Draft genome sequence of Bacillus thuringiensis strain BrMgv02-JM63, a chitinolytic bacterium isolated from oil-contaminated mangrove soil in Brazil

Marcon, Joelma; Taketani, Rodrigo Gouvêa; Dini-Andreote, Francisco; Mazzero, Giulia Inocêncio; Soares Junior, Fabio Lino; Melo, Itamar Soares; Azevedo, João Lúcio; Andreote, Fernando Dini

Published in:
Genome Announcements

DOI:
10.1128/genomeA.01264-13

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Takedown policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Here, we report the draft genome sequence and the automatic annotation of *Bacillus thuringiensis* strain BrMgv02-JM63. This genome comprises a set of genes involved in the metabolism of chitin and N-acetylglucosamine utilization, thus suggesting the possible role of this strain in the cycling of organic matter in mangrove soils.

Chitinases are enzymes that catalyze the conversion of chitin (a linear homopolysaccharide of β-1,4-N-acetylglucosamine) to its monomeric compounds. These enzymes are widely distributed in nature, being produced by a large variety of chitin-degrading organisms, including bacteria, fungi, insects, plants, and animals (1). The Gram-positive aerobic/facultative anaerobic endospore-forming bacterium *Bacillus thuringiensis* is commonly found in soils and estuarine sediments, as well as in association with plant roots (2, 3). *B. thuringiensis* strain BrMgv02-JM63 was originally isolated from oil-contaminated mangrove soil located in the city of Bertioga, São Paulo, Brazil (23°53′49″S, 46°12′28″W). This bacterium presents the ability to solubilize chitin when growing in minimum medium amended with 1% colloidal chitin. Features related to chitinolytic activity have been annotated in the draft genome.

Shotgun sequencing of the *B. thuringiensis* BrMgv02-JM63 genome was performed using the Ion 316 chip technology provided in the Ion sequencing kit 200 version 2.0, according to the manufacturer’s protocol. The genome sequence was *de novo* assembled using MIRA version 3.4, CLC Genomics Workbench version 5.5.1, and SOAPdenovo2 assembler (4). The obtained contigs were further integrated using CISA (5).

A total of 3,106,906 reads (Q > 20), with a mean length of 145 bp, were assembled using a reference-based approach and allocated into 33 contigs ranging from 32,627 to 545,251 bp in length. The mean G+C content of the genome is 35%, and genome coverage depth is approximately 90×. The assembled data were automatically annotated by RAST (6). The draft genome size is 4,931,802 bp, comprising 5,137 open reading frames (ORFs) and 51 RNA genes. Automatic annotation by RAST predicted a total of 18 genes involved in the metabolism of chitin and N-acetylglucosamine (NAG) utilization. These predicted genes account for one copy of the regulator *nagR*, two copies of the gene *nagA*, one copy each of the *nagBJ, nagEn, nagEd*, and *nagQ* genes, seven copies of chitinase (*ChiA_20*) (EC 3.2.1.14), and three copies of chitin binding protein.

Bacillus spp. have been described as chitin degraders in soils (7, 8) and phylloplane (9) and in association with insects (10). However, the particular conditions found in mangrove soils (i.e., low oxygen availability and salinity) might select features unique to chitinases that have evolved in this environment. The ongoing work will quantify the efficiency of this strain in degrading *in vitro* colloidal chitin, and also the genomic arrangement of these genes will be compared across closely related genomes publicly available in the database.

Nucleotide sequence accession numbers. The *B. thuringiensis* strain BrMgv02-JM63 genome sequence and annotation data have been deposited at DDBJ/EMBL/GenBank under the accession no. AYSM00000000. The version described in this paper is version AYSM01000000.

ACKNOWLEDGMENTS

We thank João L. Silva for support on our expedition to the mangroves. We also acknowledge the São Paulo Research Foundation (FAPESP) for financial support (process no. 2012/06245-2) and for a postdoctoral fellowship to Joelmá Marcon (process no. 2011/18740-5).

REFERENCES

