
 

 

 University of Groningen

The non-existent average individual
Blaauw, Frank Johan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Blaauw, F. J. (2018). The non-existent average individual: Automated personalization in psychopathology
research by leveraging the capabilities of data science. University of Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-05-2021

https://research.rug.nl/en/publications/the-nonexistent-average-individual(ab67f288-309b-4d23-adab-0df7c8bb1f26).html


Based on:

Blaauw, F. J., & Emerencia, A. (2015). A Service-Oriented Architecture for Web Applications in e-Mental
Health: Two Case Studies. In 2015 IEEE 8th International Conference on Service-Oriented Computing and
Applications (SOCA) (pp. 131–138).

Chapter 4

Architecture and Infrastructure of
HowNutsAreTheDutch and Leefplezier

The primary source of medical data for the specific domain of e-mental health
are online questionnaires. Most applications in this domain focus on view-

ing, filling out, and managing these questionnaires (Danziger, 1990). Many dis-
tinct applications have been developed in recent years, most of them starting from
scratch and running in isolation. In this chapter, we design and propose a generic
architecture for e-mental health applications based on the HowNutsAreTheDutch
(HND) and Leefplezier platforms described in Chapter 3. These platforms are used
on a large scale with over 13 000 users combined. By abstracting functionalities
into reusable interfaces, we can maximize data interoperability while minimizing
application-specific code to facilitate rapid development of e-mental health appli-
cations. We set forth to answer the question of whether it is possible to design one
such generic Web application, to identify problems that would have to be tackled,
and to highlight topics of debate.

Applications designed for research projects tend to focus primarily on collecting
data and not on having a clean architecture or incorporating reusable components.
This neglect can be attributed to the fact that the success of a research project is
usually not measured by the quality of the application, but rather by the data that
is collected. Furthermore, since many such research projects have predefined bud-
gets and time limits, application development that supports reuse tends to be an
afterthought. The result is that, rather than incorporating reusable components,
these projects create one-off applications, each starting from scratch and learning
the same lessons, and each being costly to develop.

In light of these concerns, we believe that incorporating external service com-
ponents and reusable application logic in a generic architecture will reduce devel-
opment time and cost compared to those of one-off projects. In this chapter, we



46 4. Architecture and Infrastructure of HowNutsAreTheDutch and Leefplezier

propose a generic architecture for e-mental health applications based on two case
studies. This architecture takes advantage of service-oriented architecture (SOA) and
service-oriented computing (SOC) paradigms for its core functionality. We explain
the architecture for both case studies, and we give an overview of the pros and cons
of the decisions made during the design process.

4.1 Service-Oriented Architectures in E-mental Health

The importance of accessible and affordable care for mental disorders cannot be
overstated. For instance, approximately 41.2 % of the Dutch population experiences
at least one Diagnostic and Statistical Manual of Mental Disorders (DSM) disorder in
their lifespan (Bijl et al., 1998). The symptoms experienced range from feeling tired
and having a lack of interest, to experiencing strong feelings of depression. Such
episodes can have a great influence on the well-being one experiences.

Although numerous papers on e-mental health research platforms exist, only a
few of them shed light on the platform’s architecture. Griffiths and Christensen
(2006) give an overview of several on-line mental health assessments and Internet
based treatments. The authors conclude that the e-mental health assessments ap-
pear to provide a promising means for mental health self management. Donker et
al. (2013) review several mobile applications used to deliver mental health assess-
ments. In their research they conclude that mobile phones are well suited to give
basic advice on mental health.

SOA and SOC are two relatively new concepts in the field of e-mental health and
health research. Research platforms are often basic and do not consider any elab-
orate (service-oriented) architecture. Only a few studies describe the use of these
concepts. Kazi and Deters (2013a, 2013b) describe an architecture for a diary study
that measures pain which applies various SOC principles. They found that the com-
bination of Web technology and a representational state transfer (REST) architecture
allows for the development of a reliable and secure health information system. Some
research exists with regards to safely storing health data in a SOA environment. Fan
et al. (2011) describe DACAR, a secure data storage by means of a single point of
contact (SPOC). DACAR uses a SOA to support integration of eHealth services.

The described works show that SOA and SOC are viable concepts because of the
requirements they can fulfill in eHealth platforms, both functional (such as authen-
tication / authorization and storage of medical data) and non-functional (such as
interoperability and privacy). However, the SOA and SOC concepts have not seen
widespread adoption for e-mental health applications focusing specifically on ques-
tionnaires. As a result, these applications are created as isolated, one-off solutions.



4.2. Two Case Studies 47

Our e-mental health applications, HND and Leefplezier, are both partly based on
SOA concepts, which we will analyze in this chapter. For each of these applications,
we analyze the degree of SOC applied and motivate the design decisions. Further-
more, we present a generic architecture based on these case studies. The first of the
two case studies (HND) was intended as a one-off project, the second case study,
however, was designed to use more reusable components (Leefplezier). Analyz-
ing the differences and commonalities between these case studies gave us insight in
which elements could be important in a generic e-mental health platform.

4.2 Two Case Studies

In Chapter 3, we described some of the background of the research from the HND

and Leefplezier studies. Here we describe and analyze the architecture of these plat-
forms. Both platforms enable e-mental health research on a moderate to large scale.
HND was designed to obtain insight in the psychological well-being of the Dutch
population. Leefplezier focuses on well-being of elderly people in the Netherlands.
An overview of the architecture and degree of SOC of both applications is provided
in Section 4.2.1 and Section 4.2.2. To provide some basic context we give a short
introduction on both platforms and their backgrounds. For a more elaborate de-
scription see Chapter 3. A comparison of both architectures is performed to derive
a generic architecture. Section 4.2.3 describes the technical details of both platforms.

4.2.1 The Architecture of HowNutsAreTheDutch

HND is a Web application created as the platform for a national Dutch mental health
research project (Blaauw, van der Krieke, Bos, et al., 2014; van der Krieke, Jeron-
imus, et al., 2016). In the HND application, people can fill out various psychological
questionnaires and automatically retrieve feedback on these questionnaires. This
feedback is a comparison with the average Dutch population combined with per-
sonalized diagrams and figures, depending on the questionnaire.

As is described in the previous chapter, HND offers two types of studies: (i) a
cross-sectional study and (ii) an individually repeated ecological momentary assess-
ment (EMA) study (referred to as diary study). In the cross-sectional study, partici-
pants can fill out a number of questionnaires from a predefined set of questionnaires.
The diary study focuses on within-person variance by letting the participants fill out
the same questionnaire multiple times. In the diary study, participants are measured
for thirty consecutive days by filling out a questionnaire, consisting of 43 questions,
three times per day (van der Krieke, Blaauw, et al., 2016; van der Krieke, Jeronimus,
et al., 2016). The participants in this study are notified via SMS when they should fill



48 4. Architecture and Infrastructure of HowNutsAreTheDutch and Leefplezier

out their next questionnaire. The SMS contains the link to the Web application, on
which the questionnaire can be filled out. After filling out a cross-sectional question-
naire or after participating in the diary study, people get automatically generated
feedback.

Computation ser-
vice (Autovar)

Repeated Question-
naire Service (RoQua)

Diary Data

RubyGems

API Documents /
Service contract

Authentication Li-
brary (Devise)

User Data Access
Implementation

Questionnaire
Library (Quby) Questionnaire

data

User Pro-
file Data

hnd

Service registry

Service providers

Service clients

Publish

Bind

Find

Figure 4.1: General overview of the HowNutsAreTheDutch architecture.

Figure 4.1 gives an overall overview of the HND architecture. The architecture
consists of an application built upon various local libraries and several external ser-
vices. Most functionality in HND is built into the application itself. Authentication
and questionnaire conduction is implemented using two off-the-shelf libraries. The
questionnaire data is stored in a database separate from the authentication infor-
mation and user specific data (demographical information and email addresses) in
order to limit the risk of a security breach affecting both types of data. The di-
ary study uses two service-based components. Firstly, a service is used to perform
the scheduling of the questionnaires. This service schedules the notifications and
does a callback to HND whenever a participant should be notified. Secondly, when
participants have completed their diary studies, personal feedback is automatically
calculated. In order to calculate this feedback, an existing service is used (Auto-
var; Emerencia et al., 2016). Autovar calculates a vector autoregression (VAR) model
and returns a JavaScript object notation (JSON) containing results to HND. Autovar
calculations can be started using a Web service. The feedback based on the results
returned by Autovar is rendered using client-side JavaScript.



4.2. Two Case Studies 49

4.2.2 The Architecture of Leefplezier

Leefplezier focuses on enhancing, sustaining, and providing feedback on the well-
being of elderly people (Blaauw, van der Krieke, de Jonge, & Aiello, 2014; Jeronimus
et al., 2017). Although the goals and procedures of the Leefplezier project are sim-
ilar to those used in HND (see Chapter 3), their architectures have some important
differences. Compared to HND (depicted in Figure 4.1), the Leefplezier architecture

Computation
service

(Autovar)

Visualization
service (fizzy)

Questionnaire
Data

Diary Data

User Pro-
file Data

User Ac-
count Data

Questionnaire
Service (RoQua)

Repeated Question-
naire Service (RoQua)

User Data Service (Core)

Authentication
Service (Core)

RubyGems

API Documents /
Service contract

Content Management
System (RefineryCMS) Application

content

Content Management
System (Symphony2) Application

content

Leefplezier App

Leefplezier.nu

Service registry

Service providers

Service clients

Publish

Bind

Find

Figure 4.2: General overview of the Leefplezier architecture.

(depicted in Figure 4.2) depends more on external service-based components. Both
the cross-sectional part and the diary study part are implemented using SOC. Au-
thentication of users is provided by a single sign-on (SSO) approach. Leefplezier par-
ticipants authenticate themselves to a third-party application and are provided ac-
cess Leefplezier via keyed-hash message authentication code (HMAC). HMAC uses
a cryptographic hash function in order to verify the authenticity of a message and
thereby authenticating a participant. Storage of demographical data is provided by
a separate service. The calculation of diary study results is performed using the
Autovar service. However, in Leefplezier, the Autovar service (as described in Sec-
tion 4.2.1) is wrapped in a visualization service. This visualization service takes care
of running Autovar and also renders the feedback of the questionnaires. The only



50 4. Architecture and Infrastructure of HowNutsAreTheDutch and Leefplezier

part customized for Leefplezier is the content management system (CMS) and the
business logic to connect the services.

4.2.3 Technical Overview

The case studies share several commonalities. For example, communicating and au-
thenticating with external services and their encompassing frameworks. The com-
munication with external services is performed using a REST architecture. A REST

architecture uses the hypertext transfer protocol (HTTP) for accessing the external
services (e.g., GET, PUT, POST, and DELETE methods). These method invocations
are sent over a secure socket layer (SSL) connection to ensure privacy and security.
Binding to these services is secured by using server-to-server authentication. Three
methods of authentication are used (depending on the service): (i) HTTP basic au-
thentication, (ii) open authorization (OAuth) and (iii) HMAC. HTTP basic authentica-
tion and OAuth are used for the general communication with the service providers.
HMAC is used to allow external applications to access Leefplezier, such as the SSO

service.
Both case studies are implemented in the open-source Web framework Ruby on

Rails. Ruby on Rails has numerous plug-ins available (called Gems in Ruby par-
lance). These Gems are self-contained packages providing functionality that can be
used by the application including them. HND and Leefplezier use Gems in order
to provide a clean interface to the SOC services. The HTTP communication to the
services is abstracted by the Gems, by providing a simple application programming
interface (API) to the developers. Gems can be distributed via standardized ser-
vices, such as RubyGems1. RubyGems is in this case used as a service registry. An
overview of these separate components from a classical SOC perspective is shown
in Figure 4.3.

The components of both architectures that have not yet been discussed, includ-
ing the applications used to provide some of the functionality (e.g., Quby and Ro-
Qua), are elaborated in the next section.

4.3 Comparison

Both HND and Leefplezier are used for collecting mental health data and as such
share several commonalities in their architectures. However, there are some note-
worthy dissimilarities, mainly for the following two reasons. Firstly, the applica-
tions were built in succession. We developed HND prior to developing Leefplezier.

1Website: https://rubygems.org

https://rubygems.org


4.3. Comparison 51

Service Registry
RubyGems

Service Consumer
Application

(Ruby on Rails)

Service Provider
External services

Finds Registers

Invokes

Figure 4.3: High-level service-oriented architecture using Ruby on Rails.

The experience of building and maintaining HND has influenced our decisions in
designing the Leefplezier architecture. Secondly, the operating environments for
the two applications were different. HND focused on sampling a larger percentage
of the Dutch population. In order to find a large group of participants for HND,
seeking publicity for HND was done using several newspaper articles, magazine ar-
ticles, radio interviews, and other media attention (see Chapter 3 for more details).
When media attention was sought to announce new features of the application, this
imposed strict deadlines on the development of HND and could cause a sudden in-
crease in the number of participants. The important requirements for HND were
therefore speed of development and scalability, often at the expense of maintain-
ability and reusability. Leefplezier, on the other hand, was aimed at a smaller target
audience, that is, elderly people associated with certain care organizations. For Leef-
plezier, scalability is therefore not a primary concern. The lack of reusable code from
the HND project forced us to create Leefplezier from scratch and to reevaluate the
design priorities. For Leefplezier, two of the main requirements were established to
be reusability and maintainability, by relying more on off-the-shelf components and
existing services.

Table 4.1 shows the degree to which SOC concepts were applied in the case stud-
ies. ‘Custom’ describes the components that were custom built for the target appli-
cation. SOC describes the components used via external services. The remainder of
this section explores, discusses, and compares the impact that the different require-
ments have on the architectural design of the applications.

4.3.1 Data Security

Often e-mental health platforms can contain delicate and personal information that
should not be publicly available. Keeping this information safe is a primary re-



52 4. Architecture and Infrastructure of HowNutsAreTheDutch and Leefplezier

quirement for any e-mental health platform. An important factor for achieving data
security is the data storage location. One can choose to store the data locally or out-
source storage to an external service. In the latter case, one could opt for choosing
an external service that is specialized in storing medical data.

In HND, the questionnaire data is stored locally. However, to reduce the impact
of a security breach, the personal information (i.e., demographical data, email ad-
dresses, and authentication details) is stored separately from the questionnaire data.
For both types of data a different database management system is used and the data
is stored on physically different servers.

Leefplezier uses a specialized medical service known as RoQua to store its data.
RoQua is a company that offers different services for storing personal data and for
storing anonymous questionnaire data. Authentication to Leefplezier is provided
by a SSO service. By using an external SSO provider, Leefplezier is not responsible
for securely storing the login information.

4.3.2 Conducting Questionnaires

In HND, we used an existing application for administering questionnaires, named
Quby2. Quby is an application designed for administering questionnaires in the
field of mental health. Currently, the Quby application only supports the mode
where we are responsible for hosting the data. Hosting the data in a self-managed
database did give us more flexibility since we had direct access to the data. The
trade-off for this flexibility is having to assume responsibility for securely storing
the questionnaire data.

2Source available at https://github.com/roqua/quby_engine.

Table 4.1: The degree of SOC applied in the case studies.

Topic HowNutsAreTheDutch Leefplezier

Authentication Custom SOC

Data management Custom SOC

Questionnaires Custom SOC

Diary questionnaires SOC SOC

Content management Custom CMS

Result calculation SOC SOC

Result visualization Custom SOC

Newsletter list management Custom SOC

https://github.com/roqua/quby_engine


4.3. Comparison 53

The Leefplezier platform uses Quby as a service. The Quby used in Leefple-
zier is hosted by an organization specialized in conducting medical questionnaires,
namely the company mentioned Section 4.3.1; RoQua. RoQua offers a platform that
hosts Quby called RoQua-ROM. RoQua was used for all interactions with the hosted
Quby, by means of REST Web services. These Web services were exposed natively
through a Ruby Gem.

Although the service-oriented approach of Leefplezier for conducting question-
naires absolves us from the responsibility of having to worry about storing ques-
tionnaire data, it is not without caveats. The main issues with the Leefplezier ap-
proach are development time and flexibility. Implementing questionnaire function-
ality using an external Web service could save development time. However, since
the available services were created to be generic, they might not exactly provide the
functionality needed by the platform to be implemented, and some additions might
be required in order for the system to be usable. This was the case for the Leefplezier
application, and such additions added up to a significant part of the time spent on
the development of the Leefplezier.

4.3.3 Feedback Generation

The two case studies attempt to incentivize participants to fill out questionnaires by
providing them with individual and useful feedback based on their questionnaire
data. In particular, the diary study allows for detailed analysis of the changes in
behavior of a person over time.

The feedback for the cross-sectional study phases is relatively straightforward.
We present the participants with a graph of their score compared to the maximum
obtainable score and compared to the score of the average of the other people in the
study. These graphs are calculated synchronously as they do not require lengthy
statistical analysis.

In contrast, the diary study feedback is complex. We perform time series anal-
ysis using VAR models to elucidate causal relationships between symptoms mea-
sured in the questionnaires. In order to fit a VAR model automatically, we use Auto-
var (Emerencia et al., 2016). Autovar is written in the statistical programming lan-
guage R, so its code cannot execute directly on the Ruby platforms. We therefore in-
terface with Autovar over a RESTful interface, using the OpenCPU platform (Ooms,
2014). The OpenCPU approach is used for both the HND and Leefplezier applica-
tions and provides the added benefit of separating the statistical calculations from
the application logic in a way that facilitates the reusability and scalability of the
Web applications.



54 4. Architecture and Infrastructure of HowNutsAreTheDutch and Leefplezier

4.3.4 Feedback Visualization

Various graph types are used to visualize the questionnaire results (e.g., bar graphs,
line graphs, scatter plots, pie charts, etc.). The graphs showing this feedback are
generated using the Highcharts and data-driven documents (D3) libraries. These are
JavaScript libraries for rendering graphics. HND uses both libraries to visualize the
feedback graphics. Since the only way to access HND is by using the Web interface,
these front-end JavaScript can be implemented directly into the application.

For the Leefplezier application, however, it is insufficient to only use client-side
rendering. In Leefplezier, participants should also be able to view their feedback
on a mobile application. For this feedback to be generated in a generic and abstract
way, we developed Fizzy, a reusable service provider that generates graphs based
on questionnaire data.

4.3.5 Content Management

Not all contents of a Web application are static. Some pages may require regular
additions, removals, or other updates of text and media. Rather than editing the
hypertext markup language (HTML) files on the server by hand, applications fre-
quently facilitate editing their contents as an integral part of the functionality of the
Web application using a CMS. A CMS is designed to be easy to use for people without
a technical background. The main advantage of using a CMS is the fact that multiple
users are able to edit the contents of the application as it is running. Without a CMS,
any changes in the contents of the application falls to the responsibility of the appli-
cation developers. The main disadvantage of using a CMS is that it incurs a higher
up-front cost from the development team as the application needs to be adapted to
integrate the CMS. Nevertheless, in most situations the application developers do
not remain available for the length of the project to maintain the system for minor
textual changes. In these cases a CMS is inevitable.

HND was implemented without the use of a CMS. All changes that were to be
made to the application were given to the development team, who directly edit the
HTML source of the pages. The decision for not having a CMS was made during the
development phase, in order to save time on development and have high flexibility.
In our experience, having a CMS, at least for the most frequently changing pages of
the website, is worth the extra up-front cost. It would have been more time efficient
if HND was implemented with a CMS, compared to the current approach.

The Leefplezier does integrate a CMS. The application uses RefineryCMS3. Our
experience with having to maintain the HND website and being tasked with adding

3Source available at https://github.com/refinery/refinerycms.

https://github.com/refinery/refinerycms


4.4. Requirements of E-mental Health Applications 55

content throughout the year influenced our opinion in that it is good practice not
only to separate contents from design but also to allow those contents to be updated
directly by the users that create that content.

4.4 Requirements of E-mental Health Applications

From our two case studies, we extracted several architectural commonalities and
heuristics. Furthermore, we identified three main non-functional requirements that
are applicable to e-mental health applications in general: (i) data security and patient
privacy, (ii) maintainability of the e-mental health platform, and (iii) availability and relia-
bility of the platform for data collection.

4.4.1 Data Security and Patient Privacy

Security and privacy are two requirements inextricably tied to any application that
deals with personal health information. Law and regulations dictate the use of nu-
merous security standards for collecting and storing medical information. SOC can
help achieving a secure and privacy aware system by restricting data access for ser-
vice clients. The service provider could be the only service retaining the data, being a
SPOC for data retrieval. The provider can be used as a security authority and restrict
access to the data by only exposing specific services to specific service clients (Fan
et al., 2012). The separation of concerns in SOC also makes a system inherently more
secure. A separation of, for example, personal data from patient health data reduces
the chance of compromising all data, if one of the service providers were to contain
a security breach. Some organizations have policies stating that data needs to be
stored in-house. Such policies make the use of generic SOC solutions impossible.
The last important aspect is the reuse of the service its security standards. In order
to store medical data, a system should have various certifications (e.g., ISO 27001 or
NEN 7510 in the Netherlands) as imposed by law and regulations. Reusing a system
that has these certifications is more time efficient.

4.4.2 Maintainability of the E-mental Health Platform

Researchers in e-mental health projects are mostly concerned with starting the data
collection as soon as possible and would prefer to spend little time and effort in
having to develop and maintain the application. The concerns of these researchers
can be met by combining off-the-shelf components rather than directing a one-off
monolithic solution for which they are solely and wholly responsible. This work-



56 4. Architecture and Infrastructure of HowNutsAreTheDutch and Leefplezier

flow is accelerated by using SOC because it can reduce the lead time for developing
a new project while outsourcing most of the software maintenance.

The distribution of responsibilities imposed by SOC also increases maintainabil-
ity. For example, by separating the concerns of application logic from those of the
statistical data analysis, software developers and researchers can adapt the parts of
the project in their field of expertise. Moreover, because of the dynamic binding
between the SOC components, external services can be updated without needing to
redeploy the application.

4.4.3 Availability and Reliability for Data Collection

The punctual and time-dependent nature of many medical studies imposes high
demands on system availability and reliability. These demands are magnified when
the system features a patient-facing front-end. Especially in studies where patient
compliance is an area of concern, additional technical difficulties that may discour-
age participation can be detrimental or even prohibitive to performing a study suc-
cessfully. For instance, when data are collected in real-time, or relatively often (e.g.,
in a diary study), one requires a platform to be reliably available. Availability con-
cerns can be mitigated by SOC since separation of concerns can help increasing the
availability of critical parts of the system. These parts can be replicated decreasing
the chance of a failure to occur.

4.5 Proposed Architecture

Based on the analysis of the architectures of HND and Leefplezier, we propose a
generic architecture for e-mental health applications, shown in Figure 4.4. In this
figure, the colors indicate the likelihood of an individual application having to write
application-specific code in the layer (green is very likely, blue is likely, and red is
very unlikely). Based on the lessons learned from both platforms, this architecture
encompasses the elements common to applications in e-mental health research.

The architecture set out in Figure 4.4 consists of five layers. From top to bottom,
the layers decrease in volatility and in interactivity with the user. For example, while
the presentation layer consists of mostly user-facing code, the lower layers contain
the back-end of the application (hence the decrease in user interactivity). The de-
crease in volatility is because the top layers are deemed application specific, with
layouts and graphical user interfaces that may vary from project to project, while
the lower layers contain functionality that is more generic, more complex, unlikely
to change frequently, and often accessed through service-oriented mechanisms.



4.5. Proposed Architecture 57

Presentation layer

Application layer

Service adapter layer

CMS

Questionnaire
Service

...Authentication
Service

Personal
Data Service

Computation
Service

Questionnaire
Data

User Data Profile Data Result Data

Figure 4.4: A layered overview of a generic architecture for e-mental health applications.

The topmost layer is the presentation layer. The presentation layer houses the
user-interface (e.g., layout templates and themes) of the application. We envision
this layer to be the most application specific and to feature little code reuse, as each
application is likely to want to use its own theme and looks. Figure 4.4 shows a con-
nection between this layer and the CMS, as certain assets may be modified through
a CMS, for example.

The second layer is the application layer. The application layer features the appli-
cation logic as well as other code that lets the presentation layer interact with the
other layers. Examples of application-specific components may include the specifi-
cations for which pages are accessible to users, the diary study protocol, and which
plots to include on a results page. Examples of reusable components in this layer
may include, for example, code to generate certain result plot types or account man-
agement pages.

The service adapter layer serves to abstract the application from the service-specific
code for interfacing with the back-end services. This layer functions as an adapter
by providing the application with a non-changing interface to interchangeable exter-
nal services. This layer may host service-specific code to support certain services or
service types. This code should be restricted to this layer and only needs to change



58 4. Architecture and Infrastructure of HowNutsAreTheDutch and Leefplezier

when the external components change, not when the application changes. We envi-
sion a scenario where these adapter definitions are managed by a service registry.

The fourth layer is the service layer, which contains the service providers. We
have identified four primary services as the common subset of services used by ap-
plications in e-mental health: (i) questionnaire services, (ii) authentication services,
(iii) personal data services, and (iv) computation services. These services should
operate agnostic of the application and are often external to the application. The
additional flexibility provided by the service adapter layer warrants that external
services may be used as interchangeable parts, allowing one to switch to a differ-
ent questionnaire manager without having to rewrite any application code (for this
particular example, migrating questionnaire data is a separate issue but an issue
nonetheless).

The fifth layer is the data layer, which contains the data collected by the research
application. For this layer we firstly propose to (physically) separate user identifi-
able information (i.e., user account information and demographics) from the other
data, to the best extent possible. The reason is that a data leak is more likely to
happen in either one of these services than to both at the same time. Secondly, the
process of selecting external services should weigh the availability of features for
exporting data that meet the research requirements.

A separate component in the architecture is the CMS. In the proposed architec-
ture one should take into account which contents of the application are likely to
change, and if there are such contents, to provide a means for regular users to man-
age this content themselves. In practice, this often translates to integrating a CMS.
Because, in theory, any form of an administrative interface could also be used to
manage, e.g., which questionnaires are selected for a study or which external ser-
vices should be used, the CMS layer may have tie-ins to the application layer and
service adapter layer. With the CMS being such an integral part of the application,
it is often difficult to abstract the CMS from the rest of the application in a way that
facilitates, for example, interchangeability. The architecture presented in Figure 4.4
satisfies the requirements listed in Section 4.4. A short explanation for each require-
ment is listed below.

Data security and patient privacy: the generic architecture absolves the appli-
cation owner from being solely responsible for data security by assigning responsi-
bility to each of the external services for managing their share of the data. Security
could further be increased by using data storage services from providers that spe-
cialize in information security or by using encrypted data storage systems.

Maintainability of the e-mental health platform: applications following the
proposed architectural guidelines are maintainable because they (i) separate appli-
cation-specific code from reusable code (e.g., the layout is separated from the back-



4.6. Discussion and Concluding Remarks 59

end logic), (ii) separate code by functionality and responsibility (e.g., only the com-
putation service is responsible for statistical computations, and for nothing else),
and (iii) separate static content from dynamic content, allowing direct user edits for
the latter category (i.e., by integrating a CMS).

Availability and reliability for data collection: although our architecture does
not directly influence the availability and reliability of the platform, it was designed
to allow for redundant availability between any of its individual components, pro-
viding a high level of reliability.

4.6 Discussion and Concluding Remarks

We analyzed the architecture of both HND and Leefplezier with a particular focus
on SOC. From this analysis, we distilled a generic architecture that could be used
for other online e-mental health platforms. Despite the fact that we performed our
analysis only on these two platforms, we believe that the architecture presented and
the caveats described for implementing service-oriented architectures can serve as
blueprint for developing e-mental health research applications in general. In fact,
we recently released a new e-mental health diary study platform4 in part based on
the principles and heuristics described in this chapter.

One of the major advantages of our proposed architecture is the loose coupling
of the service components, provided by SOC. Loose coupling allows for easy reuse of
the services when implemented in a generic way. In our proposed architecture, the
service adapter layer enforces the loose coupling between the application and the
services it uses. Reuse of existing systems can save development time for successive
studies and can eventually save costs. For medical data, one advantage of SOC could
be to outsource the responsibility for keeping data secure.

However, the increase in security and maintainability comes with a decrease in
flexibility, performance, and testability. Flexibility is reduced as the service client
has no direct influence on the functionality exposed by the service provider. In
many cases, the service client might not have access to run detailed queries on the
data. Performance is reduced due to the extra layer of abstraction (i.e., the API of the
service provider) between data and application. Data requests that invoke an ex-
ternal service induce latency and bandwidth overhead compared to direct database
connections. Especially in procedures that invoke multiple repeated queries, the
performance penalty can be significant. Testability is reduced as traditional testing
approaches may be less suitable for applications that use SOC (Canfora & Di Penta,
2009). This may result in applications being unable to validate the functionality of

4Website (in Dutch): https://nemesisdagboekonderzoek.nl.

https://nemesisdagboekonderzoek.nl


60 4. Architecture and Infrastructure of HowNutsAreTheDutch and Leefplezier

external services, having to trust that their descriptions are accurate and up-to-date.
Even in cases where testing external services is theoretically possible, this may be
too slow and costly for practical use, especially for services that charge on a per-
request basis.

As e-mental health applications frequently have a significant amount of overlap
in terms of their main functionality (i.e., recording questionnaires and providing
feedback), using a SOA fosters the reuse of these components and meets the most
important requirements of e-mental health platforms. The use of specialized ser-
vices can help application owners to focus on performing research without being
burdened with the implementation details of every single aspect of the application.
If more applications followed these guidelines, then perhaps the interfaces could be
standardized, as other formats in medical informatics have. Components could be
reused not only between projects within the same hospital, but between different
hospitals worldwide.


	Chapter 4



