A Mutasynthesis Approach with a Penicillium chrysogenum ΔroqA Strain Yields New Roquefortine D Analogues

Ouchaou, Kahina; Maire, Florian; Salo, Oleksandr; Ali, Hazrat; Hankemeier, Thomas; van der Marel, Gijsbert A; Filippov, Dmitri V; Bovenberg, Roel A L; Vreeken, Rob J; Driessen, Arnold J M

Published in:
ChemBioChem

DOI:
10.1002/cbic.201402686

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Penicillium chrysogenum, which lacks the \textit{roq}A gene, processes synthetic, exogenously added histidyltryptophan diketopiperazine (HTD) to yield a set of roquefortine-based secondary metabolites also produced by the wild-type strain. Feeding a number of synthetic HTD analogues to the \textit{Δroq}A strain gives rise to the biosynthesis of a number of new roquefortine D derivatives, depending on the nature of the synthetic HTD added. Besides delivering semisynthetic roquefortine analogues, the mutasynthesis studies presented here also shed light on the substrate preferences and molecular mechanisms employed by the roquefortine C/D biosynthesis gene cluster, knowledge that may be tapped for the future development of more complex semisynthetic roquefortine-based secondary metabolites.

### Introduction

Roquefortines C and D (Scheme 1) and secondary metabolites derived from them are produced by many different \textit{Penicillium} species, including \textit{Penicillium chrysogenum}.\cite{1} They are members of the broad family of prenylated indole alkaloids\cite{2, 3} and are derived from histidyltryptophan diketopiperazine (HTD, Scheme 2) as the distinguishing precursor. Roquefortines and their derivatives are of interest because of their structural complexity, their biosynthesis, and their biological activity. Roquefortine C was identified to have neurotoxic activity in mice and is bacteriostatic against a number of Gram-positive bacteria.\cite{4, 5}

Our work on roquefortines to date has focused on unraveling their biosynthesis pathway. We recently reported that roquefortines C and D are produced in \textit{P. chrysogenum} by a parallel biosynthesis pathway.\cite{9, 10} In the first step, the common precursor, HTD, is synthesized by the nonribosomal peptide synthetase RoqA. HTD is subsequently transformed in a series of steps into roquefortines and from these into a number of complex secondary metabolites.

The biosynthesis of the roquefortine indole alkaloids involves two gene clusters.\cite{4, 10} RoqA is a nonribosomal peptide synthetase (NRPS) cluster that accepts and activates L-histidine and L-tryptophan and condenses these to produce HTD. This diketopiperazine is accepted as substrate by a further set of enzymes including the dehydrogenase RoqR and the dimethylallyltryptophan synthase RoqD. These, in concert with a number of other gene products, are responsible for the biosynthesis of roquefortines C and D and their downstream secondary metabolites.

The parallel action of RoqA and RoqR/RoqD invites a strategy in which roquefortine analogues are produced through a mutational biosynthesis—or mutasynthesis—approach.\cite{11, 12} In mutasynthesis a gene (or gene cluster) responsible for the production of a key secondary metabolite precursor is eliminated, and the resulting mutant strain is supplemented with a synthetic, modified version of this precursor in the hope that this will be taken up and processed to deliver new analogues of the original secondary metabolite. Mutasynthesis is considered to have the advantage over classical precursor-directed biosynthesis strategies in that competition between endogenous substrate and added synthetic substrate is eliminated.\cite{11} On the downside, engineering NRPS or polyketide synthase (PKS) gene clusters to yield a desired mutant is high-risk in that the secondary
metabolite biosynthesis machinery as a whole is compromised.\textsuperscript{[12]}

We reasoned that because of its parallel action of RoqA and RoqR/D the roquefortine biosynthesis pathway would not be subject to this caveat. On the basis of this assumption, we set out to apply our \textit{P. chrysogenum} strain in which we had genetically deleted the \textit{roqA} gene (\textit{P. chrysogenum ΔroqA}), as described in ref. \textsuperscript{[8]}, to reconstitute roquefortine biosynthesis by external addition to the growth media of HTD. Here we show our results in this undertaking, as well as the fate of a set of HTD analogues, 2–10 (Scheme 2), in terms of roquefortine analogue mutasynthesis.

\section*{Results and Discussion}

A number of synthesis strategies for the preparation of chiral, enantipure diketopiperazines have appeared in the literature.\textsuperscript{[13–18]} Perusal of these reveals that the preparation of \textit{l,l}- or \textit{d,d}-diketopiperazines—that is, the synthesis of diketopiperazines assembled from two \textit{l} or \textit{d}-amino acids—is considerably more complicated than the construction of their \textit{l,d}-configured counterparts. Thus, as the first research objective we investigated the synthesis of the natural roquefortine precursor \textit{l,l}-HTD (1). The optimized route we arrived at, which is based on literature\textsuperscript{[17,18]} precedent, is shown in Scheme 3.
In the first step, bis-Boc-protected tryptophan 11 was transformed into the corresponding pentafluorophenyl ester, which was condensed with partially protected histidine 13. The resulting fully protected dipeptide 14 was treated with trimethylsilyl iodide (TMSI) under conditions reported in the literature to deblock the tryptophan secondary amine selectively. Although the yield in this step was only moderate, structurally and enantiomerically pure H,N dipeptide 15 was obtained in this way. Application of other acidic conditions to obtain 15 proved abortive, and we were able to prepare sufficient quantities of the desired intermediate to continue our synthesis by using TMSI. Treatment of in-situ-generated H,N dipeptide 15 with aqueous ammonia yielded monotrityl-protected HTD 16, which was treated with trifluoroacetic acid in dichloromethane in the presence of triisopropylsilane (TIS) as a cation scavenger to yield target compound 1.

An alternative route to diketopiperazines more commonly applied in the literature is depicted in Scheme 4 for the synthesis of L,D-HTD (3). This route is based on condensation of an Fmoc-protected α-amino acid (here Fmoc-(Boc)-d-trypto-
phan (17)) with a second α-amino acid protected as the methyl ester (here L-histidine derivative 13). In this way, fully protected dipeptide 18 is obtained unevenly. The difference between the two routes is in the next stage: whereas in the former example deprotection of the secondary amine proceeded under (Lewis) acidic conditions, in the current case the Fmoc group is removed under basic (piperidine in DMF) conditions. The advantage in terms of efficiency is that, upon the Fmoc removal, the liberated basic amine in 19 reacts without further manipulation with the methyl ester to provide protected diketopiperazine 20 in good yield. A disadvantage of this method—at least according to literature reports—is that the basic conditions applied can give rise to deprotonation of one of the two α-carbons and thus epimerization and erosion of enantiomeric purity. Nevertheless, after removal of the Boc/trityl protective groups in 20 and HPLC purification we were able to obtain L-D-HTD (3) in good yield and enantiomerically pure. We thus have two routes at our disposal, and these combined allowed us to prepare HTD analogues (by the TMSI route depicted in Scheme 3) as well as 3, 4, 7, and 8 (by the Fmoc peptide chemistry route depicted in Scheme 4). HTD analogues 9 and 10 in turn were obtained from a commercial source.

With L-L-HTD (1) and its configurational isomers (compounds 2–4) and structural analogues (compounds 5–10) to hand, we set out to study their use in the mutasynthesis of roquefortine analogues by P. chrysogenum ΔroqA. Thus, after 4 days of growth of this strain, L-L-HTD was added at 200 µg mL⁻¹ (0.6 mm) final concentration, and growth was continued up to days 5 or 7. Next, the metabolites produced were analyzed in samples taken from both 5- and 7-day culture broths after removal of the cells by filtration, with very few contaminating protein bands detected. It was found that roquefortine-related secondary metabolites can be readily extracted from the medium. As shown in Figure 1B, after 7 days of fermentation the P. chrysogenum ΔroqA strain, previously prepared by us, had produced neither L-L-HTD nor any of its derived secondary metabolites. Supplementation with synthetic L-L-HTD (1), in contrast, restored the roquefortine metabolic pathway (Figure 1C).

The outcome of feeding experiments in which the P. chrysogenum ΔroqA strain was grown with each of the configurational isomers and structural HTD analogues 2–10 is depicted in Scheme 5 (see the Supporting Information for LC-MS traces of these feeding experiments). Growth media were extracted and analyzed for roquefortine analogue content by LC-MS essentially as done for the feeding experiment with synthetic L,L-HTD (1).

Exact masses of putative roquefortine analogue metabolites were calculated and compared against the list of ions highlighted during the data processing of the LC-MS chromatograms (i.e., ions present in supplemented P. chrysogenum ΔroqA cultures and absent in P. chrysogenum ΔroqA control culture). It should be noted that no NMR experiment has been performed on the roquefortine analogue metabolites. Because the identifications are based on accurate masses only, isomers of the structures shown in Scheme 5 cannot be ruled out completely. A first observation we made is that neither of the HTD analogues made it through the biosynthesis pathways to produce roquefortine C analogues. At least, if such analogues—or any of the secondary metabolites derived from roquefortine C—had been produced, this would have occurred in quantities below our limit of detection. On the positive side, some HTD analogues proved to be acceptable substrates for RoqR (the dehydrogenase activity) and some were accepted by RoqD (the dimethylallyltryptophan synthase activity), whereas configurational isomers 3 and 4 proved metabolically inert.

Closer perusal of the obtained data allows for some interesting observations. With respect to the configurational isomer set 1–4, L-D-HTD (3) and D,D-HTD (4) proved to be unacceptable substrates for both RoqD and RoqR, and from this we can conclude that the L stereochemistry of the tryptophan residue is essential. This is underscored by the observation that D,L-HTD (2) is accepted by RoqD to produce the roquefortine C analogue 23 (Figure 2). Neither 23 nor 2 is dehydrogenated, and so the L configuration of the histidine residue is essential for RoqR as well.

Structural analogues 5–10 all have the appropriate stereochemistry for both RoqD and RoqR, and acceptance by either of the two therefore relies on their structural and functional features. RoqR-mediated dehydrogenation proceeds with 7 (to produce 21, Figure 3) and with 8 (to produce 22), in other words exclusively with those HTD analogues containing L-histidine as one of the two α-amino acids incorporated. RoqD in turn is lenient with regard to the nature of the L-histidine analogues but accepts, out of the series of HTD analogues screened in this study, only those residues featuring an L-tryptophan moiety. In this way, roquefortine C analogues 24 (from 5), 25 (from 6), 26 (from 9), and 27 (from 10) are produced. The fact that none of these metabolites is further processed to roquefortine C analogues can also be seen as a positive outcome in that in this way roquefortine D analogues—in themselves interesting compounds in terms of their structural complexity—can be readily prepared. Somewhat surprising is the finding that HTD ana-
logues 7 and 8, featuring a benzothiophene and a naphthyl moiety, respectively, as indole analogues, are not acceptable RoqD substrates. The indole nitrogen appears to be crucial in the electrophilic aromatic substitution that comprises the first step in the RoqD-catalyzed indole prenylation process. In view of this result it would be of interest to investigate the fates of benzofuran-based HTD analogues or of analogues of 7 and 8 in which the benzothiophene/naphthyl moieties are modified to bear electron-donating substituents.

Conclusions

In conclusion, this work demonstrates that the roquefortine biosynthesis pathway is amenable to mutasynthesis studies to deliver new, semisynthetic DHTD/roquefortine D analogues. From an engineering point of view, it can be predicted from the branched nature of the roquefortine biosynthesis pathway that the deletion of the roqA gene should yield a strain in which the complete roquefortine biosynthesis pathway can be rescued through supplementation with synthetic L,L-HTD. The two enzymes immediately downstream of HTD biosynthesis, RoqD and RoqR, appear to be selective for their corresponding amino acids (L-Trp and L-His, respectively), but not so much for the second amino acid that completes the diketopiperazine ring. Thus, the small set of HTD analogues assessed here has already delivered some interesting semisynthetic secondary metabolites, in particular roquefortine D analogues 23–27. Further modifications on the HTD core, such as the benzofuran tryptophan analogue mentioned above, might yield semisynthetic secondary metabolites with structures resembling those found further downstream in the roquefortine biosynthesis pathway. Here it should be mentioned that our approach is biased towards the detection of modified metabolites that are exported into the medium. We cannot exclude the possibility that additional metabolites are produced from our HTD analogues but are not detected because they are not exported. Finally, numerous indole alkaloid secondary metabolites found in nature are derived from diketopiperazines featuring L-tryptophan together with α-amino acids other than histidine.\textsuperscript{23} Generation of the corresponding diketopiperazine synthase deletion mutants

![Scheme 5. DHTD/roquefortine D analogues produced by mutasynthesis of P. chrysogenum \Delta roqA broth supplemented with HTD isomers and analogues 2–10.](attachment:Scheme5.png)

![Figure 2. LC-MS analysis of culture broth of P. chrysogenum \Delta roqA 72 h after addition of 2. A) Full chromatogram (* internal standard). B) Extracted ion chromatogram of 2. C) Extracted ion chromatogram of 23. The analysis was performed with the LTQ-Orbitrap, and an internal recalibration was performed after acquisition by use of the monoprotonated ion of 2.](attachment:Figure2.png)
should allow mutasynthesis studies related to those presented here, especially in the light of the diketopiperazine synthesis procedures we have developed, and thus enable the synthesis of both configurational and structural diketopiperazine analogues.

Experimental Section

General: All reagents were commercial grade and were used as received unless indicated otherwise. Dichloromethane was distilled over phosphorus pentoxide. DMF, MeCN, MeOH, piperidine, and NET$_3$ were stored over molecular sieves (4 Å). Reactions were monitored by TLC (DC-Alufolien, Merck, Kieselgel 60, F254) with detection variously by UV absorption (254 nm), by spraying with a solution of (NH$_4$)$_2$MoO$_4$·H$_2$O (25 g L$^{-1}$) and (NH$_4$)$_2$Ce(SO$_4$)$_2$·2H$_2$O (10 g L$^{-1}$) in sulfuric acid (10%) followed by charring at 150 °C, or by spraying with an aqueous solution of KMnO$_4$ (20%) and K$_2$CO$_3$ (10%). Column chromatography was performed on silica gel (Screening Devices, 0.040–0.063 mm). LC/MS analysis was performed with the LTQ-Orbitrap, and HNMR spectra were recorded with Bruker AV 400 (400/100 MHz) instruments with a pulsed field gradient accessory. Chemical shifts (δ) are given in ppm relative to tetramethylsilane as internal standard. Coupling constants are given in Hz. All 13C-APT spectra presented are proton-decoupled.

(N-Boc-N-Boc)-t-tryptophan (0.456 g, 2.48, 2.0 equiv) was added under argon to a solution of N-Boc-N-Boc-t-tryptophan (0.5 g, 1.24 mmol, 1.0 equiv) in freshly distilled CH$_2$Cl$_2$ (6.5 mL, 0.2 m), followed by EDC·HCl (0.474 g, 2.48 mmol, 2.0 equiv). The mixture was stirred at room temperature overnight. The reaction was quenched with a solution of HCl (1 m), and the mixture was extracted with EtO. The organic layer was washed with brine and dried over MgSO$_4$, and the solvent was removed. The mixture was purified on silica (pentane/EtOAc 100:0–97:3) to give the corresponding compound as a white solid (0.522 g, 74%).$^1$H NMR (400 MHz, CDCl$_3$): δ = 8.21–8.12 (brd, 1 H), 7.57 (dd, J = 7.6, 1.8 Hz, 1 H), 7.52 (s, 1 H), 7.35 (m, 1 H), 7.27 (m, 1 H), 5.05 (m, 1 H), 3.45 (m, 1 H), 3.35 (m, 1 H), 1.67 (s, 9 H), 1.44 ppm (s, 9 H).

Dipeptide Boc-Trp(Boc)-His(Tr) methyl ester (14): A solution of L-BocTrp(Boc)OC$_3$F$_3$ (0.52, 0.09 mmol, 1.0 equiv) in freshly distilled CH$_2$Cl$_2$ (5 mL) was added dropwise under argon to a solution of L-His(Tr)OMe (0.45 g, 1.0 mmol, 1.1 equiv) and NET$_3$ (0.14 mL, 1.1 equiv) in freshly distilled CH$_2$Cl$_2$ (5 mL). The reaction mixture was stirred overnight at room temperature. The solvent was removed, and the mixture was purified on silica (MeOH in CH$_2$Cl$_2$, 1%) to afford the expected compound as an amorphous white solid (0.63 g, 87%).$^1$H NMR (400 MHz, CDCl$_3$): δ = 8.12–8.01 (brs, 1 H), 7.60 (d, J = 6.8 Hz, 1 H), 7.46 (s, 1 H), 7.38–7.15 (m, 12 H), 7.11–7.03 (m, 6 H), 6.43 (s, 1 H), 4.78–4.71 (m, 1 H), 4.59–4.48 (m, 1 H), 3.55 (s, 3 H), 3.38–3.10 (m, 2 H), 3.05–2.84 (m, 2 H), 2.32 (dd, J = 14.8, 8.8 Hz, 1 H), 2.24 (dd, J = 14.8, 4.8 Hz, 1 H), 1.86–1.82 ppm (brt, 1 H);$^{13}$C NMR (100 MHz, CDCl$_3$): δ = 171.17–171.09, 165.64, 155.40, 149.55, 141.16, 135.51, 130.53, 129.78, 128.54, 124.37, 122.54, 119.86, 119.26, 116.07, 115.14, 83.43, 79.75, 54.79, 52.77, 52.58, 29.05, 28.31–28.23 ppm; LC-MS: m/z: 978.13 [M+H]$^+$, 1594.73 [2M+H]$^+$.

Cyclo-L-Trp-l-His(Tr) (16): TMSI (150 µL, 6.0 equiv) was added at 0 °C to a solution of compound 15 (0.135 g, 0.17 mmol, 1.0 equiv) in dry CH$_3$CN (6 mL). The reaction mixture was added to warm to room temperature over 3 h. The reaction was quenched with a solution of aqueous saturated NaHCO$_3$, and the mixture was extracted with CH$_2$Cl$_2$. The organic layer was washed with water and then dried over MgSO$_4$. After removal of the solvent, the crude product was dissolved in dry MeOH (6 mL), and aq. NH$_3$ (0.6 mL) was added. The solution mixture was then stirred overnight and concentrated under reduced pressure. Purification by column chromatography (MeOH in CH$_2$Cl$_2$, 4%) yielded the purified compound as an amorphous beige solid (0.043 g, 45%).$^1$H NMR (400 MHz, CDCl$_3$): δ = 7.89, 7.10 (d, J = 8.0 Hz, 1 H), 7.35–7.14 (m, 14 H), 7.09–6.80 (m, 9 H), 6.15 (s, 1 H), 4.30–4.20 (brs, 1 H), 4.15–4.11 (brs, 1 H), 3.52–3.46 (brd, 1 H; AB), 3.18–3.12 (brd, 1 H; AB), 2.99–2.95 (brd, 1 H; AB); 1.86–1.82 ppm (brt, 1 H; AB);$^{13}$C NMR (100, MHz, CDCl$_3$): δ = 168.02, 167.30, 142.27, 138.92, 136.28, 134.01, 130.53, 129.78, 128.23, 127.25, 124.49, 122.44, 120.07, 119.82, 118.97, 111.36, 109.14, 75.44, 55.13, 54.85, 31.67, 30.03 ppm; LC/MS: MS$_6$: 565.93 [M+H]$^+$, 1130.80 [2M+H]$^+$.

L-l-HTD (1): A solution of compound 17 (0.043 g, 0.07 mmol) in dry CH$_2$Cl$_2$ (6 mL) was cooled to 0 °C. Then TFA (20%) and TIS (2.5%) were added. The reaction mixture was concentrated in the presence of toluene and then stirred for 2 h. Purification by column chromatography (10% MeOH in EtOAc) yielded the compound as a white solid (0.023 g, 97%). Spectroscopic data were in accordance with known literature values.$^{[1]}$ HNMR (CD$_2$Cl$_2$): δ = 4.26 (c = 0.406, H NMR (400 MHz, D$_2$O): δ = 7.60 (d, J = 8.0 Hz, 1 H), 7.49 (d, J = 8.0 Hz, 1 H), 7.28 (dd, J = 8.0, 1.2 Hz, 1 H), 7.23–7.17 (m, 2 H), 5.90 (d, J = 1.6 Hz, 1 H), 4.46 (dd, J = 3.2, 1.2 Hz, 1 H), 4.02 (dd, J = 4.8, 1.2 Hz, 1 H), 3.46 (dd, J = 14.8, 3.2 Hz, 1 H; AB), 3.13 (dd, J = 14.8, 4.8 Hz, 1 H; AB); 2.32 (dd, J = 14.8, 4.8 Hz, 1 H; AB), 1.37 ppm (dd, J = 14.8, 8.8 Hz, 1 H; AB);$^{13}$C NMR (100, MHz, D$_2$O): δ = 169.68, 167.67, 135.85, 133.31, 127.37, 126.71, 125.70, 122.06, 119.72, 119.01, 117.35, 112.06, 107.62, 55.69, 53.09, 28.55, 28.30 ppm; HRMS: m/z calcd for C$_{25}$H$_{31}$N$_4$O$_3$H$_2$: 524.1461 [M+H]$^+$; found: 524.1452.
Dipeptide Boc-Trp(Boc)-o-His(Tr) methyl ester (28): Applying the same procedure as described above for compound 15 yielded the title compound as an amorphous beige solid (0.38 g, 99%).

\[ \text{HRMS: m/z calculated for C}_{33}H_{52}O_{15}N_{12}+: 334.1546 > [M+H]^+; found: 334.1548. \]

Dipeptide Boc-Trp(Boc)-Trp(Obn) methyl ester (31): Applying the same procedure as described above for compound 15 yielded the title compound as an amorphous white solid (0.38 g, 99%).

\[ \text{HRMS: m/z calculated for C}_{33}H_{52}O_{15}N_{12}+: 334.156 > [M+H]^+; found: 334.156. \]

Cyclo-l-Trp-o-His(Tr) (29): Applying the same procedure as described above for compound 17 yielded the title compound as an amorphous beige solid (0.15 g, 52%).

\[ \text{HRMS: m/z calculated for C}_{33}H_{52}O_{15}N_{12}+: 334.1548 > [M+H]^+; found: 334.1548. \]

Dipeptide Boc-Trp(Boc)-Phe-methyl ester (30): Applying the same procedure as described above for compound 15 yielded the title compound as an amorphous white solid (0.29 g, 69%). Spectroscopic data were in accordance with known literature values.\(^{12} \) 

\[ \text{HRMS: m/z calculated for C}_{33}H_{52}O_{15}N_{12}+: 334.155 > [M+H]^+; found: 334.155. \]

Dipeptide Fmoc-Trp(Boc)-Trp(Cl) methyl ester (18): HATU (0.216 g, 0.57 mmol, 1.0 equiv) was added to a solution of Fmoc-Trp(Boc)COOH (0.300 g, 0.57 mmol, 1.0 equiv) and NET\(_3\) (0.16 mL, 2.0 equiv) in freshly distilled CH\(_2\)Cl\(_2\) (3 mL). After 15–30 min, a solution of L-Trp(Trt)OMe (0.255 g, 0.57 mmol, 1.0 equiv) and HATU (1.00 g, 2.0 equiv) was added dropwise. The reaction mixture was stirred overnight. After removal of the solvent, the mixture was purified on silica (MeOH in CH\(_2\)Cl\(_2\), 1%) to afford the expected compound as an amorphous white solid (0.51 g, 99%).

\[ \text{HRMS: m/z calculated for C}_{33}H_{52}O_{15}N_{12}+: 334.1535 > [M+H]^+; found: 334.1535. \]

---

**ChemBioChem** 2015, 16, 915 – 923

www.chembiochem.org

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Dipeptide Fmoc-L-fenilalanilina-l-His(Tr) methyl ester (35): Applying the procedure as described above for compound 20 afforded the title compound as an amorphous white solid (0.10 g, 65%). 1H NMR (400 MHz, CDCl3): δ = 7.90 (s, 1 H), 7.82–7.66 (m, 6 H), 7.49–7.18 (m, 20 H), 7.11–7.02 (m, 6 H), 6.78 (s, 1 H), 5.84 (d, J = 6.4 Hz, 1 H); 4.78–4.70 (m, 1 H), 4.59–4.51 (m, 1 H), 4.24–4.02 (m, 3 H); Fmoc–CH2–CH2–CH2–CH2–CH2–CH2–CH–CH3, 3.39–3.31 (m, 1 H; AB), 3.27–3.05 ppm (m, 3 H; AB); 13C NMR (100 MHz, CDCl3): δ = 171.59, 169.88, 165.8, 154.64, 143.64, 143.60, 141.13, 140.33, 139.98, 138.65, 130.37, 130.50, 128.76, 128.78, 128.71, 128.70, 127.73, 127.74, 126.99, 125.6, 125.19, 124.68, 124.40, 124.27, 127.8, 121.56, 119.89, 78.33, 67.48, 55.07, 52.70, 52.04, 46.77, 30.51, 27.19 ppm.

Cylo-L-benzotriphenilalanilina-L-His (36): Applying the procedure as described above for compound 20 afforded the title compound as an amorphous white solid (0.19 g, 89%). 1H NMR (400 MHz, CDCl3): δ = 7.80 (d, J = 8.0 Hz, 1 H), 7.67 (d, J = 8.0 Hz, 1 H); 7.60 (s, 1 H; NH), 7.38–7.01 (m, 19 H), 6.16 (s, 1 H), 4.38–4.31 (m, 1 H), 4.29–4.10 (m, 1 H), 3.51–3.41 (m, 1 H; AB), 3.37–3.25 (m, 1 H; AB), 2.95–2.88 (m, 1 H; AB); 13C NMR (100 MHz, CDCl3): δ = 168.11, 166.75, 142.12, 140.18, 138.78, 138.63, 135.81, 130.34, 129.69, 128.11, 125.71, 124.42, 124.35, 122.63, 122.06, 119.95, 75.39, 54.71–54.64, 32.52, 31.80 ppm.

Cylo-L-benzotriphenilalanilina-L-His: Applying the procedure as described above for compound 20 afforded the title compound as an amorphous solid (0.066 g, 62%). 1H NMR (400 MHz, CDCl3): δ = 8.30 (d, J = 1.2 Hz, 1 H), 8.00–7.94 (m, 1 H), 7.84–7.79 (m, 1 H), 7.52–7.44 (m, 2 H), 7.37 (s, 1 H), 6.13 (d, J = 1.2 Hz, 1 H), 4.52 (dd, J = 1.2, 4.8 Hz, 1 H), 4.07 (dd, J = 1.2, 4.8 Hz, 1 H), 3.52 (dd, J = 4.8, 15.2 Hz, 1 H; AB), 3.26 (dd, J = 4.8, 15.2 Hz, 1 H; AB), 2.39 (dd, J = 4.8, 15.2 Hz, 1 H; AB), 1.67 ppm (dd, J = 8.0, 15.2 Hz, 1 H; AB); 13C NMR (100 MHz, CDCl3): δ = 169.11, 167.46, 163.89, 138.75, 133.40, 130.63, 127.10, 126.64, 124.76–124.67, 123.18, 122.18, 177.33, 134.53, 53.13, 31.19, 28.08 ppm; HRMS: m/z calc for C31H24N2O5S+: 431.1072 [M+H]+; found: 431.1076.

Cylo-L-fenilalanilina-L-His methyl ester (37): Applying the procedure as described above for compound 20 afforded the title compound as an amorphous white solid (0.17 g, 58%). 1H NMR (400 MHz, CDCl3): δ = 7.81–7.68 (m, 7 H), 7.60–7.49 (brs, 1 H; NH); 7.47–7.18 (m, 23 H), 7.09–7.03 (m, 6 H), 6.61 (s, 1 H), 5.61–5.59 (brs, 1 H; NH), 4.82–4.76 (m, 1 H), 4.67–4.59 (m, 1 H), 4.31–4.24 (m, 1 H); Fmoc–CH2–CH2–CH2–CH2–CH2–CH2–CH–CH3, 3.49–3.34 (m, 2 H; AB); 13C NMR (100 MHz, CDCl3): δ = 170.59, 165.25, 143.85–143.81, 143.31–142.18, 138.36, 133.62, 132.59, 129.76, 128.85–127.02, 126.29–125.23, 126.03, 120.00, 67.48, 56.15, 52.56, 52.41, 47.06, 38.47, 38.05 ppm; LC-MS: m/z: 831.13 [M+H]+; 1661.80 [2M+H]+ .

Cylo-L-naphilalanilina-L-His (38): Applying the procedure as described above for compound 20 afforded the title compound as an amorphous white solid (0.07 g, 58%). 1H NMR (400 MHz, CDCl3): δ = 7.62–7.50 (m, 30 H), 7.42–7.32 (m, 9 H), 7.28–7.21 (m, 5 H), 7.19–7.14 (m, 1 H), 7.11–7.03 (m, 6 H), 6.96–6.91 (m, 1 H; AB), 5.59 (s, 1 H), 4.39–4.33 (brs, 1 H), 3.99–3.95 (m, 1 H), 3.47–3.30 (m, 1 H; AB); 3.12–3.04 (m, 1 H; AB), 3.94 (t, J = 2.4 Hz, 1 H; AB), 2.16 (dd, J = 4.4, 14.0 Hz, 1 H; AB), 0.64–
This work was supported by the Perspective Genbiotics program.

Acknowledgements

This work was supported by the Perspective Genbiotics program subsidized by STW (Stichting Technische Wetenschappen).

Keywords: alkaloids · antibiotics · diketopiperazines · mutasynthesis · Penicillium · roquefortines


Received: December 1, 2014
Published online on March 12, 2015
A Mutasynthesis Approach with a *Penicillium chrysogenum* Δ*roqA* Strain Yields New Roquefortine D Analogues


cbic_201402686_sm_miscellaneous_information.pdf
Table of contents:
1. Fermentation growth media of *P. chrysogenum* Δ*aroA* mutant
2. LC–MS analysis of the fermentation growth media
3. Table 1.
4. Figure 1-7.
Fermentation growth media of *P. chrysogenum ΔaroqA* mutant

The spores of the ΔaroqA mutant\(^1\) have been inoculated into 30 mL of SMP medium (5 g/L glucose, 75 g/L lactose, 4 g/L urea, 4 g/L Na\(_2\)SO\(_4\), 5 g/L CH\(_3\)COONH\(_4\), 2.12 g/L K\(_2\)HPO\(_4\), 5.1 g/L KH\(_2\)PO\(_4\)) and incubating during four days in 100 mL shaking flasks using a Multitron Standard shaker (Infors HT) at 200 rpm, 25 °C. Before the feed 10mL of the culture broth were transferred into smaller 50 mL shaking flasks to achieve the efficient usage of the synthetic precursors and to prevent the evaporation of the media during the experiment. Aqueous solutions of the corresponding synthetic analogs were supplemented with the appropriate culture set of three replicates to obtain the final concentration 200 µg/mL in the medium. Then, cultivation proceeded for the next 72 hours using the previous conditions. After 24, 48 and 72 hours of incubation. 300 µL of the broth were sampled into a 1.5 mL Eppendorf tube and centrifuged for 10 min at 13x10\(^3\) rpm at 4°C. The obtained supernatant was filtered via 0.2 µM polytetrafluoroethylene syringe filters, frozen in the liquid nitrogen and stored at -80°C before the analysis.

LC –MS analysis of the fermentation growth media

The LC-MS method was adapted from the quantitative platform for profiling of secondary fungal metabolites from culture broth which have been validated and described previously by our group.\(^1\)

Sample preparation

To 50 µL of medium, 8 µL of an internal standard mixture containing 855 nmol/mL ranitidine, 657 nmol/mL reserpine, and 1144 nmol/mL ampicillin was added. Subsequently, 230 µL of methanol was added for protein precipitation and vortexing for 10 minutes. The sample was centrifuged at 14,000 g for 10 minutes at 10°C, and 100 µL of the supernatant was transferred to an Eppendorf vial and evaporated for 30 minutes in a centrifugal evaporator (Labconco, Kansas City, MO). The dried sample was redissolved in 100 µL water containing 2 % acetonitrile, vortexed for 10 minutes and transferred to an autosampler vial.

Reversed-Phase LC-MS

Analysis was performed using an Agilent 1200 Capillary pump (Agilent, Santa Clara, CA) coupled to a LTQ-FT or a LTQ-Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA). A sample volume of 5 µL was injected onto a Waters Atlantis T3 column (2.1 x 100 mm, 3 µm) (Waters, Milford, MA). The elution was performed with a linear gradient starting with 98 % of solvent A (1 % acetonitrile and 0.1 % formic acid in water) and 2 % solvent B (1 % water and 0.1 % formic acid in acetonitrile) for 1.5 minutes at a flow rate of 300 µL/min. The first linear gradient reached 40 % B at 22 minutes, the second 100 % B at 25 minutes. The column was flushed for 10 minutes at 100% B followed by equilibration for 8 minutes at 100 % A. The mass spectrometer, operated in full scan (m/z 100-2000) in positive ion mode with following settings: 4kV source voltage, 14V capillary voltage, 65V tube lens, capillary temperature 275°C, sheath gas flow 50 and auxiliary gas flow 2.

Data Processing

Raw files were converted into mzXML files, using the msconvert tool of ProteoWizard.\(^2\) The mzXML files were processed using MZmine 2.\(^3\) The resulting peak list, where samples were grouped regarding their biological origin, was exported as comma-separated values (CSV) file and statistical tests were performed for determination of significant differences. Relevant
highlighted ions were compared to expected analogues and transferred to LCquan v2.6 (Thermo Scientific, San Jose, CA) for accurate integration.

When required for accurate mass measurement purposes, an internal recalibration was performed after acquisition using the program “Recalibrate Offline” from the package “FT Tools” (Thermo Scientific, San Jose, CA) using the mono protonated ion of diisooctyl phthalate (exact mass 391.28429, molecular formula C\textsubscript{24}H\textsubscript{38}O\textsubscript{4}) or the mono protonated ion of the precursor.

REFERENCES

<table>
<thead>
<tr>
<th>Analogue number</th>
<th>Retention time (min)</th>
<th>Accurate mass</th>
<th>Proposed molecular formula</th>
<th>Exact mass</th>
<th>Error (ppm)</th>
<th>Ratio analogue / precursor</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>12.9</td>
<td>339.0926</td>
<td>C17 H15 O2 N4 S</td>
<td>339.0910</td>
<td>4.33</td>
<td>0.28</td>
</tr>
<tr>
<td>22</td>
<td>13.2</td>
<td>333.1351</td>
<td>C19 H17 O2 N4</td>
<td>333.1346</td>
<td>0.77</td>
<td>0.45</td>
</tr>
<tr>
<td>23</td>
<td>18.1</td>
<td>392.2083</td>
<td>C22 H26 O2 N5</td>
<td>392.2081</td>
<td>0.48</td>
<td>0.30</td>
</tr>
<tr>
<td>24</td>
<td>27.0</td>
<td>402.2170</td>
<td>C25 H28 O2 N3</td>
<td>402.2176</td>
<td>-1.5</td>
<td>0.08</td>
</tr>
<tr>
<td>25</td>
<td>25.5</td>
<td>418.2118</td>
<td>C25 H28 O3 N3</td>
<td>418.2125</td>
<td>-1.6</td>
<td>0.05</td>
</tr>
<tr>
<td>26</td>
<td>23.6</td>
<td>312.1702</td>
<td>C18 H22 O2 N3</td>
<td>312.1707</td>
<td>-1.4</td>
<td>0.99</td>
</tr>
<tr>
<td>27</td>
<td>26.8</td>
<td>441.2278</td>
<td>C27 H29 O2 N4</td>
<td>441.2285</td>
<td>-1.6</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Supp. Table 1: DHTD and Roquefortine D analogues detected in this study by LC-MS. Chromatograms are detailed in sup. fig. 1 - 7.
Supp. Fig. 1: LC-MS analysis of culture broth of *P. chrysogenum ΔroqA* 72 hrs after addition of 7. (A) Full chromatogram (* = internal standard), (B) Extracted ion chromatogram of 7, (C) Extracted ion chromatogram of 21. The analysis was performed with the LTQ-Orbitrap and an internal recalibration was performed after acquisition using the mono protonated ion of 7.

Supp. Fig. 2: LC-MS analysis of culture broth of *P. chrysogenum ΔroqA* 72 hrs after addition of 8. (A) Full chromatogram (* = internal standard), (B) Extracted ion chromatogram of 8, (C) Extracted ion chromatogram of 22. The analysis was performed with the LTQ-Orbitrap.
Supp. Fig. 3: LC-MS analysis of culture broth of *P. chrysogenum ΔroqA* 72 hrs after addition of 2. (A) Full chromatogram (* = internal standard), (B) Extracted ion chromatogram of 2, (C) Extracted ion chromatogram of 23. The analysis was performed with the LTQ-Orbitrap and an internal recalibration was performed after acquisition using the mono protonated ion of 2.
Supp. Fig. 4: LC-MS analysis of culture broth of *P. chrysogenum ΔaroqA* 72 hrs after addition of 5. (A) Full chromatogram (* = internal standard), (B) Extracted ion chromatogram of 5, (C) Extracted ion chromatogram of 24. The analysis was performed with the LTQ-FT.

![Supp. Fig. 4](image.png)

Supp. Fig. 5: LC-MS analysis of culture broth of *P. chrysogenum ΔaroqA* 72 hrs after addition of 6. (A) Full chromatogram (* = internal standard), (B) Extracted ion chromatogram of 6, (C) Extracted ion chromatogram of 25. The analysis was performed with the LTQ-FT.

![Supp. Fig. 5](image.png)
Supp. Fig. 6: LC-MS analysis of culture broth of *P. chrysogenum ΔaroqA* 72 hrs after addition of 9. (A) Full chromatogram (* = internal standard), (B) Extracted ion chromatogram of 9, (C) Extracted ion chromatogram of 26. The analysis was performed with the LTQ-FT.
Supp. Fig. 7: LC-MS analysis of culture broth of *P. chrysogenum ΔroqA* 72 hrs after addition of 10. (A) Full chromatogram (* = internal standard), (B) Extracted ion chromatogram of 9, (C) Extracted ion chromatogram of 27. The analysis was performed with the LTQ-FT.