greenfield d, M.N. Harakeh e, F. Ihara a, T. Inomata a, K. Ishibashi a, J. Jänecke f, H. Kohri a, S. Nakayama c, C. Samanta a,g, A. Tamii h, M. Tanaka i, H. Toyokawa a, M. Yosoi h

a Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567, Japan
b Laboratory of Nuclear Studies, Osaka University, Toyonaka, Osaka 560, Japan
c Department of Physics, Tokushima University, Tokushima, Japan
d Natural Science Division, International Christian University, Mitaka, Tokyo 113, Japan
e Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen, The Netherlands
f Department of Physics, University of Michigan, Ann Arbor, MI, USA
g SAHA Institute of Nuclear Physics, Calcutta 700064, India
h Department of Physics, Kyoto University, Kyoto 606-01, Japan
i Kobe Tokiwa Jr. College, Kobe 563, Japan

Received 13 January 1998; revised 19 May 1998
Editor: R.H. Siemssen

Abstract

The charge-exchange 71Ga$(^3$He,$t\gamma)^{71}$Ge reaction was used to study the spin-isospin (Gamow Teller: GT) excitations relevant to the axial-vector charged-weak response for solar neutrinos. High-lying GT states in 71Ge with excitation energies up to one MeV above the neutron threshold were found to have finite γ-decay branches to low-lying states. The GT strengths for relevant states and absorption rates of solar neutrinos through the 71Ga(ν, e)71Ge and 71Ga(ν, $e\gamma$)71Ge reactions were derived. © 1998 Elsevier Science B.V. All rights reserved.

PACS: 24.30.Cz; 25.55.Kr; 27.80. + w; 29.30.Aj

Interest in the nuclear spin-isospin responses [1–4] has recently increased in view of both particle and nuclear physics aspects. The particle physics aspect is concerned with axial-vector charged-weak processes associated with neutrino (ν) nuclear interactions. One of the key issues is the possible ν-oscillation due to finite ν-mass differences and finite ν-flavor mixings. They are studied by detecting the solar-ν through inverse beta decays and ν-electron scatterings [5–9]. Nuclear spin-isospin responses relevant to axial-vector charged-weak processes of ν are crucial for getting the solar-ν flux by inverse β decays. The nuclear physics aspect is concerned with spin-isospin strength distributions and their particle and γ-decays, which are relevant to spreading and escape widths of spin-isospin resonances. Major
components of nuclear spin-isospin responses in case of low-momentum-transfer processes are the Gamow-Teller (GT) ones with angular momentum and parity transfer of $\Delta J^P = 1^+$.

71Ga has exclusively been used for detecting the major component of solar neutrinos, the low-energy pp neutrinos, through the inverse beta (β) decays of 71Ga(ν,e)71Ge and 71Ga($\nu,e\gamma$)71Ge processes because of the very low Q_β value of 0.236 MeV. Level and decay schemes associated with the 71Ga solar-ν detectors are shown in Fig. 1. The GT states with spins and parities of $J^P = 5/2^-, 3/2^-$ and $1/2^-$ in 71Ge are populated by GT (1$^+$) excitations from 71Ga with $J^P = 3/2^-$. The neutron and proton separation energies of 71Ge to the 0^+ and 1^+ ground states of 70Ge and 70Ga are, respectively, $S_n = 7.41$ MeV and $S_p = 8.29$ MeV. The states in the transition region from $E_x = 7.41$ MeV to around $E_x \sim 9$ MeV may have finite γ-branches, and thus contribute to the production of 71Ge, depending on the spin, parity, isospin and other properties of the states.

The present work aims at measuring quantitatively the solar-ν absorption rate including the contributions of these unbound states to the population of 71Ge through γ-decays to bound states in 71Ge.

Recently, it has been shown at RCNP, Osaka [10] that spin-isospin (GT) strengths can be well investigated by the charge exchange (3He,t) reaction at a bombarding energy of 150 MeV/A, where spin-isospin modes are preferentially excited. GT strengths for individual states and particle and γ-decay branches from GT states have been studied [11]. Therefore we used the 71Ga(3He,t)71Ge reaction to excite the GT states in 71Ge. The 450 MeV 3He beam from the RCNP ring cyclotron was used to bombard a metallic, 2 mg/cm2 thick 71Ga target. The triton ejectiles were detected at forward angles of $\theta = 0^\circ - 2^\circ$ in order to select preferentially the GT excitations. They were momentum-analyzed by means of the high-resolution spectrometer GRAND RAIDEN. Six NaI detectors ($3''\phi \times 6''$) were used to detect decaying γ-rays in coincidence with the tritons. The γ-rays were detected at $\theta_\gamma = 125^\circ$ with respect to the 3He (and t) beam axis, where the effect of the angular distribution vanishes because of $P_y(\cos \theta_\gamma) = 0$. The overall energy resolution for the tritons was around $\Delta E_t \sim 300 - 400$ keV, and that for the γ-rays was around $\Delta E_\gamma \sim 100 - 300$ keV for $E_\gamma = 1.5 - 5$ MeV. The experimental set-up was the same as used in Ref. [12].

The observed singles and coincidence triton spectra are shown in Fig. 2. The singles spectrum shows a sharp peak of IAS at $E_\gamma = 8.93$ MeV and a broad bump of the GT resonance at around $E_\gamma = 12$ MeV.
The low-lying GT states are clearly seen. The GT strength for the 175 keV first excited state is only 5% of that for the ground state. The t-γ coincidence rate drops immediately after the excitation energy E_x gets beyond the neutron threshold energy S_n. This is because of the opening of the neutron channel to the 0$^+$ ground state in 70Ge (see Fig. 2b). It is interesting to note that the coincidence rate is still relatively large even above S_n. It remains as large as almost 50% of the value below S_n until E_x exceeds the threshold energy S_p for neutron decay to the 2$^+$ excited state in 70Ge. The γ-coincidence rate increases as the excitation energy increases further above S_p, as shown in Fig. 2b. This is mainly because of the increased neutron decay branch to the first-excited state in 70Ge and neutron and proton decay branches to excited states. Note that these excited states decay by emitting low-energy γ-rays to 70Ge and 70Ga, resulting in the increased γ-coincidence rate. The large γ-coincidence rates at the higher excitation region are due to the large γ-ray multiplicity. Actually, direct γ-branches to low-lying states in 71Ge decrease rapidly as E exceeds S_p. This is seen in the absence of direct high-energy γ-rays in the γ-ray spectrum in the region of $E_x > S_p$ (see Fig. 3c), as discussed later.

The shape of the γ-ray coincidence spectrum does not change drastically below and above the neutron threshold S_n, suggesting similar γ-cascade processes to low-lying states in 71Ge, as shown in Fig. 3a and b. On the other hand, high-energy γ-rays vanish and low-energy ones, including the 1.04 MeV $2^+ \rightarrow 0^+$ γ-ray in 70Ge, become conspicuous in the region above S_p, indicating major neutron and proton decay channels followed by low-energy γ-rays.

These observed features suggest that a half of the excited states in the excitation energy interval between S_n to S_p decays by emitting neutrons to the ground state in 70Ge, and the other half by emitting γ-rays to low-lying states in 71Ge. Excited states just above S_p decay by emitting neutrons to the 2$^+$ and other excited states in 70Ge, which are followed by de-exciting γ-rays. Higher excited states decay by emitting either neutrons to 70Ge or protons to 70Ga.

The γ-ray branching ratio I_γ / I_T is deduced from the single and two-hit coincidence rates as $I_\gamma / I_T = (Y_\gamma / Y_T) / \varepsilon_T$, where the coincidence rate Y_γ / Y_T is the ratio of the γ-coincidence triton yield Y_T to the singles one for one NaI detector, and ε_T is the over-all γ-ray efficiency. The γ-coincidence yield is given approximately by the sum, $Y(1)$ and $Y(2)/2$, where $Y(1)$ is the yield of the single-hit events with γ-signals only from one of the NaI detectors and $Y(2)$ is that of the two-hit events with two γ-signals, one from the same NaI detector and one from any other detector. Since the γ-ray hitting the NaI detector in the two-hit events can be either the first or the second one, $Y(2)$ is divided by a factor 2 to avoid double counting. The higher multi-hit contributions are negligibly small.

The over-all efficiency ε_T for detecting γ-rays of the present interest depends on the detector characteristics such as size, distance from target, the energy discrimination level and on the γ-ray spectrum, i.e. the energy and multiplicity of the emitted γ-rays. Thus, it changes as the excitation energy E_x changes. The efficiency ε_T was estimated as a function of E_x as N_j / N_0, where N_0 is the number of γ-rays emitted from the GT states at E_x and N_j is the number of γ-rays detected by one NaI detector.
The CASCADE code [13] was used to evaluate the \(\gamma\)-ray spectrum emitted isotropically over the full solid angle, while the GEANT code [14] was used to simulate the \(\gamma\)-ray spectrum to be detected in one of the NaI detectors. Actually, all the coincidence signals from the six detectors were used to get better statistics since they were set at the same angles of \(\theta_2 = 125^\circ\) with respect to the \(^3\)He beam (note the \(\theta\) is detected at 0° along the \(^3\)He beam). The CASCADE-code and GEANT-code calculations were checked by comparing relative shapes of the calculated and observed spectra, as shown in Fig. 3. Obtained branching ratios are shown as function of excitation energy in Fig. 4.

The \(\gamma\)-ray branching ratio \(\Gamma_q/\Gamma_T\) in the particle-bound region of \(E_s < S_n\) is 100%, but is about 50% in the region from \(E_s = S_n\) to \(E_s = S_q\). It decreases rapidly as \(E_s\) goes beyond \(S_q\), because of neutron and proton decays to excited states in \(^{70}\)Ge and \(^{70}\)Ga, respectively. Therefore direct \(\gamma\) branches to low-lying states in \(^{71}\)Ge become negligible above \(S_q\). This explains the observation in Fig. 3c that high energy \(\gamma\)-rays above 2 MeV almost vanish just above \(S_q\).

Gamma branches to low-lying states in \(^{71}\)Ge from IAS, which is far above the neutron threshold energy, are also not appreciable. In fact, IAS decays to \(^{70}\)Ge by emitting neutrons as is naturally expected for the high-lying IAS with the considerable spreading width. This is consistent with the \((^3\text{He},\gamma)\) experiment at \(E(^3\text{He}) = 30\) MeV [15], where IAS is populated preferentially in contrast to the present case at \(E(^3\text{He}) = 450\) MeV, where GT states are populated preferentially.

These observed features of \(\Gamma_q/\Gamma_T\) are explained qualitatively as follows. Excited GT states in \(^{71}\)Ge populated by the \(^{71}\)Ga\((^3\text{He},\gamma)\) reaction are considered to have spins and parities of \(J^\pi = 5/2^-, 3/2^-\) and \(1/2^-\) with ratios of \((2J + 1) = 6, 4, \) and 2, respectively. Unbound states with \(J^\pi = 3/2^-\) and \(1/2^-\) may decay by emitting p-wave neutrons to both the \(0^+\) ground state and \(2^+\) excited state in \(^{70}\)Ge, while those with \(J^\pi = 5/2^-\) decay by emitting f-wave neutrons to the \(0^+\) ground state and p-wave neutrons to the \(2^+\) excited state. The neutron emission from the GT states with \(J^\pi = 5/2^-\) to the \(0^+\) ground state in \(^{70}\)Ge is suppressed greatly because of the centrifugal barrier for the f-wave neutrons. The neutron decays from the GT states in \(^{71}\)Ge to the \(0^+\) ground state in \(^{70}\)Ge are, in general, reduced much because of the configuration mismatch between them. Consequently, the GT states with \(J^\pi = 5/2^-\) just above \(S_n\) decay to the states in \(^{71}\)Ge mainly by emitting \(\gamma\)-rays, not to the \(0^+\) state in \(^{70}\)Ge by emitting the f-wave neutrons.

A quantitative calculation was carried out by means of the CASCADE code to evaluate the \(\gamma\) branching ratio. The calculated ratios reproduce the observed one, as shown in Fig. 4.

The GT strengths for ground and excited states in \(^{71}\)Ge were obtained from the observed \((^3\text{He},\text{t})\) cross sections at the forward angle (\(\theta_\text{t} \sim 0^\circ\)) as shown in Table 1. Here, the GT strengths were normalized to the ground-state value derived from the beta-decay \(\beta\)-value. In this way, a common systematic error for absolute cross-sections and for the corresponding \(B(GT)\) values could be avoided. There remains, however, the uncertainty due to energy and state dependence of converting the forward-angle cross-sections into \(B(GT)\) values for excited states. The excitation energy is at most 8 MeV, which is only 2% of the incident \(^3\)He energy. Thus, the normalization factor...
Table 1
The B(GT) values and solar neutrino capture rates obtained via the $^{71}\text{Ga}(-\text{He},\gamma)^{71}\text{Ge}$ reaction at 450 MeV

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>B(GT)a</th>
<th>Capture rate (SNU)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>$(8.91 \pm 0.13) \times 10^{-2}$</td>
<td>114.9 ± 11.8</td>
</tr>
<tr>
<td>0.175</td>
<td>$(4.91 \pm 1.77) \times 10^{-3}$</td>
<td>1.75 ± 1.01</td>
</tr>
<tr>
<td>0.500</td>
<td>$(2.08 \pm 0.21) \times 10^{-2}$</td>
<td>3.35 ± 1.10</td>
</tr>
<tr>
<td>0.83</td>
<td>$(2.37 \pm 0.23) \times 10^{-2}$</td>
<td>$(7.51 \pm 3.37) \times 10^{-1}$</td>
</tr>
<tr>
<td>1.16</td>
<td>$(2.33 \pm 0.24) \times 10^{-2}$</td>
<td>$(8.11 \pm 1.89) \times 10^{-1}$</td>
</tr>
<tr>
<td>1.36</td>
<td>$(2.01 \pm 0.23) \times 10^{-2}$</td>
<td>$(2.78 \pm 1.31) \times 10^{-1}$</td>
</tr>
<tr>
<td>1.58–7.42</td>
<td>2.88 ± 0.09</td>
<td>9.52 ± 3.73</td>
</tr>
<tr>
<td>7.42–8.46</td>
<td>0.74 ± 0.10</td>
<td>0.34 ± 0.15</td>
</tr>
<tr>
<td>total</td>
<td>3.81 ± 0.15c</td>
<td>131.7 ± 18.4c</td>
</tr>
</tbody>
</table>

a The B(GT) values are normalized to the ground state value obtained from the β-decays β value. Errors given are statistical ones. Systematic errors for excited states are 12%. The total systematic error is $\Delta \text{B(GT)} = 0.4$. b The neutrino capture rates are evaluated for the solar-ν flux given by SSM (Ref. [9]). Errors include those of the ν-flux and the experimental statistical ones. The systematic error for the total rate is about 2.0 SNU. c Data for the bound region, see also Ref. [10].

Table 2
Solar-ν absorption rates for individual sources

<table>
<thead>
<tr>
<th>Source</th>
<th>SNUa</th>
<th>SNUb</th>
<th>SNUc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>total</td>
<td>neutron bound</td>
<td>total</td>
</tr>
<tr>
<td>ppa</td>
<td>70.8 ± 0.2</td>
<td>-1.31 ± 0.34</td>
<td>70.8</td>
</tr>
<tr>
<td>B</td>
<td>12.9 ± 0.4</td>
<td>0.34 ± 0.06</td>
<td>14.0</td>
</tr>
<tr>
<td>hepa</td>
<td>$(5.62 \pm 0.16) \times 10^{-2}$</td>
<td>$(0.28 \pm 0.06) \times 10^{-2}$</td>
<td>0.06</td>
</tr>
<tr>
<td>N3</td>
<td>3.74 ± 0.07</td>
<td>-0.16 ± 0.06</td>
<td>3.8</td>
</tr>
<tr>
<td>O17</td>
<td>5.81 ± 0.14</td>
<td>-0.28 ± 0.10</td>
<td>6.1</td>
</tr>
<tr>
<td>F18</td>
<td>$(6.01 \pm 0.15) \times 10^{-2}$</td>
<td>-0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>pep</td>
<td>2.94 ± 0.09</td>
<td>-0.15 ± 0.06</td>
<td>3.0</td>
</tr>
<tr>
<td>Be7</td>
<td>35.0 ± 0.7</td>
<td>-0.28 ± 0.10</td>
<td>34.3</td>
</tr>
<tr>
<td>total</td>
<td>131.7 ± 1.6d</td>
<td>0.34 ± 0.06</td>
<td>132.4</td>
</tr>
</tbody>
</table>

a Present experimental results. Errors given are statistical ones. b As c But from neutron-unbound region in ^{71}Ga. d Estimation given in Ref. [9]. e The total capture rate has the statistical and systematic errors of 1.6 and 2.0 due to the statistical and systematic errors of B(GT) and error of 16.4 for the solar-ν flux.

References