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Chapter 3. Exploring Knowledge Recombination in 

R&D Alliances 
Why Knowledge Pool Applicability Matters 

 

 

Abstract: Knowledge applicability is a core driver of knowledge recombination 

activities. Extant research on the knowledge recombination implications of R&D 

alliances, however, tends to ignore the issue of knowledge applicability. Instead, it 

focuses on the size and diversity of the partner’s knowledge pool. In this study, we 

address this gap, shifting attention to knowledge pool applicability – i.e. the extent 

to which components in the knowledge pool can be used in different application 

domains – and examining its implications for knowledge recombination activities 

in R&D alliances. We expect that both the partner’s and the focal firm’s knowledge 

pool applicability significantly impact firm’s partner-specific knowledge 

recombination. Analysing 461 R&D alliance dyads of 88 firms in the fuel cell 

industry, our findings indicate that partner’s knowledge pool applicability has an 

inverted U-shaped relationship with firms’ partner-specific knowledge 

recombination. Surprisingly, we find that the knowledge pool applicability of the 

focal firm has a U-shaped relationship with its partner-specific recombination. 

Bringing forward the concept of knowledge pool applicability, this study 

contributes to a richer theoretical understanding of the knowledge recombination 

implications of R&D alliances. 

 

 

 

 

 

 

 

This chapter was written together with Dries Faems and Pedro de Faria. Earlier versions of this chapter 
have been presented at the Annual Meeting of the Academy of Management in Atlanta (2017), Strategic 
Management Society Annual International Conference in Houston (2017), and at research seminars at 
the University of Groningen (2017), École Polytechnique Fédérale De Lausanne (2016), and Stockholm 
School of Economics (2017). A manuscript based on this chapter is currently under review for 
publication. 



Chapter 3 
 

50 

3.1. Introduction 

&D alliances are valuable mechanisms for firms to expand their knowledge 

pool, generating new opportunities for knowledge recombination across 

different knowledge components (e.g. Lahiri & Narayanan, 2013; Schilling & 

Phelps, 2007; Srivastava & Gnyawali, 2011). At the same time, not being able to 

effectively use partners’ knowledge triggers the risk of ending up at the losing end 

of learning races, threatening the competitive position of firms (Hamel, 1991; 

Khanna, Gulati, & Nohria, 1998). Scholars have therefore started exploring the 

ability of firms to recombine knowledge from alliance partners. Existing research 

mainly focuses on the size and diversity of the partner’s component knowledge pool 

as key drivers of knowledge recombination activities (e.g. Lahiri & Narayanan, 

2013; Phelps, 2010; Schilling & Phelps, 2007). In this study, we complement this 

prior research by focusing on knowledge pool applicability as a crucial aspect to 

explain variance in knowledge recombination from alliance partners. 

Knowledge recombination literature argues that components vary in terms 

of where they can be applied (Hargadon & Sutton, 1997; Wang et al., 2014; 

Yayavaram & Ahuja, 2008). Some components are highly malleable and can be 

used in different application domains, whereas other components may be 

substantially constrained in their range of applications (Dibiaggio et al., 2014; 

Hargadon & Sutton, 1997). For instance, in the fuel cell industry, which is the 

empirical setting of this study, some inventions can be used in multiple application 

domains, such as fuel cell stacks and fuel reformers, whereas the applicability of 

other inventions may be restricted to one single domain. Based on these insights, 

we argue that, next to size (i.e. number of components) and diversity (i.e. diversity 

of technology domains in which components are situated), knowledge pools can 

also be characterized in terms of their applicability or the extent to which single 

components within them have different application domains. 

The notion that components vary in their applicability is largely neglected in 

existing research on alliances and their knowledge recombination implications. 

However, we theorize that knowledge pool applicability substantially influences the 

focal firm’s partner-specific knowledge recombination or the extent to which the 

focal firm relies on knowledge from a particular partner when generating 

R 
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inventions. In particular, we hypothesize (i) an inverted U-shaped relationship 

between the partner’s knowledge pool applicability and the focal firm’s partner-

specific recombination and (ii) a positive relationship between the focal firm’s 

knowledge pool applicability and the focal firm’s partner-specific recombination. 

To empirically test our hypotheses, we collected unique data on 461 R&D 

alliance dyads of 88 focal firms in the fuel cell technological field and combined 

this with data on their worldwide fuel cell patenting activities. Our analyses show 

that, controlling for other characteristics of the partner’s knowledge pool, partner’s 

knowledge pool applicability has an inverted U-shaped relationship with firms’ 

recombination of partner’s components. Moreover, instead of the hypothesized 

linear positive relationship, we find a U-shaped relationship between the focal 

firm’s internal knowledge pool applicability and partner-specific knowledge 

recombination. 

 These findings contribute to a richer theoretical understanding of the 

knowledge recombination implications of R&D alliances in two fundamental ways. 

First, we show the importance of applicability as a core characteristic of knowledge 

pools that influences knowledge recombination activities in the setting of R&D 

alliances. Existing studies have theoretically framed the knowledge pool of alliance 

partners on an aggregate level, arguing that components create value relative to 

other components present in the knowledge pool. We argue, however, that a closer 

examination of the components inside the knowledge pool may reveal that a lot of 

components do not actually have the assumed broad scope of applicability 

normally associated with large and diverse knowledge pools (e.g. Lahiri & 

Narayanan, 2013). Second, we develop novel theoretical arguments regarding 

firms’ idiosyncratic abilities to engage in knowledge recombination in R&D 

alliances. Prior research tends to conceptually intertwine the focal firm’s ability to 

identify and absorb component knowledge with its ability to actually recombine 

this component knowledge (e.g. Gilsing, Nooteboom, Vanhaverbeke, Duysters, & 

van den Oord, 2008; Rosenkopf & Almeida, 2003; Vasudeva, Zaheer, & 

Hernandez, 2013). We underline the fact that identification and transfer of 

component knowledge are necessary but not sufficient conditions for knowledge 

recombination to occur. Instead, firms need to be able to envision novel 

applications for components, in order to use them in knowledge recombination. In 
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sum, this study underlines the importance of taking an in-depth knowledge 

recombination perspective to studying the performance implications of R&D 

alliances. 

3.2. Theory 

3.2.1 Knowledge recombination in the alliance context: state of the 

art 

Knowledge recombination plays a central role in explaining performance 

differences across R&D alliances (e.g. Phelps, 2010; Schilling & Phelps, 2007; 

Wuyts & Dutta, 2014). In order to stimulate the creation of new inventions through 

knowledge recombination activities, firms have to enrich the contents of their own 

knowledge pool with novel components accessed from alliance partners (Fleming, 

2001; Rosenkopf & Almeida, 2003; Savino et al., 2017). Alliance scholars have 

prominently argued that, when the partners’ knowledge pool contains more 

components, the focal firm is able to realize a larger set of new combinations (e.g. 

Lahiri & Narayanan, 2013; Schilling & Phelps, 2007). 

Scanning recent alliance literature, however, we observe a clear shift from 

focusing on the size of the partner’s knowledge pool toward examining the diversity 

of the partner’s knowledge pool (e.g. Phelps, 2010; Srivastava & Gnyawali, 2011; 

Wuyts & Dutta, 2014). Alliance scholars have argued that components accessed 

from alliance partners differ in terms of their usefulness and ease of retrievability 

(e.g. Gomes-Casseres, Jaffe, & Hagedoorn, 2006; Nooteboom, Vanhaverbeke, 

Duysters, Gilsing, & Van den Oord, 2007; Vasudeva & Anand, 2011). Accessing 

components from diverse technological domains allows generating more novel 

combinations (Phelps, 2010; Subramanian & Soh, 2017), that tend to be more 

valuable (Srivastava & Gnyawali, 2011; Rosenkopf & Nerkar, 2001; Wuyts & Dutta, 

2014). At the same time, components from different technological domains tend to 

be more difficult to understand and apply in knowledge recombination (Phene et 

al., 2006; Nooteboom et al., 2007; Vasudeva & Anand, 2011). Hence, access to a 

diverse knowledge pool from a partner may involve substantial benefits and 

challenges, influencing the focal firm’s ability to generate new technologies 
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(Nooteboom et al., 2007; Phelps, 2010; Srivastava & Gnyawali, 2011; Subramanian 

& Soh, 2017; Wuyts & Dutta, 2014). 

Thus, existing alliance literature has mostly focused on the size and diversity 

of partners’ knowledge pool, arguing that they might influence the performance 

implications of R&D alliances. However, examining recent knowledge 

recombination literature, we observe that scholars have argued that more factors 

influence knowledge recombination than merely the diversity and number of 

available components (e.g. Dibiaggio et al., 2014; Wang et al., 2014; Yayavaram & 

Ahuja, 2008). In particular, what emerges from this literature is that components 

also vary in terms of where and how they can be applied in knowledge 

recombination. On the one hand, it has been argued that some components can be 

used in knowledge recombination across different settings, such as different 

industries (Hargadon & Sutton, 1997), countries (Petruzzelli & Savino, 2014) or 

technological generations (Furr & Snow, 2014), allowing firms to economize 

substantially on cognitive resources (Baker & Nelson, 2005; Wang et al., 2014). 

Moreover, knowledge recombination scholars found that components that can 

easily be applied in different combinations also tend to enhance experimentation 

by the focal firm, since it becomes easier to mix-and-match components, enhancing 

exploratory innovation (Dibiaggio et al., 2014; Guan & Liu, 2016; Wang et al., 

2014). On the other hand, however, when components can too easily be mixed-and-

matched, it becomes costly to determine the optimal way in which to apply the 

components (Yayavaram & Ahuja, 2008). Jointly, these findings all point into the 

same direction: next to knowledge pool diversity and size, components in the 

knowledge pool may also vary in terms of where and how they may be applied in 

knowledge recombination. 

To tackle this issue in the R&D alliance context, we introduce the concept of 

knowledge pool applicability, which denotes the extent to which components in the 

knowledge pool can be used in different application domains. In this way, we 

attempt to capture the extent to which components in the knowledge pool can 

flexibly be used in different recombination efforts. To make the concept of 

knowledge pool applicability more concrete, consider the example in Figure 3.1. In 

this figure, we show two partners from the fuel cell industry with the same 

knowledge pool size (i.e. four components, as denoted by the smaller circles) and 
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diversity (i.e. same distribution of technological domains, where domain A may 

refer to hydrogen and domain D may refer to ceramic compounds). Moreover, we 

indicate that each component has one or more potential application domains 

(corresponding to the four main subsystems of a fuel cell system, in which new fuel 

cell inventions may be applied). Hence, although partners 1 and 2 both have a 

component pertaining to hydrogen (i.e. components 1 and 5), partner 1 is able to 

apply this component in two domains, whereas partner 2 is only able to do so in 

one domain. Partner 1 may, for example, have component knowledge of the 

composition of hydrogen that could be integrated into the design of the single cell, 

or to improve the performance of the fuel reformer. Thus, even when the 

knowledge pool size and diversity of two alternative alliance partners is the same, 

we show that their knowledge pool applicability may still differ substantially, 

potentially impacting recombination opportunities available to the focal firm. 

 
Figure 3.1. Knowledge pool size, diversity, applicability 
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To summarize, knowledge recombination literature has shown that the extent of 

applicability of components is an important determinant of knowledge 

recombination activities. However, this has been largely neglected in alliance 

research, where the focus has instead been on the partners’ knowledge pool size 

and diversity. In this study, we address this research gap by focusing on the 

knowledge pool applicability of the partner and focal firm, arguing that this 
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dimension of the knowledge pool may substantially affect knowledge 

recombination activities in R&D alliances. In the following section, we developed 

two hypotheses connecting knowledge pool applicability to the focal firm’s partner-

specific recombination. 

3.3. Hypotheses development 

3.3.1. Partner’s knowledge pool applicability 

In the R&D alliance setting, we expect that a partner’s knowledge pool applicability 

will positively impact the focal firm’s partner-specific recombination. Specifically, 

partners with higher knowledge pool applicability are able to generate a larger 

number of combinations on the basis of a given set of components. Consequently, 

when collaborating with a partner with high knowledge pool applicability, the 

components that the focal firm learns to use from this partner tend to be more 

widely-applicable (Boh et al., 2014; Wang et al., 2014). Instead of being 

constrained to one single application, the focal firm gains flexibility in terms of 

where and how to apply the accessed components, greatly facilitating the 

generation of new combinations on the basis of a partner’s components (Hargadon 

& Sutton, 1997; Wang et al., 2014). The obtained flexibility can optimize the 

allocation of resources to the R&D alliances, ensuring that attempted efforts to 

learn how to recombine a partner’s components bear fruit (Wang et al., 2014). For 

example, in Figure 3.1, even if the focal firm is unable to learn how to apply partner 

1’s component 4 in the single cell domain, it may still be able to recombine this 

component in the stack domain. Such flexibility is, however, generally not present 

in partner 2’s knowledge pool, severely restricting the focal firm’s pursuit of 

recombination opportunities. 

Beyond a certain point, we expect, however, that the benefits of a partner’s 

knowledge pool applicability will taper off and diminish in magnitude. A key tenet 

in knowledge recombination literature is that, although in theory all components 

in the environment could be considered for recombination, firms’ resource and 

cognitive constraints severely narrow down the number of combinations that can 

eventually be realized based on these components (Carnabuci & Bruggeman, 2009; 

Fleming & Sorenson, 2001; Olsson & Frey, 2002). As a consequence, the number 
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of potential recombination opportunities generally outweighs the number of 

realized recombination opportunities (Strumsky & Lobo, 2015; Zahra & George, 

2002). In line with this reasoning, alliance scholars found evidence to suggest that 

firms often face constraints in terms of fully realizing partner’s recombination 

opportunities (Bos, Faems, & Noseleit, 2017; Cohen & Levinthal, 1990; Deeds & 

Hill, 1996; Vasudeva & Anand, 2011). Thus, we argue that, even if the partner’s 

components can be applied in many different ways, the focal firm will only be able 

to identify and realize a fraction of the recombination opportunities associated with 

these components. In other words, the benefits accruing from higher partner 

knowledge pool applicability will become less outspoken beyond a certain 

threshold value. 

In addition to diminishing marginal benefits of partner’s knowledge pool 

applicability, we also expect certain challenges to emerge alongside with partner’s 

knowledge pool applicability. The various applications for which a component can 

be used tend to be highly similar (Hargadon & Sutton, 1997), because they are 

strongly based on the same fundamental technological principles. For this reason, 

when the partner’s components are very widely-applicable, firms may find it highly 

challenging to distinguish one component’s application from another, rendering 

learning processes less effective and more cumbersome. Effectively, when partner’s 

knowledge pool applicability is high, the focal firm will spend a lot of time trying to 

optimally allocate its attention and learning efforts in the partner’s knowledge pool 

(Ghosh, Martin, Pennings, & Wezel, 2014; Katila & Ahuja, 2002; Yayavaram & 

Ahuja, 2008), as it becomes more difficult to identify which components’ 

applications are most worthwhile to pursue. Thus, due to increased learning 

complexities (Fleming & Sorenson, 2001; Leiponen & Helfat, 2010), the focal firm’s 

attention and resources may be detracted from actual knowledge recombination 

efforts towards determining the optimal way to recombine a partner’s components, 

reducing the focal firm’s partner-specific recombination. 

Figure 3.2 summarizes our arguments. In this figure, we show that the 

benefits arising from a partner’s knowledge pool applicability eventually level off, 

due to limited resource availability that constrain the full realization of a partner’ 

potential recombination opportunities. At the same time, important challenges 

associated with identifying valuable recombination opportunities may emerge 
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beyond a certain value of a partner’s knowledge pool applicability. Hence, beyond 

a certain point, we expect the disadvantages of partner’s knowledge pool 

applicability to rise faster than the benefits, shaping an inverted U-shaped 

relationship between partner’s knowledge pool applicability and the focal firm’s 

partner-specific recombination (Haans et al., 2016). We hypothesize: 

 

H1: The partner’s knowledge pool applicability has an inverted U-shaped 

relationship with the focal firm’s partner-specific recombination 

 
Figure 3.2. Theoretical mechanisms underlying Hypothesis 1 
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3.3.2. Focal firm’s knowledge pool applicability 

In R&D alliances, firms often face difficulties accessing and recombining a 

partner’s components (Faems, Janssens, & Van Looy, 2007; Gomes-Casseres et al., 

2006; Hamel, 1991). Many partners’ components remain untapped in knowledge 

recombination, because firms perceive that the components’ recombinant 

potential has already been exhausted or they are simply unable to use the 

components in any meaningful way (Ahuja & Katila, 2004; Fleming, 2001). Faced 

with such constraints, most firms are unable to fully utilize the component 

knowledge that may be accessed from an alliance partner, increasing the gap 

between the potential and realized recombination opportunities arising from the 

R&D alliance (Wuyts & Dutta, 2014; Zahra & George, 2002). We expect, however, 

that focal firms with higher knowledge pool applicability are able to bring the 

realization of combinatorial opportunities closer to its potential level through two 
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principal mechanisms: (i) flexibility and (ii) effectiveness of knowledge 

recombination. 

First, following the notion that “capabilities are built through experience” 

(Eggers, 2012: 318), we argue that by building widely-applicable component 

knowledge, firms develop a greater comprehension of how component knowledge, 

in general, can be flexibly applied in different ways. This provides them with the 

ability to better leverage available component knowledge (Lewin, Massini, & 

Peeters, 2011; Wuyts & Dutta, 2014). Hence, these firms experience more flexibility 

in terms of which of the partner’s components they may consider for knowledge 

recombination, being able to envision and realize more applications for a given 

component. Indeed, as argued by Henderson (1995), technological limits of 

components tend to be mostly present in the mind of inventors, rather than being 

grounded in actual technological limits. In other words, whereas one firm may 

quickly run into exhaustion of recombinant potential of a component, another firm 

may be able to elevate the recombinant potential of a component to a higher level. 

This means that, when provided with access to a component set of, for example, 

five components, a focal firm with higher knowledge pool applicability may be able 

to envision four different uses for these components, whereas a focal firm with low 

knowledge pool applicability may only be able to envision two of such uses. 

Second, whereas firms with low knowledge pool applicability may pursue 

costly trial-and-error processes trying to generate new combinations on the basis 

of a particular set of components, firms with high knowledge pool applicability may 

have a better understanding of where to locate their attention. This is because the 

latter type of firm, having prior experience developing component knowledge with 

multiple applications, has a better understanding of where the limits of a 

component’s recombinant potential lie, avoiding ultimately fruitless 

recombination efforts in the partner’s knowledge pool (Nemet & Johnson, 2012). 

Hence, leveraging these unique capabilities, firms with higher knowledge pool 

applicability will be able to deploy resources towards the utilization of a partner’s 

components more effectively, making fuller use of a partner’s component 

knowledge pool, whilst using fewer resources in the process.  

We also expect the benefits of higher internal knowledge pool applicability 

to consistently outweigh the costs of applying these capabilities in R&D alliances. 
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Capabilities emerging concomitantly with building internal knowledge pool 

applicability have already been assimilated and embedded into the firm’s routines 

(Cohen & Levinthal, 1990; Lewin et al., 2011; Wuyts & Dutta, 2014). Therefore, the 

various applications of these capabilities are well-understood, with a deep 

understanding of how to align available recombination opportunities with 

capabilities to realize these opportunities. Hence, the application of these 

recombination capabilities is more certain and less prone to mistakes (Katila & 

Ahuja, 2002). This makes it far more likely that sufficient resources are available 

to make full use of these recombination capabilities in order to better leverage a 

partner’s component knowledge pool. Hence, we expect a strictly positive 

relationship between the firm’s internal knowledge pool applicability and its 

partner component recombination because (i) higher internal knowledge pool 

applicability allows to more flexibly and effectively leverage the partner’s 

knowledge pool and (ii) costs associated with applying capabilities emerging from 

internal knowledge pool applicability are negligible:  

 
H2: The focal firm’s knowledge pool applicability has a positive relationship with 

the focal firm’s partner-specific recombination. 

3.4. Methodology 

3.4.1. Sample and data collection 

Empirical context. We tested our hypotheses using data from the fuel cell 

technological field. Fuel cells are electrochemical devices that produce electricity 

through a chemical reaction between hydrogen and oxygen. We focused on the fuel 

cell R&D alliances of 88 firms in the period 1993-2007. These 88 firms were 

retrieved after compiling a list of the top 200 patent applicants in the fuel cell 

technological field and removing (i) firms with incomplete ownership data and (ii) 

firms that did not form any fuel cell R&D alliance during the time period of this 

study1.  

                                                             
1 We were able to collect complete ownership data for 139 parent firms. We aggregated all patents of 
subsidiaries in which these firms had a controlling interest to the parent-firm level. To collect ownership 
data of these parent firms, we used Bureau van Dijk’s ORBIS database. Moreover, we complemented 
this with data on executed mergers and acquisitions, retrieved from the SDC Platinum Mergers and 
Acquisitions database. We also corrected for potential name changes and aliases of firms, using data 
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The fuel cell technological field is highly comparable to other technological 

fields in which R&D alliances have been studied, such as pharmaceuticals (e.g. Bos 

et al., 2017; Wuyts & Dutta, 2014), semiconductors (e.g. Srivastava & Gnyawali, 

2011), and telecommunications (e.g. Phelps, 2010). First, patenting propensities 

are elevated in the fuel cell technological field and rank among the highest in clean 

energy technologies (Albino et al., 2014). Second, knowledge resources and 

capabilities are highly heterogeneously distributed in the fuel cell technological 

field (Hellman & van den Hoed, 2007; Vasudeva & Anand, 2011), creating a greater 

need to form R&D alliances (Harrison, Hitt, Hoskisson, & Ireland, 2001). Third, 

the environment in which fuel cell firms operate is highly uncertain and dynamic 

(Hellman & van den Hoed, 2007; Verbong, Geels, & Raven, 2008), increasing 

firms’ tendencies to form strategic alliances (Schilling, 2015). 

Patent data. To obtain a proxy for the knowledge recombination activities 

of firms, we collected data on worldwide patenting activities of the firms in our 

sample from the PATSTAT database (Autumn 2013 version). Consistent with prior 

studies, patents represent the knowledge components in a firm’s knowledge pool 

(Ahuja & Katila, 2001). To retrieve fuel cell patents, we collected all patents filed in 

IPC class H01M8 which corresponds to fuel cell technology (Tanner, 2014). We 

aggregated these patent applications to the patent family level (following the 

European Patent Office’s DOCDB definition). A DOCDB patent family captures all 

patent applications related to the same invention but filed at different patent offices 

(Albrecht et al., 2010). Relying on patent families helps to overcome the home-

country bias of single patent office applications (de Rassenfosse et al., 2013). This 

bias arises because, for example, North-American firms have a much higher 

likelihood to file a patent at the USPTO rather than at, for example, the EPO or 

JPO. As a result, solely relying on USPTO patent applications considerably 

underestimates the knowledge recombination activities of firms outside North-

America (de Rassenfosse et al., 2013). This bias is especially problematic in the fuel 

cell technological field, as many prominent players in this field are Asian (e.g. 

Toyota, Honda, Nissan, Hitachi, Panasonic, Toshiba, Samsung Electronics, Asahi 

                                                             
from the ORBIS database. Subsequently, of these 139 firms, we retained 88 firms which had engaged in 
at least one R&D fuel cell alliance between 1993 and 2007. Harmonized patent applicant names were 
obtained through EEE-PPAT (ECOOM-EUROSTAT-EPO PATSTAT Person Augmented Table) from 
ECOOM.  
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Glass) or European (e.g. Daimler, Siemens, BASF, Shell, Renault) firms (Vasudeva, 

2009). An additional important advantage of using patent families is that it 

captures a broader and more complete set of backward citations (Albrecht et al., 

2010).  

Alliance data. To collect the alliance data, we identified R&D alliances in 

the LexisNexis database. We used this method because there is considerable 

evidence that other databases, such as Thompson Reuters’ SDC Platinum Joint 

Venture and Strategic Alliances database (Schilling, 2009), severely underestimate 

the number of alliances formed (Lavie, 2007; Lavie & Rosenkopf, 2006)2. The 

LexisNexis database compiles press releases from different sources, including 

newspapers, trade journals, wire transcripts, etc. We employed a broad set of 

keywords to detect fuel cell R&D alliances3,4, manually screening over 50,000 press 

releases. To give an example, the following press release extract identifies an R&D 

alliance between Nuvera Fuel Cells and TotalFinaElf:  

 
Nuvera Fuel Cells, Inc., a leading global designer and developer 

of fuel cell and fuel processing technology today announced it has 

entered into an agreement with TotalFinaElf, one of the world's 

leading oil companies, to study the effects of gasoline on fuel 

processors and fuel cell stacks designed for the automotive 

industry (PR Newswire, 2003) 

 
We searched for all fuel cell R&D alliances formed before 2008.The first fuel cell 

R&D alliance that we detected, between Westinghouse Electric and Energy 

Research Corporation, started in 19785. We included all fuel cell R&D alliances in 

which at least one firm was involved. Moreover, we also included fuel cell R&D 

alliances that were part of wider government-funded projects, such as the United 

                                                             
2 To verify this, we conducted a broad search in the SDC database for all alliances in which the deal text 
mentioned the keyword “fuel cell” in the period 1978-2007. This search produced a total of 126 alliances, 
comprising not only R&D alliances, but also other types of alliances (e.g. marketing, supply). In contrast, 
during the same time period, we detected 849 R&D alliances in the fuel cell industry using the 
LexisNexis database. Similarly, Lavie and Rosenkopf (2006) reported that only 25% of alliances in their 
dataset were detected in the SDC database. 
3 We did not specifically search for non-R&D alliances because (i) the focus of our study is on 
technological activities and (ii) the language used to describe non-R&D alliances is highly idiosyncratic 
(Schilling, 2009), especially for supply and distribution alliances. Hence, our sample only contains 
alliances with an R&D element (Hagedoorn, 2002).  
4 The set of employed keywords is available from the authors on request. 
5Although we focus on the 1993-2007 period, we also searched for R&D alliance data for the 1978-1992 
period, in order to capture alliances which had started before 1993, but were still ongoing in 1993. 
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States Department of Energy’s (DOE) Hydrogen and Fuel Cells Program. Finally, 

multi-partner R&D alliances were transformed into dyads, following earlier studies 

(e.g. Phelps, 2010). 

Whereas numerous studies assume a fixed lifespan for alliances, ranging 

from one to five years (e.g. Schilling & Phelps, 2007; Srivastava & Gnyawali, 2011; 

Vasudeva & Anand, 2011), often within the same industry, we tracked alliances over 

time to approximate their starting and termination dates (Ahuja, 2000; Hashai, 

Kafouros, & Buckley, 2018; Lavie, 2007; Phelps, 2010). This is an important 

methodological step, given that there exists substantial heterogeneity in the 

lifespan of alliances (Deeds & Rothermael, 2003). Moreover, as emphasized by 

Wassmer (2010), alliance research should attempt to only focus on ongoing 

partnerships since, otherwise, statistical inferences are drawn about partnerships 

that do not actually exist anymore. When termination of the alliance was not 

formally announced, we followed Ahuja (2000) and utilized either (i) the expected 

tenure of the alliance or (ii) tracked the ongoing status of the alliance through 

subsequent press releases. In case a termination date could not be approximated, 

we followed Ahuja (2000) and assumed that the alliance was terminated in the year 

subsequent to the starting year. 

3.4.2. Variables 

Dependent variable. To measure partner-specific recombination, we 

followed earlier knowledge recombination (Katila, 2002; Phene et al., 2006; 

Rosenkopf & Nerkar, 2001) and alliance (Frankort, 2016; Gomes-Casseres et al., 

2006; Mowery, Oxley, & Silverman, 1996; Rosenkopf & Almeida, 2003; Schildt, 

Keil, & Maula, 2012; Subramanian, Bo, & Kah-Hin, 2018; Vasudeva & Anand, 2011) 

literature and used backward citations of patents. Backward citations reflect the 

prior technological knowledge upon which an invention builds and can thus be 

used to denote the components that are recombined to generate a new invention 

(Katila, 2002; Phene et al., 2006; Jaffe & de Rassenfosse, 2017). Although some 

studies argue that backward citations are a rather noisy indicator of knowledge 

flows (e.g. Alcacer & Gittelman, 2006), others provide reasonable evidence for the 

equivalence between patent citations and knowledge flows (e.g. Duguet & 

MacGarvie, 2005; Jaffe, Trajtenberg, & Fogarty, 2000). To compute the dependent 
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variable, we counted the total number of fuel cell citations that focal firm i made to 

a partner j in a given year6. In order to correct for differences in firm scale, following 

Phelps (2010), we compute the share of citations made by focal firm i to a partner 

j in year t:  

Focal firm's partner-specific recombination ijt =  
Fuel cell citations to partner

ijt

Total fuel cell citationsit

 

Independent variable. In order to capture knowledge pool applicability, 

we inspected the International Patent Classification (IPC) codes listed on fuel cell 

patent applications. IPC codes are principally assigned to patents to facilitate 

patent examiner’s search activities, and reflect the technological content of an 

invention (Strumsky & Lobo, 2015). Prior innovation studies have similarly 

employed IPC codes as a categorization tool to localize patents into specific 

technological domains (e.g. Kapoor & Adner, 2012; Phelps, 2010). IPC codes are 

classified in a hierarchical manner (i.e. lower levels represent subdivisions of 

higher levels), such that the first digit indicates the highest level of abstraction (e.g. 

H refers to ‘Electricity’ while G refers to ‘Physics’), and subsequent digits increase 

the level of granularity (Benner & Waldfogel, 2008). To illustrate this hierarchical 

construction, we show an example of subgroup H01M8/24 in Figure 3.3. 

 
Figure 3.3. Hierarchical construction of IPC code H01M8/24 

H

H01

H01M

H01M8

H01M8/24

Electricity

Basic electric elements

Processes or means, e.g. batteries, for the direct 
conversion of chemical into electrical energy

Fuel cells; Manufacture thereof

Grouping of fuel cells, e.g. stacking of fuel cells

Section

Class

Subclass

Main group

Subgroup
 

 

                                                             
6 Following the methodology described by Bakker et al. (2016) and Nakamura et al. (2015), we 
aggregated all single patent office applications within a patent family to the patent family level to obtain 
a more precise account of the components that were recombined to generate the invention. For example, 
consider two patents A and B that belong to patent family 1. If patent A cites patents C and D, and patent 
B cites patents D and E, then patent family 1’s backward citations are C, D, and E. Naturally, we also 
correct for patent family membership at the backward citation-level in such a way that, if patent family 
1’s cited patents D and E actually pertain to the same patent family, they are not counted twice. 
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Whereas higher IPC levels (such as the subclass, or, four-digit IPC code) can be 

used to gain an understanding of the broadness of technological fields that firms 

use to build inventions (Leten, Belderbos, & Van Looy, 2016), they tend to not be 

precise enough to denote the actual domains within which new inventions can be 

applied (Thompson & Fox-Kean, 2005). Instead, in order to determine the 

application domains of patents within a particular technological field (for fuel cell 

patents, main group H01M8), it is useful to look at the application domains nested 

within this field (for fuel cells, subgroups H01M8/02-H01M8/24). Here, an 

application domain is thus a subset of a technological field within which a 

particular invention can be applied. We identified four main application domains 

of fuel cell inventions7,8; namely: The single cell, stacking techniques, reactant 

production and residue treatment, and balance-of-plant aspects of fuel cell systems 

(EG&G Technical Services, 2004; Sharaf & Orhan, 2014). To capture these four 

applications domains, we used subgroups H01M8/02, H01M8/04, H01M8/06, 

and H01M8/24 (see Table 3.1 for a description of these subgroups)9. Effectively, 

from the IPC codes listed on a patent, we inferred that, when a firm generates a 

new invention that describes a technological solution to a problem that spans 

                                                             
7 While our measure is somewhat conservative, in the sense that it focuses solely on the fuel cell 
technological domain as a potential location for application of inventions, we verified, through 
examination of fuel cell articles (e.g. EG&G Technical Services, 2004; Sharaf & Orhan, 2014; Steele & 
Heinzel, 2001), that these four application domains are indeed most relevant to fuel cell technology. 
Moreover, looking at the citation scope of fuel cell patents, we observe that this is a highly insular 
technological domain (George et al., 2008), in which technologies draw, and are applied, mostly within 
the same technological domain (i.e. close to 75% of all backward citations of fuel cell patents go to other 
fuel cell patents). Finally, we only examine R&D alliances that are specifically targeted at fuel cell 
technology, meaning that the four application domains are likely to be the most relevant ones in this 
context. 
8 There are 12 subgroups within main group H01M8 that can be used to identify the aspects of fuel cell 
technology that are addressed by the fuel cell patent. Eight of these subgroups (i.e. H01M8/08-
H01M8/22) are used to categorize the patent as pertaining to the design of a specific type of fuel cell. 
Fuel cell types can (principally) be distinguished on the basis of the electrolyte inside the cell (Steele & 
Heinzel, 2001). For example, H01M8/10 refers to the design of fuel cells with a solid electrolyte (e.g. 
polymer exchange membrane fuel cells) and H01M8/12 refers to the design of fuel cells with a solid 
oxide electrolyte (e.g. solid oxide fuel cells). The remaining four subgroups (i.e. H01M8/02, H01M8/04, 
H01M8/06, and H01M8/24) can be used to detect the application domains of fuel cell inventions. For 
each IPC subgroup, we examined hundreds of patent documents to verify their correspondence to a 
particular application domain. We further validated this correspondence by comparing the distribution 
of firms’ patents across different application domains with press releases and firm documents 
describing their fuel cell technological activities. 
9 Out of all the patents in the sample, 90% of the patents had at least one of the four IPC subgroups 
listed on them (Table 3.1). For the remaining patents (10% of the sample), we examined patterns of co-
occurrence of IPC subgroups (i.e. Breschi, Lissoni, & Malerba, 2003; Dibiaggio et al., 2014) in order to 
categorize each subgroup into the subsystem with which it was most likely associated (e.g. subgroup 
C08J5/22, which refers to manufacturing films, membranes, or diaphragms made of macromolecular 
substances, co-occurred 99% of the time with subgroup H01M8/02, suggesting a strong association 
with the single cell). 
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multiple application domains, the firm demonstrates an understanding of how this 

invention can potentially be applied to each of these domains, in new knowledge 

recombination efforts (Boh et al., 2014). 

Having classified each patent into its corresponding application domain(s), 

we subsequently calculated the average number of application domains that were 

listed on each patent, and then aggregated this to the firm-level. For example, in 

Figure 3.1, partner 1 has 4 patents in its knowledge pool, three of which have two 

potential application domains, and one has one potential application domain. In 

this case, knowledge pool applicability takes a value of 
(3×2)+(1×1)

4
= 1.75. Similarly, 

partner 2’s knowledge pool applicability equals 
(1×2)+(3×1)

4
= 1.25. 

 
Table 3.1. Application domains in the fuel cell technological field 
Application 

domain 
Description IPC 

subgroup 
Single cell This application domain relates to elements inside 

the fuel cell. This includes the design of gas 

diffusion layers, electrolytes, electrodes, etc. 

H01M8/02 

Balance-of-plant This application domain relates auxiliary 

equipment of fuel cells. This includes the design of 

heat exchangers, air pumps, controlling systems 

etc. 

H01M8/04 

Producing 

reactants / treating 

residues 

This application domain relates to producing 

reactants (e.g. hydrogen) and treating residues. 

This includes fuel reforming, hydrogen 

purification, hydrogen supply, etc. 

H01M8/06 

Stacking 

techniques 

This application domain relates to stacking of fuel 

cells. This includes compression techniques of 

single cells, composition of stacks, etc. 

H01M8/24 

 
Control variables. We controlled for relevant attributes of the R&D 

alliance. Since trust and relational assets between partners are often developed 

over time (Dyer and Singh, 1998), we controlled for the age of the alliance, 

calculated as the time that elapsed since the (current) ongoing tie between the firm 

and the partner was initiated (Age alliance)10. Since equity arrangements in an 

R&D alliance may curb opportunistic behavior (Kogut, 1988), we included a control 

                                                             
10 We looked at the age of the tie, rather than the alliance itself, because some dyads in our sample had 
multiple ongoing alliances at the same time (which we also control for). For example, Toshiba and UTC 
initiated a joint venture alliance in 1985, and a separate joint venture in 2001, both of which were 
terminated in 2004. 
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variable that takes a value of 1 when the alliance is a joint venture (Joint venture). 

We included a control variable that takes a value of 1 when the alliance is part of a 

government-funded program (Government-funded). Multi-partner alliances - i.e. 

alliances in which more than two partners are involved - can influence the behavior 

of any participating organization, inciting, in some cases, free-riding behavior (Das 

& Teng, 2002). Therefore, we included a control variable that takes a value of 1 

when the alliance is a multi-partner alliance (Multi-partner). Knowledge 

recombination in R&D alliances with foreign partners may be strongly influenced 

by, for example, cultural differences between the firm and the partner (Lavie & 

Miller, 2008). Therefore, we included a control variable that takes a value of 1 when 

the partner is non-domestic (International). Finally, we controlled for the number 

of concurrent alliances ongoing between the firm and the partner (Concurrent 

alliances) (Gomes-Casseres et al., 2006).  

We also controlled for several alliance portfolio-level characteristics of the 

focal firm (Faems, Van Looy, & Debackere, 2005; Wassmer, 2010). Having a high 

number of technology collaborators may detract attention from the partner, 

potentially reducing the focal firm’s partner-specific recombination. We therefore 

controlled for the number of technologically active fuel cell technology partners of 

the firm in the current year (Inventive partners) (Deeds & Hill, 1996; Wassmer, 

2010). Technologically active fuel cell technology partners are firm partners which 

have filed at least one fuel cell patent in the past five years. In a similar way, we 

controlled for the number of non-technologically active fuel cell technology 

partners of the firm in the current year (Non-inventive partners). Moreover, we 

controlled for the number of upstream partners (i.e. universities, research 

institutes, and government laboratories) of the firm in the current year (Upstream 

partners) (Faems et al., 2005).  

We also controlled for several attributes of the knowledge pool of the firm 

and the partner. We controlled for the size of knowledge pool of the focal firm (Firm 

knowledge pool size) and the partner (Partner knowledge pool size) by computing 

a cumulative count of patents filed in the past five years [t-6, t-1]. These two 

variables were divided by 1000, to improve readability of the results. Furthermore, 

we controlled for the total number of backward citations made by the firm in a 

given year (Total recombination). We also divided this variable by 1000, to 



Exploring Knowledge Recombination in R&D Alliances 
 

67 

improve readability of the results. Importantly, we also controlled for the number 

of fuel cell citations that the firm made to the partner’s patent stock in the past five 

years (Past partner-specific recombination) to control for any path-dependent 

effects (Gomes-Casseres et al., 2006). We controlled for the focal firm’s (Firm 

knowledge pool diversity) and partner’s knowledge pool diversity (Partner 

knowledge pool diversity). Following earlier studies (e.g. Phelps, 2010; Sampson, 

2007; Subramanian & Soh, 2017), we aggregated all IPC codes (at the main group 

level) of a firm’s patents to the firm-level, and subsequently calculated the 

distribution among them relying on the widely-used Herfindahl index. Moreover, 

using IPC main group codes, we subsequently measured overlap in component 

knowledge (Knowledge pool distance), between the firm and the partner, by 

relying on the widely-used measure of technological distance introduced by Jaffe 

(1986) and used in numerous alliance studies (e.g. Sampson, 2007; Van de Vrande, 

2013). The measure ranges between 0 and 1, where a value of 0 indicates full 

overlap and a value of 1 indicates no overlap in any technological domain. We 

controlled for potential coordination costs associated with conducting internal 

R&D and building new component knowledge and capabilities, by calculating the 

average number of inventors listed on the focal firm’s patents (Internal 

coordination costs) (Grigoriou & Rothaermel, 2017). Moreover, we also controlled 

for the focal firm’s experience with recombining internal components (Internal 

component reliance), dividing the number of internal backward citations by the 

total number of backward citations, and with older components (Old component 

reliance), calculating the average age of backward citations of a focal firm’s patents 

(Wuyts & Dutta, 2014). We also controlled for the focal firm’s focus on particular 

patent offices, in order to control for any between-patent office heterogeneity that 

might affect patent citation behavior (Bakker et al., 2016). Specifically, we included 

three control variables representing the share of patents in the focal firm’s 

knowledge pool that were filed in each of the three main patent offices (i.e. EPO, 

JPO, USPTO). 

3.4.3. Analytical method 

The 88 focal firms were engaged in 461 R&D alliance dyads between 1993 and 

2007. In the analyses, we focused on firm-partner dyads, where the firm and the 
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partner need to be technologically active (i.e. they must have filed at least 1 fuel cell 

patent in the past five years) firms (i.e. we do not include upstream partners such 

as universities). Since most alliances lasted for longer than one year, and many of 

them were multi-partner alliances, this resulted in a total of 1691 firm-partner year 

observation. Each observation stands for a specific firm-partner dyad in a year in 

which it has an ongoing partnership. Following Gomes-Casseres et al. (2006), the 

citation output of a firm to an alliance partner in the next year is a function of the 

characteristics of the respective firm-partner dyad in the current year.  

We relied on Generalized Estimating Equations (GEE) in order to test our 

hypotheses (Baum, 2008; Phelps, 2010). GEE models are especially fit for 

analyzing models in which the dependent variable appears as a fraction or 

proportion (i.e. the share of citations made to a partner by the firm) (Baum, 2008). 

Moreover, these specifications allow to substantially correct for non-independence 

across similar observations over a period of time (Hardin, Hilbe, & Hilbe, 2012). 

We applied an exchangeable correlation structure, to correct for correlation 

amongst observations from the same focal firm, and included robust standard 

errors in order to alleviate issues of heteroskedasticity (Hardin et al., 2012). 

Furthermore, due to the distribution of our dependent variable, we used a binomial 

family and logit link function (Baum, 2008; Phelps, 2010). To control for variance 

over time, we included year dummies in each model. Finally, we lead the dependent 

variable by one year to reduce concerns of reverse causality. 

3.4.4. Results 

Descriptive statistics. Table 3.2 presents the descriptive statistics and 

correlation matrix. The average focal firm makes 1.9% of its citations to a partner 

in a given year. The average alliance tie has a lifespan of 2.88 years, in line with 

earlier studies (e.g. Phelps, 2010). The knowledge pool applicability of the focal 

firm and partner are well-distributed, with an average of 1.44 and 1.47 respectively, 

a minimum value of 1, and a maximum of 3. None of the pair-wise correlations are 

above 0.7. Moreover, VIF values, based on OLS regression, in all models are well-

below the threshold value of 10, with an average value of 1.59 and a maximum value 

of 2.64 (Mason & Perreault, 1991). Therefore, we are confident that 

multicollinearity issues are not present in our models. 
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Table 3.2. Descriptive statistics and correlation matrix 
  Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

1 Partner-specific recombination 1                         
2 Age alliance 0.16 1                        
3 Joint venture 0.08 0.23 1                       
4 Government-funded -0.11 -0.11 -0.10 1                      
5 Multi-partner -0.04 -0.10 -0.05 0.37 1                     
6 International -0.09 0.23 0.15 -0.09 0.01 1                    
7 Concurrent alliances 0.05 0.19 0.26 0.08 0.21 0.01 1                   
8 Inventors -0.16 0.01 0.02 0.02 0.09 0.18 0.02 1                  
9 Non-inventors -0.12 0.01 -0.04 0.25 0.15 0.26 -0.01 0.30 1                 
10 Upstream partners -0.15 0.01 -0.06 0.27 0.12 0.02 0.00 0.38 0.24 1                
11 Firm knowledge pool size 0.00 0.11 -0.03 -0.12 -0.09 -0.07 0.08 0.02 -0.16 0.01 1               
12 Partner knowledge pool size 0.34 0.15 -0.01 -0.11 -0.06 -0.06 0.11 -0.06 -0.11 -0.06 0.09 1              
13 Total recombination -0.03 0.06 0.00 -0.16 -0.15 -0.04 0.07 0.15 -0.12 0.06 0.66 0.04 1             
14 Past partner-specific recombination 0.29 0.34 0.06 -0.09 -0.06 -0.04 0.17 0.00 -0.11 -0.02 0.55 0.43 0.38 1            
15 Firm knowledge pool diversity -0.10 -0.12 -0.06 0.09 0.00 0.03 -0.04 0.14 0.01 0.17 -0.07 -0.02 0.03 -0.05 1           
16 Partner knowledge pool diversity 0.02 -0.03 -0.04 0.01 -0.07 0.00 -0.05 0.03 -0.02 0.06 -0.03 0.02 0.00 0.01 0.14 1          
17 Knowledge pool distance -0.22 -0.27 -0.10 0.20 0.03 -0.01 -0.15 -0.01 0.14 0.04 -0.21 -0.25 -0.16 -0.29 0.22 0.23 1         
18 Internal component reliance -0.02 0.12 0.03 0.07 0.06 -0.06 -0.01 0.23 -0.04 0.12 0.15 0.04 0.13 0.10 0.09 -0.07 -0.12 1        
19 Old component reliance -0.05 -0.06 0.04 0.18 0.04 0.12 -0.03 0.17 0.23 0.15 -0.26 -0.15 -0.17 -0.17 0.21 0.04 0.18 -0.04 1       
20 JPO patents 0.21 0.00 -0.02 -0.20 -0.09 -0.35 0.03 -0.35 -0.40 -0.33 0.32 0.18 0.18 0.18 -0.11 -0.07 -0.26 0.06 -0.33 1.00      
21 EPO patents -0.09 -0.02 0.02 0.23 0.12 0.31 -0.07 0.10 0.32 0.18 -0.30 -0.21 -0.21 -0.20 0.32 0.08 0.40 -0.10 0.49 -0.48 1     
22 USPTO patents -0.14 0.03 0.01 0.25 0.05 0.22 -0.03 0.31 0.42 0.28 -0.27 -0.13 -0.06 -0.13 0.12 0.08 0.32 0.08 0.36 -0.55 0.49 1    
23 Internal coordination costs -0.04 -0.17 -0.02 0.08 0.08 -0.05 -0.05 0.12 0.03 0.07 -0.09 -0.04 -0.09 -0.07 0.29 0.06 0.12 -0.09 0.22 -0.06 0.28 -0.07 1   
24 Partner knowledge pool applicability 0.00 0.05 -0.03 0.04 -0.02 0.18 0.01 -0.06 0.00 0.03 -0.06 -0.04 -0.07 0.01 0.08 -0.19 -0.15 -0.03 0.03 -0.08 0.09 0.00 0.02 1  
25 Firm knowledge pool applicability -0.09 0.06 -0.04 0.02 -0.05 0.17 -0.03 0.25 0.31 0.16 -0.09 -0.06 0.01 -0.04 -0.17 0.03 0.01 0.01 0.20 -0.32 0.19 0.41 0.08 0.00 1 

  Mean 0.02 2.88 0.08 0.28 0.51 0.62 1.12 4.8 1.86 1.14 0.17 0.13 0.19 9.64 0.79 0.76 0.18 0.12 8.82 0.35 0.39 0.52 2.95 1.44 1.47 

  SD 0.05 3.32 0.27 0.45 0.50 0.49 0.34 3.27 2.38 1.65 0.36 0.33 0.38 26.49 0.13 0.19 0.16 0.08 2.18 0.38 0.30 0.33 0.69 0.32 0.28 

  Min 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 1 1 

  Max 0.60 20 1 1 1 1 3 15 13 8 3.85 3.85 3.74 354 0.96 0.97 0.76 0.50 25 1 1 1 5.57 3 3 
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Regression results. In Table 3.3, we present the results of the GEE 

regressions. Among the dyad characteristics, and consistent with expectations 

(Sampson, 2007), we find evidence that alliance dyads that are part of a joint 

venture lead to more recombination of a partner’s components by the focal firm 

(Model 1: βJoint venture = 0.440, p < .05). Moreover, focal firms tend to recombine 

components of partners from different countries less often (Model 1: βInternational = -

0.474, p < 0.01) as expected (Gomes-Casseres et al., 2006). In terms of alliance 

portfolio characteristics, we find that if the focal firm is engaged in R&D alliances 

with many other inventive partners, this has a negative and statistically significant 

influence on the intensity of partner-specific knowledge recombination (Model 1: 

βInventors = -0.100, p < 0.01), but the effect of non-inventive and upstream partners 

is statistically non-significant. Among the knowledge pool characteristics of the 

focal firm and the partner, we notice that partner’s knowledge pool diversity 

positively influences partner- specific recombination (Model 1: βPartner knowledge pool 

diversity = 1.589, p <0.01), whereas knowledge pool distance decreases it (Model 1: 

βKnowledge pool distance = -4.807, p < 0.001). 

In model 4, we test Hypothesis 1 following the procedure described by Haans 

et al. (2016) for testing curvilinear relationships. We find that the linear effect of a 

partner’s knowledge pool applicability is positive and statistically significant 

(Model 4: βPartner knowledge pool applicability = 8.347, p < 0.001), whereas the quadratic 

term is negative and statistically significant (Model 4: βPartner knowledge pool applicability 

squared = -2.574, p < 0.01). We plot this relationship in Figure 3.4. The plot shows an 

inflection point at a value of 1.62, which is within one standard deviation of the 

mean, and therefore well within the range of observable points. Furthermore, the 

slope before the inflection point is positive and statistically significant (p < 0.001) 

and the slope after the inflection point is negative and statistically significant (p < 

0.01). Moreover, the 95 percent Fieller confidence interval of the inflection point is 

within the range of observable points ([1.50,1.86]). We also find that the linear and 

quadratic coefficients of partner’s knowledge pool applicability are jointly 

statistically significant (Chi2 = 13.82, p < 0.001). Hence, we find support for 

Hypothesis 1.  

In model 5 we test Hypothesis 2. We find that the linear effect of the firm’s 

knowledge pool applicability has a statistically non-significant impact on the firm’s 
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partner-specific recombination. However, when we further assess whether this 

relationship is instead driven by curvilinear effects, we surprisingly find that the 

linear effect of firm’s knowledge pool applicability is negative and statistically 

significant (Model 6: βFirm knowledge pool applicability = -5.547, p < 0.001), whereas the 

quadratic term is positive and statistically significant (Model 6: βFirm knowledge pool 

applicability squared = 1.603, p < 0.001). The curve, as displayed in Figure 3.5, has an 

inflection point at a value of 1.73, which is within one standard deviation of the 

mean, and therefore well within the range of observable points. Furthermore, the 

slope before the inflection point is negative and statistically significant (p < 0.001), 

whereas the slope after the inflection point is positive and statistically significant 

(p < 0.001). Moreover, the 95 percent Fieller confidence interval of the inflection 

point is within the range of observable points ([1.53,1.88]. We also find that the 

linear and quadratic coefficients of the focal firm’s knowledge pool applicability are 

jointly statistically significant (Chi2 = 42.98, p < 0.001). Hence, rather than a linear 

and positive relationship, we detect a U-shaped relationship between the focal 

firm’s knowledge pool applicability and the firm’s partner-specific knowledge 

recombination. In model 7, we jointly introduce the quadratic terms of knowledge 

pool applicability of the partner and focal firm, and find robust results. 
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Figure 3.4. Main effect of partner knowledge pool applicability  

 

 
Figure 3.5. Main effect of focal firm knowledge pool applicability 
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Table 3.3. GEE results 
DV: Partner-specific recombination 1 2 3 4 5 6 

Age alliance 0.03 
[0.02] 

0.03 
[0.02] 

0.03 
[0.02] 

0.03 
[0.02] 

0.03† 
[0.02] 

0.03† 
[0.02] 

Joint venture 0.44* 
[0.21] 

0.50* 
[0.22] 

0.44* 
[0.22] 

0.47* 
[0.23] 

0.43* 
[0.22] 

0.46* 
[0.23] 

Government-funded -0.23 
[0.24] 

-0.28 
[0.24] 

-0.29 
[0.24] 

-0.29 
[0.23] 

-0.32 
[0.23] 

-0.32 
[0.23] 

Multi-partner 0.22 
[0.19] 

0.23 
[0.18] 

0.21 
[0.18] 

0.21 
[0.18] 

0.21 
[0.18] 

0.21 
[0.18] 

International -0.47** 
[0.17] 

-0.55** 
[0.17] 

-0.53** 
[0.17] 

-0.57*** 
[0.16] 

-0.61*** 
[0.17] 

-0.64*** 
[0.16] 

Concurrent alliances -0.23 
[0.20] 

-0.24 
[0.20] 

-0.23 
[0.20] 

-0.24 
[0.20] 

-0.23 
[0.20] 

-0.24 
[0.20] 

Inventors -0.10** 
[0.03] 

-0.10** 
[0.04] 

-0.10** 
[0.04] 

-0.09* 
[0.04] 

-0.08* 
[0.04] 

-0.08* 
[0.04] 

Non-inventors 0.02 
[0.03] 

0.03 
[0.03] 

0.03 
[0.03] 

0.03 
[0.03] 

0.04 
[0.03] 

0.04 
[0.03] 

Upstream partners -0.11 
[0.07] 

-0.11 
[0.07] 

-0.11 
[0.07] 

-0.10 
[0.07] 

-0.11† 
[0.07] 

-0.11 
[0.07] 

Firm knowledge pool size -1.64** 
[0.56] 

-1.65** 
[0.57] 

-1.65** 
[0.56] 

-1.64** 
[0.60] 

-1.62** 
[0.50] 

-1.61** 
[0.54] 

Partner knowledge pool size 0.32† 
[0.17] 

0.34† 
[0.18] 

0.33† 
[0.18] 

0.36* 
[0.17] 

0.31† 
[0.17] 

0.34* 
[0.17] 

Total recombination 0.07 
[0.19] 

0.09 
[0.19] 

0.10 
[0.19] 

0.15 
[0.20] 

0.16 
[0.19] 

0.20 
[0.20] 

Past partner-specific recombination 0.02*** 
[0.00] 

0.02*** 
[0.00] 

0.02*** 
[0.00] 

0.02*** 
[0.00] 

0.02*** 
[0.00] 

0.02*** 
[0.00] 

Firm knowledge pool diversity -0.48 
[0.54] 

-0.49 
[0.55] 

-0.72 
[0.59] 

-0.75 
[0.61] 

-0.67 
[0.61] 

-0.72 
[0.62] 

Partner knowledge pool diversity 1.59** 
[0.49] 

1.75*** 
[0.52] 

1.74*** 
[0.51] 

1.59** 
[0.54] 

1.72*** 
[0.49] 

1.57** 
[0.52] 

Knowledge pool distance -4.81*** 
[0.74] 

-4.75*** 
[0.75] 

-4.85*** 
[0.79] 

-4.05*** 
[0.81] 

-5.12*** 
[0.82] 

-4.37*** 
[0.83] 

Internal component reliance -0.16 
[0.85] 

-0.10 
[0.86] 

0.04 
[0.87] 

-0.15 
[0.90] 

-0.09 
[0.88] 

-0.27 
[0.91] 

Old component reliance 0.07 
[0.05] 

0.07 
[0.05] 

0.07 
[0.05] 

0.07 
[0.05] 

0.07 
[0.05] 

0.07 
[0.05] 

JPO patents 0.82** 
[0.26] 

0.84** 
[0.25] 

0.83** 
[0.26] 

0.73** 
[0.27] 

0.69* 
[0.27] 

0.61* 
[0.28] 

EPO patents 1.22*** 
[0.32] 

1.22*** 
[0.33] 

1.23*** 
[0.32] 

1.25*** 
[0.34] 

1.08** 
[0.34] 

1.12** 
[0.35] 

USPTO patents -0.37 
[0.30] 

-0.36 
[0.29] 

-0.24 
[0.30] 

-0.38 
[0.28] 

-0.29 
[0.30] 

-0.40 
[0.29] 

Internal coordination costs 0.00 
[0.13] 

-0.01 
[0.13] 

0.02 
[0.13] 

-0.01 
[0.13] 

-0.06 
[0.13] 

-0.08 
[0.13] 

Partner knowledge pool applicability  
 

0.41† 
[0.24] 

0.40† 
[0.24] 

8.35*** 
[2.41] 

0.42† 
[0.24] 

7.70*** 
[2.33] 

Firm knowledge pool applicability  
 

 
 

-0.36 
[0.42] 

-0.33 
[0.41] 

-5.55*** 
[1.06] 

-5.25*** 
[1.02] 

Partner knowledge pool applicability squared  
 

 
 

 
 

-2.57** 
[0.79] 

 
 

-2.36** 
[0.77] 

Firm knowledge pool applicability squared  
 

 
 

 
 

 
 

1.60*** 
[0.27] 

1.51*** 
[0.25] 

Year dummies Yes Yes Yes Yes Yes Yes 

Observations 1691 1691 1691 1691 1691 1691 
Wald chi2 1312.48 1297.41 1553.23 1612.86 1637.08 1895.41 

† p < .10, * p < .05, ** p < .01, *** p < .001. Robust standard errors between brackets. 
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Robustness checks. We run several robustness checks to verify our main 

results11. First, we examine whether our results are driven by outliers in the 

dependent and independent variables. Winsorizing the dependent and two 

independent variables at the 1st and 99th percentile, our results remain highly 

stable12.  

Second, we apply different model specifications: (i) we use a count variable 

as the dependent variable (i.e. number of citations made by the focal firm to a 

partner) with GEE models (with a negative binomial family and link function, and 

an exchangeable correlation structure), (ii) we use logit models, where the 

dependent variable takes a value of 1 when the focal firm makes at least one citation 

to the partner, and (iii) following Phelps (2010), we log-odds transform the 

dependent variable, and run an OLS regression with focal firm and year dummies. 

In all three model specifications, the main results remain stable. 

Third, we check for potential interaction effects between the knowledge pool 

applicability of the partner and focal firm (i.e. through a linear interaction and a 

quadratic interaction). Our results show no evidence of an interaction between the 

two variables, suggesting that the focal firm’s knowledge pool applicability does not 

substitute or complement the partner’s knowledge pool applicability. 

Fourth, we exclude observations from all years before 1998. We chose this 

year as the cut-off point because, in 1998, DaimlerChrysler (now Daimler), Ford 

and Ballard Power Systems (a Canadian fuel cell manufacturer) formed a 1$bn joint 

venture to develop fuel cell systems for automotive vehicles. The formation of this 

joint venture is widely regarded as a turning point in the fuel cell technological 

field, as it was seen as a strong indicator of the commercial feasibility of fuel cell 

technology. Excluding these observations did not affect our main results.  

Fifth, because we are dealing with a non-linear model (Hoetker, 2007; 

Williams, 2012), we compute the marginal effects (also referred to as partial 

effects) of the two quadratic relationships. Indeed, as stated by Wiersema and 

Bowen (2009, p. 682) "in an LDV [limited dependent variable] model, an 

explanatory variable’s estimated coefficient can rarely be used to infer the true 

                                                             
11 We do not report most of these analyses for the sake of brevity. They are, however, available from the 
authors upon request. 
12 Log-transforming the independent variables, consistent with Haans et al. (2016), did not influence 
our main results either. 
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nature of the relationship between the explanatory variable and the dependent 

variable." For partner’s knowledge pool applicability, we detect that the marginal 

effects are positive and statistically significant (p<0.05) when the partner’s 

knowledge pool applicability is in the range [1.00,1.50], statistically non-significant 

(p>0.05) in the range [1.51,1.80], negative and statistically significant (p<0.05) in 

the range [1.81,2.54], and statistically non-significant (p>0.05) in the range 

[2.55,3.00]. For the focal firm’s knowledge pool applicability, we detect that the 

marginal effects are negative and statistically significant (p<0.05) when the focal 

firm’s knowledge pool applicability is in the range [1.00,1.55], statistically non-

significant (p>0.05) in the range [1.56,1.92], and positive and statistically 

significant (p<0.05) in the range [1.93, 3.00].  

Finally, we exclude observations in which the firm made no citations in the 

next year. Using this alternative specification, the results remain highly stable. In 

sum, using these alternative models, our main results remain consistent: 

Hypothesis 1 finds strong support and Hypothesis 2 is not supported. 

3.5. Discussion and conclusion 

In this study, using a unique dataset of 88 focal firms engaged in 461 R&D alliance 

dyads in the fuel cell industry, we examined how the knowledge pool applicability 

of the partner and focal firm influence the focal firm’s partner-specific 

recombination. We find that the partner’s knowledge pool applicability has a 

robust inverted U-shaped relationship with the focal firm’s recombination of 

partner’s components. The results, however, do not provide support for Hypothesis 

2. We find that the focal firm’s knowledge pool applicability has a U-shaped 

relationship with its rate of partner-specific recombination, rather than the 

hypothesized linear and positive effect.  

A potential explanation for this unexpected finding is that firms first need to 

develop a base-level of knowledge pool applicability, before they can benefit from 

the capabilities that emerge from it, in the R&D alliance context. Deploying these 

combinative capabilities in the R&D alliance, when understanding of how these 

capabilities should be aligned with available recombination opportunities is only 

minimal, can be costly, as the focal firm will often draw mistaken inferences about 
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the applications of a partner’s component knowledge, attempting to generate 

combinations that do not actually function well (Hargadon & Sutton, 1997; Nemet 

& Johnson, 2012). Hence, in the initial phase (i.e. from low to average internal 

knowledge pool applicability), firms may not yet enjoy the benefits of being able to 

apply these combinative capabilities to the recombination of partner’s component 

knowledge (Darr, Argote, & Epple, 1995). 

3.5.1. Theoretical implications 

Alliance scholars have principally focused on the size and diversity of partner’s 

knowledge pool as core drivers of knowledge recombination activities in R&D 

alliances (e.g. Lahiri & Narayanan, 2013; Schilling & Phelps, 2007; Wuyts & Dutta, 

2014). In this study, we demonstrate that, even when the partner’s knowledge pool 

size and diversity are held constant, numerous recombination opportunities may 

still emerge depending on the partner’s knowledge pool applicability. Numerous 

alliance studies implicitly assume that diverse and large knowledge pools present 

numerous opportunities to engage in knowledge recombination (e.g. Lahiri & 

Narayanan, 2013; Gilsing et al., 2008; Schilling & Phelps, 2007). However, we 

argue that numerous components can only be used in one very specific application 

domain, substantially reducing the range of combinations in which they can be 

applied. Hence, only considering the aggregate knowledge pool, in terms of how 

diverse or how large it is, in many cases obscures the fact that many components 

actually have a limited range of applications. We therefore encourage future 

research to account for knowledge pool applicability in their conceptual and 

empirical framework, when studying R&D alliances and their performance 

implications. 

We also develop novel theoretical arguments regarding firms’ idiosyncratic 

abilities to engage in knowledge recombination in the partner’s knowledge pool. 

Existing alliance research tends to conceptually focus more on the absorption of 

component knowledge into the focal knowledge pool, often remaining relatively 

agnostic about the actual recombination of a partner’s component knowledge (e.g. 

Rosenkopf & Almeida, 2003; Vasudeva & Anand, 2011; Gilsing et al., 2008). 

However, we emphasize that even if a component is transferred into the knowledge 

pool, it is also important to look at whether the focal firm actually knows how to 
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use this component in knowledge recombination (Zahra & George, 2002). Hence, 

it is important to look into factors that are likely to drive firm-specific abilities to 

engage in meaningful knowledge recombination (Wuyts & Dutta, 2014). To this 

end, we argued that combinative capabilities that emerge from building widely-

applicable component knowledge allow the focal firm to have a better 

understanding of components’ true recombinant potential, overcoming 

technological limits that other firms might have (Henderson, 1995). Moreover, 

these capabilities allow the focal firm to recognize when the recombinant potential 

of a component has reached its limit already, thus avoiding fruitless recombination 

efforts. We therefore point to the need to consider a more nuanced knowledge 

recombination perspective when examining the application of focal firms’ internal 

capabilities in R&D alliances.  

3.5.2. Limitations and future research 

There are several limitations in this study, which can form a starting point for 

future research. First, in order to test our hypotheses, we chose an empirical setting 

which allowed us to easily operationalize the knowledge pool applicability of the 

focal firm and partner. Specifically, we examined the IPC subgroups that are listed 

on fuel cell patents, in order to determine a firm’s knowledge pool applicability. In 

the fuel cell technological field, this approach was facilitated by the fact that there 

were only four major application domains for fuel cell inventions, and that there 

was a high correspondence between these four domains and the IPC subgroups of 

fuel cell patents. Although it is likely that this type of approach would work in other 

settings, we still encourage future studies to attempt to capture application 

domains in other settings. 

Second, in this study we focused on technological application domains 

nested within a larger technological domain, capturing application domains which 

have immediate relevance to the context of this study (i.e. fuel cell-oriented R&D 

alliances). We encourage future studies to examine other types of application 

domains for knowledge components, such as other industries or countries (e.g. 

Hargadon & Sutton, 1997; Petruzzelli & Savino, 2014), developing potentially 

different theoretical insights than the ones discussed in this study. 
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