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Appendix A

Appendix: Theory

Abstract

In this Appendix, a derivation of the nonlocal resistance Rnl is given by considering a
one dimensional spin diffusion transport in a non-magnetic channel. At first, a relation
between the nonlocal voltage V and the spin chemical potential underneath the detector
µN

s (x = L) is derived. Then the Bloch equation is solved for the spin diffusion in the
non-magnetic channel to find µN

s (x = L). The derivations given here follow the analysis
from Refs.[1–4]. A special case of three-terminal geometry is also considered for deriving
the expression for the Hanle spin precession signal.

A.1 Nonlocal spin transport

A.1.1 Spin injection: Nonlocal

Injection Ferromagnet(at x=0): In a typical lateral non-local spin valve measurements,
F lies across the width of the N. Consider the geometry and directions depicted in
the schematics of a non-local spin injection and detection technique (Fig. 2.2). The
charge current IF, and the spin current IF

s associated with it being injected along −ẑ,
where jF = IF/(WNW F) and jF

s = IF
s /(W

NW F) with the width of the non-magnet
(WN), and the ferromagnet (W F).

For the injector F/N contact at x=0, we can do the similar analysis as in section 2.2
to obtain the spin accumulation in F1 µF1

s (z), the spin current density in F1 jF1
s , and

the spin current across the F/N contact jC1
s . We can also obtains the spin injection

efficiency or the current spin polarization of the injection contact Pin = js
j , given by:

PC1
in =

P F1
σ R

F1 + PC1
σ RC1

RF1 +RC1 +RN (A.1)

where, superscripts F1 (F2) and C1 (C2) represents the F and C at the injector,
x=0(detector, x=L). where RF is the effective resistance of F,

RF =
λF

WNW FσF

RF
s

(1− P F
σ

2
)
, (A.2)
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RC1 is the effective resistance of the injector F/N contact,

RC1 =
1

WNW FσC1

RC1
s

(1− PC1
σ

2
)
, (A.3)

RN is the effective resistance or spin resistance (RN
s ) of the N,

RN = RN
s =

λN

WNσN .
(A.4)

A.1.2 Spin detection: Nonlocal

In the non-local measurement geometry, the electrical spin is injected from F at x=0
(F1). The injected spin accumulation diffuses along either side of F1 along x̂ and
detected by another F at x=L (F2) by the Johnson-Silsbee spin-charge coupling[5, 6].
Since the injected charge current I flows along -x̂, there is no charge current flow at
the detector at x=+L. When a high resistance probe (voltmeter) is connected across the
detector F2 and far end of N, an electro motive force (emf) appears in the circuit which
is the difference in chemical potentials at the both ends. The emf can be detected as
(non-local)voltage drop (V ) across the F/N detector contact, given by

V = µN(x =∞, z = 0)− µFL(x = L, z =∞) (A.5)

Detection Ferromagnet(at x=L): For the F/N detector at x=L, I = 0. By assuming a
finite µFL

s (z =∞), one can integrate Eq. 2.6 for F2 at x=L,

µF2(z =∞)− µF2(z = 0) = P F2
σ µ

F2
s (z = 0) (A.6)

and for N at z=0,

µN(x =∞) = µN(x = L) (A.7)

Detection F/N contact(at x=L): The chemical potential difference for the F/N contact
at x=L is given by,

µN(z = 0)− µF2(z = 0) = −PC2
σ [µN

s (z = 0)− µF
s (z = 0)] (A.8)

Therefore, V from Eq. A.5 can be written as,

V = (−PC2
σ [µN

s (z = 0)− µF
s (z = 0)]− P F2

σ [µF2
s (z = 0)] (A.9)

The spin current in the detector ferromagnet F2 and the detector F/N contact C2
can be written (similar to that of for F1 Eq. 2.12 and C1 Eq. 2.14),

jF2
s (z) = −µ

F2
s (z)

RF2

jC2
s =

[µF2
s (0)− µN2

s (0)]

RC2

(A.10)
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Assuming the continuity of the spin current for the detector contact:

jF2
s = jC2

s (z = 0) (A.11)

From Eqs. A.10 and A.11, the spin current in the detector is obtained:

jC2
s (z = 0)(RF2 +RC2) = −µN

s (z = 0)

µF2
s =

RF2µN
s

RF2 +RC2

(A.12)

Using Eqs. A.12 and A.9, the voltage across the detector contact is obtained,

V = −P
F2
σ R

F2 + PC2
σ RC2

RF2 +RC2 µN
s (x = L) (A.13)

Here, the value of spin accumulation beneath the detector contact µN
s (x = L) can be

obtained by solving the diffusion equation for the N, as described in the next section.
The spin detection polarization (PC2

d ) of the F/N detector contact is defined as the
ratio of the voltage being measured to the spin accumulation underneath the detector
contact,

PC2
d =

V

µN
s (x = L)

=
P F2
σ R

F2 + PC2
σ RC2

RF2 +RC2 ≡ PC2
in
RF2 +RC2 +RN

RF2 +RC2 (A.14)

Note that spin detection polarization PC2
d cannot be defined in the form of a ratio of spin

current to the charge current, and its form is different from the current spin injection
polarization that is defined earlier for the injector contact PC1

in (Eq. A.1). Moreover, under
the condition of the large contact resistance for the detector, i.e., RC2 � (RF2, RN), the
spin detection polarization becomes equivalent to its current spin injection polariza-
tion and , PC2

d ' PC2
in . Therefore, for high resistance contacts, we can use the spin

injection and detection polarization anonymously. However, under the application of
external bias across a contact, its spin injection and detection polarization are different
(see Chapter 6).

When the non-equilibrium spin accumulation is finite at the far end of the N, i.e,
µN

s (x −→∞) 6= 0, above equation can also be written as[7],

V = −P
F2
σ R

F2 + PC2
σ RC2

RF2 +RC2 +RN µN
s (x =∞) ≡ −PC2

d µN
s (x =∞) (A.15)

A.1.3 Spin diffusion: Nonlocal

Non-magnetic diffusion channel: The transport of spins in N can be described by
considering two spin current channels for up-spin and down-spin[8], using the spin
diffusion equation in the steady state 2.10.
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To obtain µN
s (x = L) in Eq. A.13, consider a general case where the spins also

precess in the presence of external magnetic field applied normal to the spin injection
in N, i.e, B = Bz ẑ. In case of spin precession during the spin transport in N, one needs
to solve the Bloch equation for µN

s (x = L):

dµN
s

dt
= Ds 52 µN

s −
µN

s

τ
+ ωL × µN

s (A.16)

where µs is the spin accumulation in 3D, Ds is the spin diffusion constant, τs is the
spin relaxation time, and ωL = gµBBz

h̄ is the Larmor precession frequency caused
by the magnetic field Bz , Bohr magneton µB , and the gyromagnetic factor g(=2 for
electrons). The spin current in the non-local channel of N where the charge current is
zero, is given by(using Eq. 2.13),

IN
s = −WNσN 5 µN

s = −λN5µN
s

RN (A.17)

where RN(= RN
s ) is the effective resistance or spin resistance of the N, given by

Eq. A.4.

The above equations describe the diffusion of spin accumulation µN
s = µN

sxx̂ +

µN
syŷ + µN

szẑ in 3D. However, in the case of very thin N materials like graphene, spin
diffusion in the direction normal to the surface can be ignored, limiting the diffusion
to 2D. When the spin injection contacts laid across the width of the 2D N and the spin
injection is assumed to be uniform across the F/N interface, the spin diffusion can be
further reduced to 1D.

Consider the 1D spin diffusion in the N, say, along x-direction, then the above

equation can be written in the steady state (dµ
N
s
dt =0) as,

D
d2

dx2

(
µN

sx

µN
sy

)
− 1

τs

(
µN

sx

µN
sy

)
+ ωL

(
−µN

sy

µN
sx

)
= 0 (A.18a)

D
d2µN

sz

dx2
− µN

sz

τs
= 0 (A.18b)

Then the solution to the above equations under the boundary conditions µN
sx,sy,sz(x −→
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±∞) −→ 0, is given by,

µN
sz =


µN-

sz = A+e+k1x, x ≤ 0

µN0
sz = A+

0 e
+k1x +A−0 e

−k1x, 0 < x < L

µN+
sz = A−e−k1x, x ≥ 0

(A.19)

µN
sx =


µN-

sx = B+e+k2x + C+e+k̃2x, x ≤ 0

µN0
sx = B+

0 e
+k2x +B−0 e

−k2x + C+
0 e

+k̃2x + C−0 e
−k̃2x, 0 < x < L

µN+
sx = B−e+k2x + C−e+k̃2x, x ≥ 0

(A.20)

µN
sy =


µN-

sy = −iB+e+k2x + iC+e+k̃2x, x ≤ 0

µN0
sy = −iB+

0 e
+k2x − iB−0 e−k2x + iC+

0 e
+k̃2x + iC−0 e

−k̃2x, 0 < x < L

µN+
sy = −iB−e+k2x + iC−e+k̃2x, x ≥ 0

(A.21)

where k1 = 1
λ , k2 = k1

1
1+iωτ , and k̃2 is the complex conjugate of k2. The constants in

the above equations can be determined by imposing the boundary conditions. The
equations with boundary condition on continuity of µN

s at x=0 and x=L can be written
as,

at x=0


µN-

sz (x = 0) = µN0
sz (x = 0)

µN-
sx (x = 0) = µN0

sx (x = 0)

µN-
sy (x = 0) = µN0

sy (x = 0)

(A.22)

at x=L


µN-

sz (x = L) = µN0
sz (x = L)

µN-
sx (x = L) = µN0

sx (x = L)

µN-
sy (x = L) = µN0

sy (x = L)

(A.23)

Another boundary condition on conservation of spin current at each contact gives,

At x=0 : IC
s (x = 0)(−ẑ) = IN-

sx (x = 0)(−x̂) + IN0
sx (x = 0)(x̂) (A.24)

=⇒


−5 µN-

sz (x = 0) +5µN0
sz (x = 0)− 1

r0
µN

sz(x = 0) = 0

−5 µN-
sx (x = 0) +5µN0

sx (x = 0)− 1
r0
µN

sx(x = 0) = ∆

−5 µN-
sy (x = 0) +5µN0

sy (x = 0)− 1
r0
µN

sy(x = 0) = 0

(A.25)

And, at x=L : IC
s (x = L)(−ẑ) = IN0

sx (x = L)(−x̂) + IN+
sx (x = L)(x̂) (A.26)

=⇒


−5 µN0

sz (x = L) +5µN+
sz (x = L)− 1

rL
µN

sz(x = L) = 0

−5 µN0
sx (x = L) +5µN+

sx (x = L)− 1
rL
µN

sx(x = L) = 0

−5 µN0
sy (x = L) +5µN+

sy (x = L)− 1
rL
µN

sy(x = L) = 0

(A.27)



A

154 A. Appendix: Theory

where the r-parameter[2], r = WNσN(RF + FC), defined for the injector (r1) and the
detector(r2) F/N contacts, and

r = WNσN(RF +RC)

∆ =
I

WNσN

P F1
σ R

F1 + PC1
σ RC1

RF1 +RC1 ≡ I

WNσNP
C1
in = IPC1

d
R1

r1

PC1
d =

P F1
σ R

F1 + PC1
σ RC1

RF1 +RC1

(A.28)

where PC1
d is the spin detection polarization of the injector contact C1 at x=0, similar to

spin detection polarization of the detector contact C2 PC2
d in Eq. A.14 in the four-terminal

nonlocal measurement geometry[Fig. 2.2].
The above system of equations can be solved, for example, using MATLAB

program, to obtain the 12 constants. Therefore the value of interest, µN
sy(x = L) =

−iB−e+k2x + iC−e+k̃2x, is determined as

µN
sy(x = L) = −2<

{
∆r1r2k2e

−k2L

(1 + 2r1k2)(1 + 2r2k2)− e−2k2L

}
(A.29)

where < denotes the real part.
Using Eq. A.28, the V from Eq. A.13 can be written as,

V = −PC2
d
R2

r2

λN

RNµ
N
s (x = L) (A.30)

Combining Eqs. A.29 and A.30, the non-local resistance Rnl = V
I in the presence

of the external magnetic field and thus the spin precession is given by,

Rnl = ±1

2
PC1

in P
C2
d RN<

{
λNk2

4e−k2L

(1 + 2r1k2)(1 + 2r2k2)− e−2k2L

}[
R1R2

RN2

]
(A.31)

A.2 Three-terminal Hanle measurements

For a long time, spin polarization in semiconductors (SC) was studied either by
optical injection and optical detection[9, 10], or by electrical injection and optical
detection[7, 11, 12] techniques. Both methods have been widely used for GaAs due
to its direct bandgap. However, due to indirect bandgap in Si, the efficiency of the
creation and detection of spin polarization in Si is limited[13].

On the other hand, all-electric spin injection and detection in the non-local lateral
geometry for the semiconductors was challenging due to the conductivity mismatch
problem. Therefore, a three-terminal (3T) Hanle measurement technique was devel-
oped to demonstrate the electrical injection and detection of spin accumulation in a
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Nonmagnet (N)
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x
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x
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Figure A.1: Three-terminal Hanle spin precession measurement geometry. Only one F/N
contact is used for both the electrical spin injection and detection.

semiconductor, first at low temperature by Lou et al.[14](n-GaAs, below 60 K), and
later at room temperature by Dash et al.[15](n-Si and p-Si).

In a three-terminal Hanle geometry (Fig. A.1), a single magnetic tunnel contact is
used for electrical injection and detection of the non-equilibrium spin accumulation
underneath the contact. The measurement geometry is equivalant to the 4T non-local
Hanle measurement geometry with L=0. The measured signal includes the charge
contribution part which is due to the contact resistance (RC) and the spin contribution
part which is due to the spin accumulation under the contact.

The spin parameters of N can be characterized from the three-terminal Hanle mea-
surements where, similar to a four-terminal nonlocal Hanle measurement, a magnetic
field is applied perpendicular to the plane of the spin injection. The field depolarizes
the injected spin accumulation due to the spin precession, and the resulting signal
due to the Hanle effect for the tunneling contact(PC

in ∼ PC
d ≡ PC) can be written as:

R3T (B) = RC +
1

2
PC2

RN<
{

1√
1 + jωτ

}
(A.32)
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