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Abstract

Issue Section:  Methods Online

Recent advances in high-throughput sequencing (HTS) technologies and computing

capacity have produced unprecedented amounts of genomic data that have unraveled the

genetics of phenotypic variability in several species. However, operating and integrating

current software tools for data analysis still require important investments in highly

skilled personnel. Developing accurate, e�cient and user-friendly software packages for

HTS data analysis will lead to a more rapid discovery of genomic elements relevant to

medical, agricultural and industrial applications. We therefore developed Next-

Generation Sequencing Eclipse Plug-in (NGSEP), a new software tool for integrated,

e�cient and user-friendly detection of single nucleotide variants (SNVs), indels and

copy number variants (CNVs). NGSEP includes modules for read alignment, sorting,

merging, functional annotation of variants, �ltering and quality statistics. Analysis of

sequencing experiments in yeast, rice and human samples shows that NGSEP has

superior accuracy and e�ciency, compared with currently available packages for

variants detection. We also show that only a comprehensive and accurate identi�cation

of repeat regions and CNVs allows researchers to properly separate SNVs from

di�erences between copies of repeat elements. We expect that NGSEP will become a

strong support tool to empower the analysis of sequencing data in a wide range of

research projects on di�erent species.
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INTRODUCTION

Recent advances in high-throughput sequencing (HTS) technologies have allowed

research groups to produce unprecedented amounts of genomics data that have been of

great use in exploring the genetic variability among and within any kind of species and

in determining the genetic causes of phenotypic variation. These technologies have been

successfully applied to make signi�cant discoveries in highly dissimilar research �elds

such as human genetics (1), cancer research (2), crop breeding (3) and even the

industrial production of biofuels (4). One of the major bottlenecks in projects involving

HTS is the bioinformatics capacity (in hardware, software and personnel) needed to

analyze the large amounts of data produced by the technology and to deliver valuable

information such as genes related to traits or diseases or markers for genomic selection.

Because signi�cant advances have been made in increasing computing capacity, the

main reason for this bottleneck is that software packages for analysis of HTS data are

still under development and any project involving HTS data requires close collaboration

with trained bioinformaticians. The development of fast, accurate and easy-to-use

software packages and analysis pipelines will empower scientists to perform by

themselves the data analysis required to discover the genes, DNA elements or genomic

variants related to their particular research interests.

In this work, we focus on the analysis pipeline required to discover genomic di�erences

between a sequenced sample and a reference genome that is a representative DNA

sequence assumed to be genetically close to the sample. In this case, samples are

sequenced at moderate coverage (10× to 40× depending on genome length and

heterozygosity) and then a generic bioinformatics pipeline aligns the reads to the

reference sequence to �nd the most likely origin of each read in the genome. These

alignments are then used to produce a catalog of genomic di�erences between the

sample and the reference sequence (see an example schematic in Supplementary Figure

S1). Several algorithms and software tools have been recently developed to resolve the

di�erent steps of this pipeline [see (5) and (6) for recent reviews]. Unfortunately, most

of these tools require some sort of bioinformatics support to be operated and integrated,

which is further complicated by the complexity of dealing with di�erences in

programming languages, maintenance, e�ciency, formats for data exchange, usability

and even code quality. Commercial packages such as CLC Bioinformatics or Lasergene

provide an alternative for solving this problem but at the expense of costly software

licensing and limited capacity to perform nonstandard analysis.

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/42/6/10.1093_nar_gkt1381/4/gkt1381_Supplementary_Data.zip?Expires=1522858897&Signature=ZvbiKBspLos2tkXZzAQfFn0JVRxF0Taqgg-xUwHuZLRyOc9uGsGUxoFyDbodhSff3GRui5KxXrHrAjjzb234~5O9AMpatPknx1~6C7nGFCZRWutkas1SP8abxGuXUBvGKZzLawwnsniFoirvICYwkxUQJxJbvfYgJTITu8sD6TPTyq9vOXx4wAz8MD6xiJMuKVaWoUHe~NHdzVzT~amJ7DId0oYvzUuNHBPrugmSsU3cpnk6jNsx5rWziviBsXRLw64iOtfpU5nYo3VzdpUNoRcvXvkEC22VncxCleF6DzPbTVKXynwRuHNLKdQce5A3lppfQRc0ggGFj9cmAGdcBA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
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Here, we describe Next-Generation Sequencing Eclipse Plug-in (NGSEP), a new

integrated user-friendly framework for standard analysis of HTS reads. The main

functionality of NGSEP is the variants detector, which allows researchers to make

integrated discovery of single nucleotide variants (SNVs), small and large indels and

regions with copy number variation (CNVs). NGSEP also provides a user interface for

Bowtie 2 (7) to perform mapping to the reference genome and other utilities such as

alignments sorting, merging of variants from di�erent samples and functional

annotation of variants. Using real sequencing data from yeast, rice and human samples

we show that the algorithms implemented in NGSEP provide the same or better accuracy

and e�ciency than the recently published algorithms GATK (8,9), SAMtools (10), SNVer

(11), VarScan 2 (12,13), CNVnator (14) and BreakDancer (15). We also compared the

results of SNV and CNV detection for di�erent read alignment strategies implemented in

the packages BWA (16) and Bowtie 2 (7). NGSEP is distributed as an open-source java

package available at https://sourceforge.net/projects/ngsep/.

MATERIALS AND METHODS

Data sets

We downloaded high-coverage sequencing reads for the CEU individual NA12878 from

the pilot project of the 1000 Genomes Consortium currently available at

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/. Low-coverage data were

also downloaded from the �rst release of the 1000 genomes project

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/). Yeast samples were sequenced by the

group of Johan Thevelein as part of an e�ort to �nd genes sustaining low glycerol

production [see (4) for details].

Rice seeds of IR8 (accession BCF 941) were planted in the greenhouse facility at CIAT

(International Center for Tropical Agriculture). Genomic DNA was prepared from a

single plant as follows: 1 g of leaf tissue of a 45-DAP seedling was collected and ground

with liquid nitrogen. DNA was isolated according to the urea-phenol extraction protocol

modi�ed from (17). DNA quality was tested before whole-genome sequencing so that

the concentration exceeded 500 ng/μL and the A260/280 ratio was 1.8. DNA was

sequenced on the Illumina HiSeq 2000 by the Yale Center for Genome Analysis

(http://medicine.yale.edu/keck/ycga/index.aspx).

Description of algorithms implemented in NGSEP

https://sourceforge.net/projects/ngsep/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/
http://medicine.yale.edu/keck/ycga/index.aspx
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We built NGSEP based on the previously published software NGSTools (18). We

redesigned parts of the initial package to improve its performance and we also �xed a

few errors found by original users of NGSTools. As discussed in the ‘Results’ section, we

included one parameter to control the maximum number of reads starting at each

reference site and another parameter to control the maximum value of a base quality

score. To perform realignment around indels, each time NGSEP detects a site with the

start of an indel call it screens a few base pairs ahead (�ve for insertions, the length of

the deletion plus two for deletions) to check whether the same indel is present in other

reads at a di�erent start site. If that is the case, the start site with the highest read

support is chosen as the most likely start site and NGSEP changes the CIGAR �eld of

alignments with indels starting at a site di�erent from the chosen start.

We implemented the CNVnator algorithm as described in (14). This algorithm performs

a statistical segmentation of the read depth (RD) pattern to identify regions with

signi�cant deviation from the average RD in single-copy regions. In the general

literature, these types of algorithms are called read depth (RD) algorithms to contrast

them with algorithms based on read pair (RP) data (19). Our implementation of

CNVnator has four main di�erences compared with the algorithm as described in the

article:

1. We created a parameter for the genome size.

2. We took only bins with unique alignments for the calculation of mean and variance of

RD.

3. While merging small neutral regions between CNVs we check that the �nal region has

a P-value below the minimum threshold.

4. Additional deletions calculated with the Gaussian method cannot override deletions

called by the standard method.

RD approaches for CNV discovery rely on the assumption that the coverage is evenly

distributed across the DNA present in the sample and hence regions with signi�cant

changes in the average RD become candidates for dosage altering variation. It has been

observed that this assumption can be violated in at least two di�erent ways (20). First,

regions with extreme values of GC-content tend to be sequenced at lower coverages,

which creates a need for an initial step of GC-correction of the read intensities. For

NGSEP, we implemented the same strategy for GC-content correction implemented in

CNVnator. Second, di�erent treatments of reads with multiple alignments in the

reference genome produce di�erent biases in the estimation of the number of copies for

each region (21). In most of the previous studies the initial data set contains only the
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best alignment for each read. For reads with two or more equally good alignments, one

alignment is chosen at random (14). To account for RD biases, a ‘mappability score’ can

be de�ned for each site of the genome taking for example the average mapping quality

of the alignments spanning such site. Then, normalization can be performed by

clustering sites with similar score and correcting the read intensities by applying the

same procedure used to correct for GC-content biases (20).

Normalizing RD by mappability seeks to equalize the RD distribution on repetitive and

unique regions. However, a repetitive region can be thought to be a region with a copy

number di�erent from the one of a unique region in the genome. Instead of trying to

normalize the RD for such regions, we tried to use the RD to identify them. We believe

that this could be particularly useful for draft genomes in which annotation of repetitive

elements is still in progress. To accomplish this, we calculated the distribution of RD

taking only the sites of the genome without ambiguously aligned reads (e.g. sites with

good mappability scores). This allowed us to use Bowtie 2 to build di�erent read

alignment data sets for the yeast samples and then test the following strategies for the

management of reads with multiple alignments: (i) pick the best alignment for each

read (default and similar to BWA), (ii) keep up to three alignments per read and (iii)

output all alignments found for each read. In the third approach, all regions with

variable copy number, including known repeat elements are supposed to stand out from

neutral regions. We tried the second option as an intermediate stage suitable for the

analysis of samples with large genomes.

Because it has been shown that RD and RP approaches are complementary for detecting

large deletions (22), we also implemented an RP algorithm for detecting large indels. As

described in previous works (15,23,24), NGSEP walks over the reads sorted by genomic

location and clusters unique overlapping alignments of RPs for which the predicted

insert length is similar among them and deviates signi�cantly from the average. While

clusters with insert length larger than the average are used as evidence for detecting

large deletions, clusters with insert length smaller than the average become evidence

for large insertions. The length of each indel event is estimated as the average insert

length of the alignments in the cluster supporting the event minus the average length of

the whole data set. To calculate the signi�cance of a cluster as a predictor of a large

indel, we use the Poisson model described in the algorithm BreakDancerMax (15). This

approach can also be used to detect other types of variation such as inversions,

translocations and tandem duplications (25,26).

The source code of NGSEP implementing the algorithms described above is available as

an open-source package under a GPL license (at
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https://sourceforge.net/projects/ngsep/).

Construction of gold-standard genotypes for a yeast pool of
segregants

Deep sequencing of two haploid yeast parents at an average coverage close to 80×

allowed us to build a gold-standard data set of expected genotypes for a pool of 20 F1

haploid segregants randomly selected from an initial pool of 257 segregants produced

by independent crosses of the two parents (4) (Supplementary Figure S2A). We

extracted from each haploid parent the sites of the genome in which only one allele is

observed using both BWA and Bowtie 2 alignments and in which this allele is called by

NGSEP, GATK, SAMtools and VarScan with quality (GQ �eld or QUAL column if GQ is not

present) >90. For the haploid parent CBS6412, this procedure yielded 9 321 880 high-

quality genotype calls to the reference allele and 53 455 high-quality genotype calls to

the alternative allele. For the haploid parent ER7A, the numbers of high-quality

genotype calls were 9 894 901 to the reference allele and 53 050 to the alternative allele.

Then, we assumed that the 8 301 038 sites with the reference allele in both parents and

the 38 279 sites with the alternative allele in both parents will look like homozygous

sites in the pool. Conversely, we assumed that the 16 904 sites in which the high-quality

genotypes of the two haploid parents di�er become heterozygous sites in the pool in

which the two alleles should appear in nearly equal proportions.

To test the degree to which genetic drift could invalidate these assumptions, we

performed 100 000 simulation experiments as follows: given a heterozygous site, we

pick the number of segregants with the reference allele ni from a binomial distribution

with parameters n = 20 and p = 0.5. Then, we pick the total RD di from a Poisson

distribution centered in the median coverage. Finally, we pick the number of times the

reference allele is observed from a binomial distribution with parameters n = ni and p =

ni/20. The distribution of the reference allele frequency obtained in this simulation is

consistent with the observed distribution based on allele counts at the sites predicted to

be heterozygous (Supplementary Figure S2B). We also performed two additional

simulations, one increasing the number of segregants in the pool to 200, and a second

one assuming a reference allele frequency of 0.5 (e.g. removing the e�ect of genetic

drift). Although we could observe that genetic drift e�ectively increases the variance in

the proportion of the reference allele, the observed distribution of allele frequencies

based on read counts and the fact that we did not observe �xation of one allele at any of

the sites predicted as being heterozygous suggests that an accurate method to perform

standard genotyping of a diploid individual should also be accurate for identifying

https://sourceforge.net/projects/ngsep/
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/42/6/10.1093_nar_gkt1381/4/gkt1381_Supplementary_Data.zip?Expires=1522858897&Signature=ZvbiKBspLos2tkXZzAQfFn0JVRxF0Taqgg-xUwHuZLRyOc9uGsGUxoFyDbodhSff3GRui5KxXrHrAjjzb234~5O9AMpatPknx1~6C7nGFCZRWutkas1SP8abxGuXUBvGKZzLawwnsniFoirvICYwkxUQJxJbvfYgJTITu8sD6TPTyq9vOXx4wAz8MD6xiJMuKVaWoUHe~NHdzVzT~amJ7DId0oYvzUuNHBPrugmSsU3cpnk6jNsx5rWziviBsXRLw64iOtfpU5nYo3VzdpUNoRcvXvkEC22VncxCleF6DzPbTVKXynwRuHNLKdQce5A3lppfQRc0ggGFj9cmAGdcBA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/42/6/10.1093_nar_gkt1381/4/gkt1381_Supplementary_Data.zip?Expires=1522858897&Signature=ZvbiKBspLos2tkXZzAQfFn0JVRxF0Taqgg-xUwHuZLRyOc9uGsGUxoFyDbodhSff3GRui5KxXrHrAjjzb234~5O9AMpatPknx1~6C7nGFCZRWutkas1SP8abxGuXUBvGKZzLawwnsniFoirvICYwkxUQJxJbvfYgJTITu8sD6TPTyq9vOXx4wAz8MD6xiJMuKVaWoUHe~NHdzVzT~amJ7DId0oYvzUuNHBPrugmSsU3cpnk6jNsx5rWziviBsXRLw64iOtfpU5nYo3VzdpUNoRcvXvkEC22VncxCleF6DzPbTVKXynwRuHNLKdQce5A3lppfQRc0ggGFj9cmAGdcBA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
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homozygous and heterozygous sites in the pool. VCF �les with the gold-standard

genotypes for the yeast unselected pool are available at

https://sourceforge.net/projects/ngsep/�les/benchmark/.

Measures for quality assessment of genotype calls

Given a set of genotype calls and gold-standard genotypes for one sample we counted

the number of genotypes that were consistent and the number that were inconsistent

between the genotype calls and the gold standard (sites not included in the gold-

standard are not used in any of the following calculations). Genotyping errors can be

classi�ed into the following types: (i) homozygous sites called heterozygous, (ii)

heterozygous sites called homozygous, (iii) homozygous reference sites called

homozygous variant and (iv) homozygous variant sites called homozygous reference.

Because we observed in the validation with yeast samples that errors of type 3 and type 4

were almost negligible, and for all methods they disappear at a minimum quality score

of 20, we focused the validation on errors of type 1 and 2. Let Go,Ge be the sets of

homozygous and heterozygous sites in the gold standard and Co,Ce be the sets of sites

with homozygous and heterozygous calls in the test data set. In this notation, the

number of type 1 errors is  and the number of type 2 errors is . The

following formulas summarize the calculations of sensitivity (S), false discovery rate

(FDR) and false positive rate that we used to compare methods at di�erent minimum

quality thresholds and to build standard receiver operating characteristic (ROC) curves

(27) comparing sensitivity and speci�city:  

Comparison with other tools

We assembled the GATK pipeline (version 2.7.2) as described on their best practices web

page (http://www.broadinstitute.org/gatk/guide/best-practices), which includes the

MarkDuplicates tool of Picard, indel realignment and quality score recalibration. Each

command was executed with default parameters, except for the Uni�edGenotyper, for

which we set the option stand_emit_conf to zero to maximize the calls produced by

GATK and to be able to compare GATK genotypes with genotypes from other tools at

di�erent quality scores. For the yeast samples, we used the out mode EMIT_ALL_SITES

https://sourceforge.net/projects/ngsep/files/benchmark/
http://www.broadinstitute.org/gatk/guide/best-practices
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to genotype every site of the genome. For the rice sample, we also set the prior

heterozygosity rate to 0.0001. We called SNVs and small indels separately using the

appropriate genotype likelihood model for each case. Because BAM �les obtained from

the 1000 Genomes Project were the result of the preprocessing pipeline of GATK

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/), we only ran the Uni�edGenotyper on those

samples.

We ran SAMtools version 0.1.19 as suggested in the documentation for the mpileup

command (http://samtools.sourceforge.net/mpileup.shtml). For the yeast samples we

ran bcftools with the option -cg to retain every site covered in the genome. For VarScan

(version 2.3.6) we ran the mpileup2cns tool as suggested in their documentation for

germ line variants (http://varscan.sourceforge.net/germline-calling.html) to obtain

genome-wide genotyping for the yeast samples. We compared the variants before and

after applying the perl script for �ltering described in the VarScan 2 paper (13). To

facilitate independent replication of the results shown in this manuscript, we provide

template scripts to run the di�erent components of NGSEP, GATK, SAMtools and

VarScan in a command line environment as supplementary material (Supplementary

Scripts S1–S10).

We ran SNVer from its graphical interface using default parameters. Because SNVer did

not provide a GQ �eld reporting the quality of genotype calls, we calculated the negative

of the 10-based logarithm of the P-value as the quality score of their genotype calls. We

ran CNVnator as suggested in the README included in the publicly available

distribution (http://sv.gersteinlab.org/cnvnator/) using a window size of 100 bp. Finally,

for BreakDancer we set the minimum mapping quality (q option) to 10. We performed all

these experiments on a Dell computer with a quadruple Intel Xeon CPU at 2.93 GHz, 26.5

GB of available memory and 598.9 GB of total disk space.

RESULTS

Integrated variants discovery with NGSEP

We developed the software package called NGSEP that integrates algorithms for

discovery of SNVs, small and large indels and genomic regions with copy number

variation (CNVs). We improved our recently published algorithm SNVQ for SNV

detection (18), and we also expanded the model to allow discovery of small indels. For

CNV discovery we built a new implementation of the algorithm CNVnator (14), one of

the most accurate algorithms for detecting CNVs (6). Finally, we integrated a RP

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
http://samtools.sourceforge.net/mpileup.shtml
http://varscan.sourceforge.net/germline-calling.html
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/42/6/10.1093_nar_gkt1381/4/gkt1381_Supplementary_Data.zip?Expires=1522858897&Signature=ZvbiKBspLos2tkXZzAQfFn0JVRxF0Taqgg-xUwHuZLRyOc9uGsGUxoFyDbodhSff3GRui5KxXrHrAjjzb234~5O9AMpatPknx1~6C7nGFCZRWutkas1SP8abxGuXUBvGKZzLawwnsniFoirvICYwkxUQJxJbvfYgJTITu8sD6TPTyq9vOXx4wAz8MD6xiJMuKVaWoUHe~NHdzVzT~amJ7DId0oYvzUuNHBPrugmSsU3cpnk6jNsx5rWziviBsXRLw64iOtfpU5nYo3VzdpUNoRcvXvkEC22VncxCleF6DzPbTVKXynwRuHNLKdQce5A3lppfQRc0ggGFj9cmAGdcBA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/42/6/10.1093_nar_gkt1381/4/gkt1381_Supplementary_Data.zip?Expires=1522858897&Signature=ZvbiKBspLos2tkXZzAQfFn0JVRxF0Taqgg-xUwHuZLRyOc9uGsGUxoFyDbodhSff3GRui5KxXrHrAjjzb234~5O9AMpatPknx1~6C7nGFCZRWutkas1SP8abxGuXUBvGKZzLawwnsniFoirvICYwkxUQJxJbvfYgJTITu8sD6TPTyq9vOXx4wAz8MD6xiJMuKVaWoUHe~NHdzVzT~amJ7DId0oYvzUuNHBPrugmSsU3cpnk6jNsx5rWziviBsXRLw64iOtfpU5nYo3VzdpUNoRcvXvkEC22VncxCleF6DzPbTVKXynwRuHNLKdQce5A3lppfQRc0ggGFj9cmAGdcBA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
http://sv.gersteinlab.org/cnvnator/
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algorithm to detect large deletions and mid-size insertions as described in (15). To

facilitate user interaction, we built a graphical interface based on the Eclipse

infrastructure. Figure 1 shows a common user interaction to call variants with NGSEP.

We implemented several features to enable users to run complete analysis of their

samples and obtain VCF �les with genotype calls starting from raw reads

(Supplementary Table S1). VCF �les produced by NGSEP can be exported into the input

formats required by commonly used bioinformatics packages such as Mega for the

construction of phylogenetic trees (28), Structure for the analysis of population

structure (29) or Tassel to perform genome-wide association studies (30). We also

implemented options to align reads and call variants in parallel for e�cient processing

of relatively large numbers of samples. We tested each of these components under a

wide range of hardware and operating system environments (Windows, Linux and Mac)

to ensure that NGSEP has as much portability as that o�ered by any Java software

package.

We performed a comprehensive validation of the algorithms implemented in NGSEP,

compared with other state-of-the-art tools for discovery and genotyping of SNVs,

small and large indels and CNVs (Table 1). We reanalyzed a recently published data set of

two haploid yeast parents and one pool of F1 segregants, which we used as a simulated

diploid child to test the accuracy of both homozygous and heterozygous genotype calls

(4). We also reanalyzed benchmark data sets for the human individual NA12878, who

belongs to the population of Utah residents with ancestry from Northern and Western

Europe (CEU). We analyzed two samples at di�erent coverage levels released by the 1000

Genomes Consortium. Finally, we performed whole-genome resequencing of rice

cultivar IR8, the semi-dwarf variety that signi�cantly increased rice yield in Asia and

played an important role in the rice green revolution (31,32).

Table 1.

Figure 1.

Common interaction with NGSEP to call variants from aligned reads. (i) Right-click on
a sorted SAM or BAM �le, (ii) select the menu for NGSEP, (iii) select the option to call

variants, (iv) select the reference genome (only the �rst time) and a pre�x for the
output �les and (v) click on the �nd variants button.

View large Download slide

Common interaction with NGSEP to call variants from aligned reads. (i) Right-click on a sorted SAM or BAM file,
(ii) select the menu for NGSEP, (iii) select the option to call variants, (iv) select the reference genome (only the
first time) and a prefix for the output files and (v) click on the find variants button.
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Data sets used for testing and comparison of NGSEP with other algorithms for SNV and CNV detection and
genotyping

 RT: runtime; RAM: random access memory.

 The GATK pipeline was executed as suggested in (9) for the yeast and rice samples. For the human samples
only the Unified Genotyper was executed.

View Large

SAMtools was the most e�cient tool in both time and memory. The GATK pipeline is the

most expensive in resource consumption, speci�cally during polymerase chain reaction

(PCR) duplicate identi�cation and quality score recalibration. These two steps take more

than three times the time and memory used by the genotyper itself. Because the group

of the 1000 Genomes Project already performed duplicate identi�cation and quality

score recalibration for the human samples, we ran only the genotyper, obtaining

Data set
(coverage) 

NGSEP

 

CNVNator

 

BreakDancer
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SAMtools
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runtimes and memory consumptions similar to those obtained with SAMtools. VarScan

2 was the second most expensive in resource consumption, mainly owing to the perl

script for �ltering introduced in (13). Because executing this �ltering also requires >100

GB of temporary disk space even for the rice sample, we tried only VarScan 2 in the yeast

samples. NGSEP uses more time and memory than SAMtools and SNVer owing to the

extra steps needed to perform local realignment around indels and to call CNVs and

large indels. However, in comparison with the sum of runtimes and maximum memory

of CNVnator, SAMtools and BreakDancer, NGSEP showed comparable e�ciency for the

yeast samples and better overall e�ciency for the rice and human samples.

SNV detection accuracy

We built a gold-standard set of genotypes for the unselected pool of yeast segregants

and we calculated the sensitivity and FDR for each tool under di�erent quality �lters

(see ‘Materials and Methods’ section for details). Figure 2A shows that NGSEP achieved

the best sensitivity at the minimum quality threshold below 60 for calling both

heterozygous and homozygous SNVs, compared with GATK, and SAMtools. The three

methods reported sensitivity >96% even at the minimum quality threshold of 40. The

most visible di�erence among methods is the rapid loss of sensitivity for homozygous

SNVs predicted using GATK. For heterozygous genotypes, NGSEP reported between 1

and 6% more sensitivity than GATK and between 0.5 and 2% more sensitivity than

SAMtools. The FDR of NGSEP, GATK and SAMtools was always <1% for both

homozygous and heterozygous calls (Figure 2B). NGSEP achieved the lowest FDR for

homozygous calls at the expense of reporting a larger FDR for heterozygous calls

compared with SAMtools. SNVer and VarScan 2 had an inferior performance, especially

for heterozygous sites (Supplementary Figure S3). For VarScan, we compared the results

before and after applying the �ltering step proposed in (13). SAMtools achieved the

lowest FDR for heterozygous calls at the expense of reduced sensitivity and higher FDR

for homozygous calls. A standard ROC analysis contrasting sensitivity and speci�city

rates SAMtools as the best package for the discovery of heterozygous genotypes and

NGSEP as the best for homozygous genotypes in this data set (Supplementary Figure

S4A and Supplementary Data).

Figure 2.

Sensitivity (left panels) and FDR (right panels) for genotyping of SNVs using NGSEP
(blue), GATK (red) and SAMtools (yellow) as a function of the minimum quality score on

the following benchmark data sets: (A and B) yeast unselected pool, (C and D) high-
coverage human sample NA12878 and (E and F) low-coverage human sample NA12878.

Continuous lines represent homozygous genotype calls, and broken lines represent
heterozygous genotype calls.

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/42/6/10.1093_nar_gkt1381/4/gkt1381_Supplementary_Data.zip?Expires=1522858897&Signature=ZvbiKBspLos2tkXZzAQfFn0JVRxF0Taqgg-xUwHuZLRyOc9uGsGUxoFyDbodhSff3GRui5KxXrHrAjjzb234~5O9AMpatPknx1~6C7nGFCZRWutkas1SP8abxGuXUBvGKZzLawwnsniFoirvICYwkxUQJxJbvfYgJTITu8sD6TPTyq9vOXx4wAz8MD6xiJMuKVaWoUHe~NHdzVzT~amJ7DId0oYvzUuNHBPrugmSsU3cpnk6jNsx5rWziviBsXRLw64iOtfpU5nYo3VzdpUNoRcvXvkEC22VncxCleF6DzPbTVKXynwRuHNLKdQce5A3lppfQRc0ggGFj9cmAGdcBA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/42/6/10.1093_nar_gkt1381/4/gkt1381_Supplementary_Data.zip?Expires=1522858897&Signature=ZvbiKBspLos2tkXZzAQfFn0JVRxF0Taqgg-xUwHuZLRyOc9uGsGUxoFyDbodhSff3GRui5KxXrHrAjjzb234~5O9AMpatPknx1~6C7nGFCZRWutkas1SP8abxGuXUBvGKZzLawwnsniFoirvICYwkxUQJxJbvfYgJTITu8sD6TPTyq9vOXx4wAz8MD6xiJMuKVaWoUHe~NHdzVzT~amJ7DId0oYvzUuNHBPrugmSsU3cpnk6jNsx5rWziviBsXRLw64iOtfpU5nYo3VzdpUNoRcvXvkEC22VncxCleF6DzPbTVKXynwRuHNLKdQce5A3lppfQRc0ggGFj9cmAGdcBA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/42/6/10.1093_nar_gkt1381/4/gkt1381_Supplementary_Data.zip?Expires=1522858897&Signature=ZvbiKBspLos2tkXZzAQfFn0JVRxF0Taqgg-xUwHuZLRyOc9uGsGUxoFyDbodhSff3GRui5KxXrHrAjjzb234~5O9AMpatPknx1~6C7nGFCZRWutkas1SP8abxGuXUBvGKZzLawwnsniFoirvICYwkxUQJxJbvfYgJTITu8sD6TPTyq9vOXx4wAz8MD6xiJMuKVaWoUHe~NHdzVzT~amJ7DId0oYvzUuNHBPrugmSsU3cpnk6jNsx5rWziviBsXRLw64iOtfpU5nYo3VzdpUNoRcvXvkEC22VncxCleF6DzPbTVKXynwRuHNLKdQce5A3lppfQRc0ggGFj9cmAGdcBA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q


4/3/2018 integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments | Nucleic Acids…

https://academic.oup.com/nar/article/42/6/e44/2437856 12/30

Skip to Main Content

We investigated the e�ect of some of the factors known to a�ect the SNV genotyping

quality. One well-known source of erroneous genotype calls is the confounding e�ect of

PCR ampli�cation artifacts. This problem is tackled in the GATK pipeline with the

MarkDup tool of Picard (http://picard.sourceforge.net/index.shtml). However, we found

that this tool does not handle well reads with multiple alignments. In NGSEP, we

decided to account for ampli�cation artifacts within the algorithm by setting a

maximum on the number of reads allowed to start at the same genomic location. We

observed a reduction in FDR for heterozygous calls as this parameter becomes smaller at

the expense of reduced sensitivity and increased FDR for homozygous calls

(Supplementary Figure S5). Another source of genotyping errors usually comes from

sequencing errors with high base quality scores. The GATK pipeline includes a module to

recalibrate these erroneous quality scores. However, this module consumes more than

twice the computing time and memory as the genotyper itself. In NGSEP, we alleviated

the problem of miscallibrated quality scores by setting up a parameter to specify the

maximum allowed value of a base quality score. Larger scores are equalized to this

threshold. Again, we observed a reduction in FDR for heterozygous calls at the expense

of sensitivity as we reduced the value of this parameter (Supplementary Figure S6). For

maximum values <20, the loss of sensitivity became more important than the reduction

in FDR. Finally, we analyzed the e�ect of changing the tool used to map reads back to

the reference. We mapped the reads to both BWA and Bowtie 2 and we ran NGSEP

separately on each set of alignments. Results with both tools were almost equal in

sensitivity. In the default mode, Bowtie 2 achieved lower FDR for homozygous calls than

BWA at the expense of a higher FDR for heterozygous calls (Supplementary Figure S7).

We also compared the behavior of Bowtie 2 when it was asked to retain up to three

alignments per read (k parameter equals 3) because, as shown below, this parameter has

a large in�uence on the detection of CNVs. We implemented an option in NGSEP to

consider secondary alignments for SNV detection and we observed that when this option

was activated a modest increase in sensitivity was observed, at the expense of an

increase of ∼0.5% in the FDR for heterozygous calls. We �nally veri�ed that default

NGSEP parameters produced nearly the same results for alignments obtained with

Bowtie 2 in the default mode and in the K = 3 mode.

View large Download slide

Sensitivity (le� panels) and FDR (right panels) for genotyping of SNVs using NGSEP (blue), GATK (red) and
SAMtools (yellow) as a function of the minimum quality score on the following benchmark data sets: (A and B)
yeast unselected pool, (C and D) high-coverage human sample NA12878 and (E and F) low-coverage human
sample NA12878. Continuous lines represent homozygous genotype calls, and broken lines represent
heterozygous genotype calls.
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For the human data sets, we de�ned as a gold standard the set of calls available in the

Hapmap database for the individual NA12878 (33). Figure 2C shows that, in this case,

GATK was slightly better than NGSEP in sensitivity for heterozygous sites at a minimum

quality score above 30. However, for homozygous sites, the same loss of sensitivity

observed in the yeast sample was observed in this sample. The FDRs (Figure 2D) were

generally higher than the ones observed in the yeast sample but they remained low.

SAMtools was again the best method to control FDR in heterozygous calls at the expense

of sensitivity, followed in this case by GATK (Figure 2D). Comparison based on ROC

curves shows that SAMtools still has better compromise between sensitivity and

speci�city than NGSEP and GATK for heterozygous sites (Supplementary Figure S4C).

For homozygous sites, NGSEP still shows the best compromise but the di�erence with

SAMtools and GATK became minimal (Supplementary Figure S4D). However, it is worth

noting that the compromise between sensitivity and speci�city obtained by NGSEP and

SAMtools at minimum quality 40 (ticker datapoints) can be obtained only with GATK at

minimum quality below 20.

We also compared the results of the di�erent algorithms in the newer low-coverage

data set for NA12878. Because the coverage for this data set is only 5×, it became more

di�cult for all algorithms to predict the right genotype, especially at heterozygous sites

(Figure 2E). Again, GATK had the best sensitivity for heterozygous sites but the worst

for homozygous variant sites. The FDR remained low for heterozygous calls but it

increased for homozygous variant calls mainly because a large number of heterozygous

sites were incorrectly called as homozygous variants (Figure 2F). Comparison based on

ROC curves suggests a small advantage of GATK for heterozygous sites (Supplementary

Figure S4E). For homozygous sites all methods show similar compromise between

sensitivity and speci�city (Supplementary Figure S4F). However, in this case the lower

coverage forces both SAMtools and GATK to reduce their minimum quality threshold

below 20 to obtain the same compromise obtained by NGSEP at minimum quality 40.

Finally, it is worth noting that, for minimum quality scores 40 and 50, even at a small

coverage of 5×, the three methods achieved FDRs <3% for both homozygous and

heterozygous genotype calls.

Detection accuracy for small indels

To validate the accuracy of small indel detection, we de�ned a gold-standard data set

for the unselected sample using the same approach we used to validate SNV detection

accuracy. In general, the percentage of agreement between NGSEP and GATK was only

∼80%, which is much lower than the percentage obtained for SNVs (99%). SAMtools

was the most sensitive for homozygous indels at the expense of having the worst
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sensitivity for heterozygous indels and the largest FDR for homozygous genotype calls

(Figure 3 and Supplementary Figure SS8). GATK was the best algorithm for genotyping

of heterozygous indels, and the drop in sensitivity observed in the validation of

homozygous SNVs was less pronounced in this case. Although NGSEP seemed to have

the largest error rate for heterozygous indels, it is worth mentioning that for quality

scores >40, the absolute di�erence between NGSEP and GATK in type 1 errors was just 8

and this di�erence disappears for a minimum quality score of 60. We also compared the

accuracy of NGSEP using BWA and Bowtie 2 alignments and we found that Bowtie 2 is

able to identify more homozygous indels at the expense of increased FDR for

heterozygous calls.

CNV detection accuracy

We tested our implementation of the CNVnator algorithm on the di�erent data sets to

make sure that both implementations provide similar results. In general, the percentage

of agreement for the yeast samples was >90% and rose to 98% for the human samples,

mainly because the original implementation of CNVnator has parameters such as the

size of the genome �xed for processing of human samples. Conversely, in NGSEP, the

genome size is determined from the reference �le or can even be set up as a parameter.

The other important di�erence between the two implementations is that, to calculate

averages and standard deviations for both GC-correction and determination of the

average RD, we consider only bins without reads with multiple alignments. This allows

us to process samples in which multiple alignments are recorded. We veri�ed that, given

the same read intensities, the same genome size and the same predicted average and

standard deviation on the RD, our implementation produces the same partition and

almost the same CNV calls (Figures 4A and B).

Figure 3.

(A) Sensitivity and (B) FDR for genotyping of small indels produced by NGSEP (blue),
GATK (red) and SAMtools (yellow) using reads aligned with BWA, and NGSEP (green)

using reads aligned with Bowtie 2 on the yeast unselected pool as a function of the
minimum quality score. Continuous lines represent homozygous genotype calls, and

broken lines represent heterozygous genotype calls.
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(A) Sensitivity and (B) FDR for genotyping of small indels produced by NGSEP (blue), GATK (red) and SAMtools
(yellow) using reads aligned with BWA, and NGSEP (green) using reads aligned with Bowtie 2 on the yeast
unselected pool as a function of the minimum quality score. Continuous lines represent homozygous genotype
calls, and broken lines represent heterozygous genotype calls.
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To compare the e�ects of di�erent read alignment strategies on CNV detection, we

performed three independent runs of Bowtie 2 for each of the yeast data sets keeping (i)

the best alignment for each read (default), (ii) up to three alignments per read (-k

option equal to 3) and (iii) all possible alignments for each read (-a option) (see

‘Materials and Methods’ section for details). We compared the CNV calls reported in the

haploid parents CBS6412 and ER7A with a database of 700 known repeat elements

available in the Saccharomyces cerevisiae database

(http://www.yeastgenome.org/download-data/curation). As expected, using the third

approach, 33 and 47% of the repeats were identi�ed by NGSEP on the alignments for

CBS6412 and ER7A, respectively. Conversely, the �rst approach reported only between

0.5 and 2% of the repeats. Interestingly, between 40 and 48% of the repetitive regions

were called deletions using the �rst approach. Using the intermediate approach NGSEP

called between 5 and 10% of the repetitive regions as duplications and between 14 and

22% as deletions. As an example to explain this behavior, Figure 4C shows how read

intensities di�er for a long terminal repeat (LTR) located on chromosome I. While the

third approach was able to retain all reads that belong to any of the copies of this

element present in the genome, the other two approaches retained only a small

percentage, which in this case was much smaller than the average RD for unique

Figure 4.

Quality assessment of the implementation of the CNVNator algorithm in NGSEP.
Given the same GC-corrected intensities, the same genome size and the same RD

distribution parameters, both implementations produce nearly the same (A) partition
and (B) RD levels. Examples of repetitive regions in (C) the yeast parent ER7A and (D)

the low-coverage human sample show how RD varies depending on the number of
alignments counted for each read (blue: only the best alignment of each read counted;

red: up to three alignments counted; yellow: all alignments found with Bowtie 2 with the
-a option counted). Sensitivity of NGSEP, CNVnator and BreakDancer to identify (E)

deletions and (F) duplications validated by Mills and collaborators (22) using reads from
the low-coverage data set for NA12878. Default and K = 3 modes of Bowtie 2 are

compared.
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Quality assessment of the implementation of the CNVNator algorithm in NGSEP. Given the same GC-corrected
intensities, the same genome size and the same RD distribution parameters, both implementations produce
nearly the same (A) partition and (B) RD levels. Examples of repetitive regions in (C) the yeast parent ER7A and
(D) the low-coverage human sample show how RD varies depending on the number of alignments counted for
each read (blue: only the best alignment of each read counted; red: up to three alignments counted; yellow: all
alignments found with Bowtie 2 with the -a option counted). Sensitivity of NGSEP, CNVnator and BreakDancer to
identify (E) deletions and (F) duplications validated by Mills and collaborators (22) using reads from the low-
coverage data set for NA12878. Default and K = 3 modes of Bowtie 2 are compared.
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regions. This resulting pattern should produce a false positive deletion call for this

region using any CNV detection algorithm based on RD.

The same confounding e�ect of repetitive regions could be observed in the human

samples. From the gold-standard data set of 642 deletions and 271 duplications

developed by Mills and coworkers (22), only 32 duplications and 59 deletions do not

overlap annotated repetitive elements. Because in most of the previous studies only the

best alignment is kept for each read, most of the validated duplications are classi�ed as

‘not accessible by RD algorithms’ (14,34). Figure 4D shows an example of a validated

duplication that becomes accessible in the low-coverage data set after mapping reads

with Bowtie 2 and keeping three alignments for each read. Although this region is not

masked as a repeat in the current reference genome, it is annotated as a nuclear

mitochondrial sequence (NUMT region) (35). We found two almost perfect copies of this

region on chromosomes 11 and on the mitochondrial chromosome, respectively.

Figure 4E and F show the percentage of validated deletions and duplications for the

human sample NA12878 identi�ed by NGSEP, CNVnator and BreakDancer in the low-

coverage data set. For NGSEP, we compared the detection power of the RD and the RP

algorithms, and we also included the results obtained combining both approaches. As

expected, results with the RD approach implemented in NGSEP were similar to the

results obtained using the original implementation of CNVnator. Keeping three

alignments per read reduced the percentage of detected deletions but increased by >30%

the percentage of detected duplications. Combining the RD and RP approaches increased

by >10% the percentage of detected deletions compared with the results using only the

RD approach. The combination of RD and RP algorithms of NGSEP showed a slightly

better sensitivity than the combination of the results produced by CNVnator and

BreakDancer.

Because the identi�cation of repetitive regions is important for both SNV and CNV

detection, we implemented an option in the variants detector to identify repetitive

regions in the genome based on reads with multiple alignments. This module traverses

the read alignments sorted by genomic location and clusters overlapping multiple

alignments into candidate repetitive regions. Genomic regions in which <20% of the

alignments are unique are called repetitive. We were able to detect >90% of the 512 272

base pairs annotated as repetitive in the yeast genome. Even using the low-coverage

data set for NA12878 we recovered 16% of the 1.7 Gb annotated as repetitive elements in

the human genome. NGSEP integrates predicted repeat elements, CNVs and large indels

obtained by each of the algorithms described above into a single GFF �le. This GFF �le



4/3/2018 integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments | Nucleic Acids…

https://academic.oup.com/nar/article/42/6/e44/2437856 17/30

Skip to Main Content

can be directly uploaded to a genome browser for detailed visualization of structural

variants in any genomic region of interest.

Resequencing of the green revolution rice cultivar IR8

We performed whole-genome resequencing of rice cultivar IR8, the semi-dwarf indica

variety developed by the International Rice Research Institute that played an important

role during the green revolution. We mapped reads to the current reference genome (36)

using Bowtie 2 with the option k = 3 to keep up to three alignments per read and then we

performed discovery of genomic variants with NGSEP. Looking at the sequencing error

rate predicted by the quality statistics produced with NGSEP (Supplementary Figure S9),

we chose to ignore the last four base pairs of each read to detect of SNVs and small

indels. We also set the prior heterozygosity rate to 0.0001 to take into account that IR8

went through several generations of inbreeding. Finally, we set the maximum base

quality score to 30, the maximum number of alignments with the same start to 2 and the

minimum genotype quality to 40. NGSEP detected 59 322 repeat regions, 13 427

duplications, 18 362 large deletions and 5120 large insertions spanning 125.4, 148.07,

39.53 and 1.54 Mb, respectively. In all, 63.76% of the predicted duplications and 43.89%

of the predicted deletions were located in sites identi�ed as repetitive. The total genomic

length of regions identi�ed as repetitive or with abnormal copy number was 200.68 Mb.

To check the consistency of our �ndings with previous work, we calculated the regions

masked as repetitive in the version of the reference genome available in phytozome

(www.phytozome.net) (37). From 128.44 Mb masked as repetitive in this version of the

reference, NGSEP identi�ed 105.84 Mb (82.4%) as repeats or regions with abnormal

copy number.

NGSEP found 4 266 169 SNVs and 315 834 small indels, from which 1 657 880 (38.86%)

and 58 494 (18.52%) were heterozygous. At �rst glance, this result seemed to be

inconsistent with the expected loss of heterozygosity produced by the successive

generations of inbreeding performed to develop IR8. However, we could verify that a

large percentage of these heterozygous calls really represented di�erences between

copies of repetitive elements. The percentage of heterozygous calls decreases to 10.35%

if we �lter out variants falling into repetitive regions and CNVs identi�ed by NGSEP

(Supplementary Table S2). Filtering SNVs in the currently available masked regions

reduced the same percentage to only 20.21%. A similar behavior was observed in the

percentage of heterozygous indels and in the percentage of heterozygous variants in

coding regions. Moreover, we observed a reduction in the percentage of nonsense SNVs

and frameshift indels. A possible reason for this phenomenon is that selective pressure

does not need to be as strong in genes with multiple copies as it is for single-copy genes

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/42/6/10.1093_nar_gkt1381/4/gkt1381_Supplementary_Data.zip?Expires=1522858897&Signature=ZvbiKBspLos2tkXZzAQfFn0JVRxF0Taqgg-xUwHuZLRyOc9uGsGUxoFyDbodhSff3GRui5KxXrHrAjjzb234~5O9AMpatPknx1~6C7nGFCZRWutkas1SP8abxGuXUBvGKZzLawwnsniFoirvICYwkxUQJxJbvfYgJTITu8sD6TPTyq9vOXx4wAz8MD6xiJMuKVaWoUHe~NHdzVzT~amJ7DId0oYvzUuNHBPrugmSsU3cpnk6jNsx5rWziviBsXRLw64iOtfpU5nYo3VzdpUNoRcvXvkEC22VncxCleF6DzPbTVKXynwRuHNLKdQce5A3lppfQRc0ggGFj9cmAGdcBA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
http://www.phytozome.net/
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/42/6/10.1093_nar_gkt1381/4/gkt1381_Supplementary_Data.zip?Expires=1522858897&Signature=ZvbiKBspLos2tkXZzAQfFn0JVRxF0Taqgg-xUwHuZLRyOc9uGsGUxoFyDbodhSff3GRui5KxXrHrAjjzb234~5O9AMpatPknx1~6C7nGFCZRWutkas1SP8abxGuXUBvGKZzLawwnsniFoirvICYwkxUQJxJbvfYgJTITu8sD6TPTyq9vOXx4wAz8MD6xiJMuKVaWoUHe~NHdzVzT~amJ7DId0oYvzUuNHBPrugmSsU3cpnk6jNsx5rWziviBsXRLw64iOtfpU5nYo3VzdpUNoRcvXvkEC22VncxCleF6DzPbTVKXynwRuHNLKdQce5A3lppfQRc0ggGFj9cmAGdcBA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
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because a damaging mutation in one copy of a paralog gene does not produce complete

loss of function. In fact, nonsynonymous mutations between paralog copies of genes

could confer bene�cial neofunctionalization (38).

For comparison, we also ran the GATK pipeline and SAMtools, both based on BWA

alignments. NGSEP reported 1 023 023 SNVs after the most stringent �ltering of

repetitive regions, compared with 500 313 SNVs reported by GATK and 754 728 SNVs

reported by SAMtools using the same �lters. NGSEP also reported >2-fold and 1.25-fold

more indels and variants in coding regions than GATK and SAMtools, respectively

(Supplementary Table S2). Unfortunately, in this case, we do not have gold-standard

genotype calls to make a comprehensive assessment of the sensitivity and speci�city

achieved by the di�erent algorithms. As indirect measures of quality, we calculated the

percentage of nonsynonymous SNVs, the percentage of nonsense SNVs and the

percentage of frameshift indels. The three methods reported similar values for these

measures, which allows us to speculate that the three methods have similar overall

speci�city. SAMtools reported consistently lower percentages of heterozygous variants,

which, as observed in the experiments on yeast and human samples, is likely to be due

to better speci�city for heterozygous calls. We also built a Venn diagram to assess the

agreement among the three methods (Figure 5). More than half of the variants reported

by NGSEP and not reported by GATK were reported by SAMtools, which provides

increased con�dence in the genotype calls reported by NGSEP. To assess whether GATK

and SAMtools call a homozygous reference genotype or left uncalled the variants called

only by NGSEP, we compared genotype calls reported by GATK and SAMtools at lower

qualities and we found that both tools were able to call up to 92% of the variants

reported by NGSEP if their minimum quality was lowered to zero (Supplementary Figure

S10). Finally, we queried the 273 393 SNVs only identi�ed by NGSEP in a data set of 60

sequenced rice varieties and we found that, from 208 923 SNVs for which at least 30

samples were genotyped, 183 256 (87.71%) have minor allele frequencies >0.05 and only

14 180 (6.79%) are unique for IR8 (manuscript in preparation).

Figure 5.

Venn diagrams comparing the variants discovered by NGSEP (blue), GATK (red) and
SAMtools (yellow) on the data set of reads obtained after sequencing rice cultivar IR8.

The upper diagram compares homozygous nonreference calls among the three methods.
Smaller circles within each category represent sites that were called heterozygous by at

least one method and homozygous nonreference by at least another method (for
example, 2116 variants called homozygous nonreference by GATK and SAMtools were

called heterozygous by NGSEP). The smaller diagram at the bottom compares
heterozygous calls that were not called homozygous nonreference by any of the three

methods.
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The genetic cause for the reduced height of IR8 is a deletion of 382 bp spanning exons 1

and 2 of the SD1 gene (32). We veri�ed that the RP algorithm implemented in NGSEP was

able to detect this deletion. We uploaded the GFF produced by NGSEP to the genome

browser available on the rice genome project Web site

(http://rice.plantbiology.msu.edu) and we could observe that the deletion predicted by

NGSEP covers the validated deletion with almost perfect base-pair resolution

(Supplementary Figure S11).

DISCUSSION

Despite the exponential reduction in sequencing cost produced by the technological

advances achieved in the past 10 years, analysis of HTS data remains a complex process

that requires large investments in computational capacity and personnel to translate

sequencing data into valuable information such as genes related to traits or markers for

selection. NGSEP is the product of an e�ort to contribute with the evolution of software

tools to facilitate the analysis of HTS data. NGSEP provides an intuitive framework in

which scientists can analyze their sequenced samples and obtain comprehensive data

sets of genomic variants. We used data sets of di�erent species and di�erent natures to

show that NGSEP has high accuracy, e�ciency and applicability. The use of standard �le

formats for both receiving input data and producing variant calls enables an easy

integration with di�erent visualization and analysis tools.

We built on the experience obtained in our previous work to tackle common issues

a�ecting detection and genotyping of SNVs, such as ambiguously called reads,

miscalibrated quality scores, PCR ampli�cation artifacts and misalignment around

small indels. Because we followed di�erent strategies to solve these problems compared

with those adopted in the GATK pipeline, we demonstrated that our solutions are more

e�cient in the consumption of computational resources and in general report improved

sensitivity for similar speci�city.

View large Download slide

Venn diagrams comparing the variants discovered by NGSEP (blue), GATK (red) and SAMtools (yellow) on the
data set of reads obtained a�er sequencing rice cultivar IR8. The upper diagram compares homozygous
nonreference calls among the three methods. Smaller circles within each category represent sites that were
called heterozygous by at least one method and homozygous nonreference by at least another method (for
example, 2116 variants called homozygous nonreference by GATK and SAMtools were called heterozygous by
NGSEP). The smaller diagram at the bottom compares heterozygous calls that were not called homozygous
nonreference by any of the three methods.
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To comprehensively assess the di�erent algorithms for detecting and genotyping SNVs

and small indels, we constructed a gold-standard data set of genotype calls for an F1

pool of yeast segregants covering >60% of the yeast genome. In contrast with previous

studies in which only general measures such as transition/transversion ratio or degree

of sharing among algorithms were used as indirect indicators of quality (5,11), this

gold-standard allowed us to make precise estimations of sensitivity and speci�city for

the most widely used software tools under di�erent quality �lters. Our comparisons

indicate that NGSEP, SAMtools and GATK are the most competitive alternatives.

However, the results presented here are only a snapshot of the current state, which is

likely to change with the evolution of current alternatives and the development of new

algorithms. In this context, the availability of a genome-wide gold-standard data set is

a valuable resource for performing continuous comparisons of current and novel

algorithms and for promoting the future development of accurate genotyping methods.

As recent studies have pointed out, accurate discovery of CNVs from HTS data is an

extremely challenging task and the current performance of the available algorithms is

far from satisfactory. For NGSEP, we decided to reimplement the recently developed

algorithm CNVnator, which is based on a robust statistical analysis of the RD signal.

Because for this kind of approach the management of reads with multiple alignments

plays a critical role, we compared di�erent alignment strategies implemented in BWA

and Bowtie 2 mapping tools. In general, we found that keeping multiple alignments

increases sensitivity to identify duplications. Because proper identi�cation of repetitive

elements is critical to make a good interpretation of both SNVs and CNVs detected by

any bioinformatics pipeline, we also included a module in the variants detector to

explicitly �nd repetitive regions in the genome based on the information provided by

the reads with multiple alignments. Finally, we combined CNVnator with a RP algorithm

and we veri�ed that combining these two approaches increases sensitivity for detecting

large deletions. Sequencing of rice cultivar IR8 shows that NGSEP provides a more

accurate separation between heterozygous variants and di�erences between copies of

repetitive elements compared with other commonly used pipelines. The RP algorithm

implemented in NGSEP was also able to identify the large deletion in the SD1 gene,

which shows that NGSEP can be helpful in identifying variants conferring important

phenotypic e�ects.

We believe that the main advantage of NGSEP is the out-of-the-box integration of

accurate algorithms to discover, genotype, combine, annotate and �lter genomic

variants, which facilitates the analysis and understanding of the �nal results. Although

it could be argued that this is already o�ered by web portal solutions such as Galaxy

(39), in practice the initial set up, integration of pipelines and maintenance of local
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Galaxy installations still require a signi�cant amount of technical support. NGSEP o�ers

an alternative in which scientists can discover, genotype and perform downstream

analysis of genomic variants on their local computers, requiring only as much support

as that needed by a standard desktop application. Moreover, the level of integration

among algorithms achieved by NGSEP allows researchers to summarize diversity, copy

number and functional information into a single VCF �le. Given the heterogeneity in

programming languages, quality and input and output formats observed in current

bioinformatic solutions, achieving the same integration with a combination of existing

tools still requires signi�cant programming and scripting e�orts. However, NGSEP is

not meant to replace cluster solutions, which are more suitable for large projects

involving analysis over hundreds or even thousands of samples. For these kinds of

projects, we o�er the main functionalities of NGSEP through a command line interface

that allows parallelization in a cluster environment. The main functions are also

described in XML scripts, allowing groups with local galaxy installations already in

place to use NGSEP, combine it with other tools, and bene�t from the �exibility o�ered

by web portals such as Galaxy.

In our local experience, we have successfully used NGSEP to process 60 whole-genome

sequencing samples of rice and close to 200 restriction site associated DNA (RAD)

sequencing samples of cassava using our local computational cluster. We have also been

able to analyze a cassava GBS population of 77 samples within 2 days through the

graphical interface in a normal desktop (unpublished data). We believe that NGSEP will

become a great alternative for a broad range of scientists to analyze HTS data in their

current and future projects.
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