Resonance Raman Microspectroscopy of Myeloperoxidase and Cytochrome b(558) in Human Neutrophilic Granulocytes
Sijtsema, N M; Otto, C; Segers-Nolten, G M J; Verhoeven, A J; Greve, J

Published in:
Biophysical Journal

DOI:
10.1016/S0006-3495(98)78031-2

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1998

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Resonance Raman Microspectroscopy of Myeloperoxidase and Cytochrome \(b_{558}\) in Human Neutrophilic Granulocytes

N. M. Sijtsema,* C. Otto,* G. M. J. Segers-Nolten,* A. J. Verhoeven,# and J. Greve*

*Applied Optics Group, Department of Applied Physics, Institute for Biomedical Technology, University of Twente, 7500 AE Enschede, and #Blood Transfusion Service, Central Laboratory of the Netherlands Red Cross, 1006 AD Amsterdam, the Netherlands

ABSTRACT With (resonance) Raman microscospectroscopy, it is possible to investigate the chemical constitution of a very small volume (0.5 fl) in a living cell. We have measured resonance Raman spectra in the cytoplasm of living normal, myeloperoxidase (MPO)-deficient, and cytochrome \(b_{558}\)-deficient neutrophils and in isolated specific and azurophilic granule fractions, using an excitation wavelength of 413.1 nm. Similar experiments were performed after reduction of the redox centers by the addition of sodium dithionite. The specific and azurophilic granules in both redox states appeared to have clearly distinguishable Raman spectra when exciting at a wavelength of 413.1 nm. The azurophilic granules and the cytochrome \(b_{558}\)-deficient neutrophils showed Raman spectra similar to that of the isolated MPO. The spectra of the specific granules and the MPO-deficient neutrophils corresponded very well to published cytochrome \(b_{558}\) spectra. The resonance Raman spectrum of the cytoplasmic region of normal neutrophilic granulocytes could be fitted with a combination of the spectra of the specific and azurophilic granules, which shows that the Raman signal of neutrophilic granulocytes mainly originates from MPO and cytochrome \(b_{558}\), at an excitation wavelength of 413.1 nm.

INTRODUCTION

Neutrophilic granulocytes play an important role in the human immune system. It is their task to migrate to sites in the body where an infection has occurred and to ingest and destroy the bacteria responsible for the infection. Neutrophils contain two heme proteins that are of importance in this process (Borregaard, 1988): cytochrome \(b_{558}\), which is localized in the membranes of the specific or secondary granules and the secretory granules, and myeloperoxidase (MPO), which is concentrated in the azurophilic or primary granules. Neutrophils ingest invading microbes in a so-called phagosome. Both the azurophilic and specific granules fuse with this phagosome. MPO is released into the phagosome, and the cytochrome \(b_{558}\) is translocated to the phagosome membrane. Cytochrome \(b_{558}\) is the central protein in the NADPH oxidase leading to the formation of superoxide anions, which dismutate to hydrogen peroxide. MPO catalyzes the oxidation of chloride to the bactericidal agent hypochlorous acid by hydrogen peroxide.

MPO consists of two monomers that are covalently linked to one another by a single disulfide bridge. The monomers contain a heavy subunit (55–60 kDa), which is covalently linked to the heme, and a light subunit (10.5–15 kDa). The properties of MPO differ significantly from those of other mammalian peroxidases like lactoperoxidase (LPO), cosinophil peroxidase (EPO), and thyroid peroxidase (TPO). The visible absorption bands associated with the heme prosthetic group are red-shifted: the Soret band of MPO lies at 428 nm (Wever and Plat, 1981), whereas other mammalian peroxidases have Soret bands around 413 nm. Soret excitation Raman spectra of MPO are more complex, especially in the oxidation state marker region (1340–1380 cm\(^{-1}\)) (Sibbett and Hurst, 1984; Babcock et al., 1985; Stump et al., 1987). Furthermore, MPO is the only peroxidase that is able to catalyze the oxidation of chloride into hypochlorite at a significant rate. Crystal structure data (Zeng et al., 1992; Fenna et al., 1995) show that several residues are in close proximity to the heme group. Recently it has been reported that a mutation of Met\(^{243}\), one of these residues, has a large effect on the optical absorbance spectrum as well as the resonance Raman spectrum (Kooter et al., 1997). Kooter et al. concluded from these results that MPO has an iron porphyrin-like chromophore, and explained the red-shifted Soret band by the interaction of Met\(^{243}\) with the prosthetic group via a special sulfonium linkage and the presence of ester linkages between hydroxylated methyl groups on the heme and glutamate and aspartate residues, respectively.

Neutrophil cytochrome \(b_{558}\) consists of a FAD (flavin-adenine dinucleotide)-containing flavoprotein, a heme, and the NADPH-binding site (Segal et al., 1992; Rotrosen et al., 1992; Sumimoto et al., 1992). Raman spectra obtained upon Soret excitation (413 nm) indicated that the heme is a low-spin six-coordinate protoporphyrin IX (Hurst et al., 1991).

The importance of MPO in the host defense against invading organisms is not clear, because people with an MPO deficiency are in good health in most cases, although candidiasis, a fungal infection, has been reported to occur frequently in these people (Nauseef, 1990; Lehrer and...
Cline, 1969). Patients with chronic granulomatous disease (CGD), caused by a defect in, or the absence of, cytochrome b$_{558}$, suffer from severe, recurrent infections (Baehner and Nathan, 1967; Curnutte et al., 1974; Smith and Curnutte, 1991). This observation indicates that cytochrome b$_{558}$ is necessary for a properly functioning immune system.

Confocal Raman microscopy might provide more insight into the exact role of both proteins in the neutrophil immune response. Raman spectra of a very small volume (0.5 fl) can be obtained with this technique. These spectra contain information about the vibrational states of the molecules in the measurement volume. The energy of these vibrational states depends on the mass of the atoms involved in the vibration and the strength of the bond between these atoms. Therefore, a Raman spectrum is specific for a particular molecule or molecular group and reveals the molecular composition in the measurement volume.

The technique is very suitable for investigating living cells under physiological conditions, because no specific treatment of the sample, like the introduction of extrinsic labels, is necessary. Raman microspectra have been published for tissue (Manoharan et al., 1996), chromosomes (Puppels et al., 1992), and living cells (Puppels et al., 1990, 1993) under physiological conditions. Spectra of the cytoplasmic region of neutrophils at an excitation wavelength of 660 nm showed a strong contribution of MPO (Puppels et al., 1991). Resonance Raman spectra of frozen pellets of neutrophil granulocytes at 413.1-nm excitation mainly contained Raman bands originating from cytochrome b$_{558}$ (Hurst et al., 1991).

In resonance Raman (Vickers et al., 1991), an excitation wavelength is used that lies in or close to an absorption band of the molecule of interest. The resonance Raman effect leads to a considerable enhancement of the Raman signal of this molecule. A strong enhancement of the cytochrome b$_{558}$ signal and a less strong enhancement of the MPO signal is thus expected with an excitation wavelength of 413.1 nm, as its Soret bands are found at 413 nm (Isogai et al., 1991) and 430 nm (Wever and Plat, 1981), respectively.

The Raman spectra of neutrophilic granulocytes are rather complex. Therefore we have started by measuring isolated specific and azurophilic granule fractions. The spectra of these granule fractions appeared to correspond well to published Raman spectra of isolated cytochrome b$_{558}$ (Hurst et al., 1991) and MPO (Sibbett and Hurst, 1984; Babcock et al., 1985; Stump et al., 1987), respectively. Raman spectra of MPO-deficient and cytochrome b$_{558}$-deficient neutrophils from a patient with CGD were measured at 413.1-nm excitation, to determine whether additional Raman bands originating from compounds other than MPO or cytochrome b$_{558}$ were present in the spectra of whole cells. Furthermore, normal neutrophils were measured, and their resonance Raman spectra were compared with the spectra of the separated granule fractions.

Similar measurements were performed with specific and azurophilic granule fractions and MPO-deficient and cytochrome b$_{558}$-deficient neutrophils after reduction of the redox centers with sodium dithionite. These measurements showed that clear spectral changes occur after reduction of the redox centers of MPO and/or cytochrome b$_{558}$.

MATERIALS AND METHODS

Peripheral blood neutrophils were isolated from fresh heparinized blood as described previously (Yazdanbakhsh et al., 1987). Neutrophils without MPO were obtained from a donor with a complete MPO deficiency, and granulocytes without cytochrome b$_{558}$ were from a patient with CGD. Quartz plates were incubated overnight with 0.01% poly-L-lysine (PLL) (P-1274, Sigma, St. Louis, MO) in phosphate-buffered saline (PBS) at 4°C. A few drops of 2 × 106 neutrophils/ml suspended in culture medium (RPMI 1640 + 25 mM HEPES without phenol red; Seromed) with 3% fetal calf serum (FCS) (011-06180; Gibco, Paisley, Scotland) were put on a PLL-coated quartz glass. After an incubation of 10 min at 37°C, the cells were fixed to the quartz, the neutrophil containing quartz glass was put into a petri dish (35 mm), and 2 ml RPMI + FCS was added. During the measurements the sample was kept at 37°C.

Specific and azurophilic granule fractions were obtained after sonication of neutrophils, followed by discontinuous sucrose gradient centrifugation (15/40/52/60% weight/volume sucrose) as described in detail by Bolscher et al. (1990). A few drops of granule suspension were put on a PLL-coated quartz glass, and after 10 min PBS was added. The Raman spectra of the granules were obtained by focusing the laser beam on a large group of granules. The spectra were corrected for the fact that the separation of the granules was not 100%, and ~20 spectra were averaged to improve the signal-to-noise ratio. The resulting spectra still contained some glucose, quartz, and sodium dithionite signal that was subtracted. A Zeiss 63× water immersion objective with a numerical aperture (NA) of 1.2 was used for the measurements on both neutrophils and granule fractions.

Human myeloperoxidase was isolated and purified from leukocytes as described by Bakkenist et al. (1987). A solution of MPO in a 100 mM potassium phosphate buffer was measured in 0.6 × 0.6 mm square capillaries, with a 0.12-mm wall thickness. A 40× objective (Spindler and Hoyer GMBH and Co., Göttingen, Germany) was used.

Raman spectra were measured with a confocal Raman microspectrometer described by Sijtsema et al. (1998). A schematic representation of the set-up is shown in Fig. 1. The 413.1-nm line of a krypton laser (Coherent, Innova 90-K) is reflected by a beamsplitter (reflection, 30%; transmission, 70% for 413 nm) and is focused on the sample by a microscope objective (Zeiss Plan Neofluar, 63×, NA 1.2, water immersion). The scattered light is collected by the same objective and transmitted through the beamsplitter. A holographic notch filter (Kaiser Optical Systems, Ann Arbor, MI) is used to suppress reflected laser light and Rayleigh scattered light. The scattered light is detected by means of a charge-coupled device (CCD) camera positioned at the multichannel exit port of the monochromator. Confocal Raman spectra are detected by a beam splitter (bs) and focused to a diffraction-limited spot by a microscope objective. The backscattered light is transmitted by the beam splitter and is focused onto a confocal pinhole at the entrance of a monochromator. Confocal Raman spectra are detected by means of a charge-coupled device (CCD) camera positioned at the multichannel exit port of the monochromator. A notch filter (nf) is used to suppress light with the laser frequency.

![FIGURE 1 Schematic representation of the confocal Raman microspectroscope.](image)
light is focused on a pinhole (50 μm) positioned at the entrance of a Jobin-Yvon HR460 imaging spectrograph/monochromator (ISA; Jobin-Yvon, Paris, France) containing a blazed holographic grating with 1200 gr/mm (630-nm blaze). A Princeton liquid nitrogen-cooled CCD detector containing a back-illuminated chip with 1100 × 330 pixels of 24 × 24 μm² (LN/CCD 1100 PB/VISAR; Princeton Instruments, Trenton, NJ) is placed in the focal plane of the spectrograph exit port and is used to measure Raman spectra of a small sample volume. The spatial resolution of the set-up was determined for two limiting cases: a thin layer and a small sphere. The resolution (full width at half-maximum) for a thin layer (diameter 0.282 μm) was 0.37 μm in the lateral direction and 1.2 μm in the axial direction. The axial resolution for a small sphere (diameter 0.282 μm) appeared to be 3.6 μm (Sijtsema et al., 1998). The axial resolution for cellular samples will be somewhere between 1.2 μm and 3.6 μm.

In the Raman measurements on neutrophils and granule fractions, it was observed that the MPO and cytochrome b₅₅₈ signal diminished fast during the illumination of the sample. This bleaching is probably caused by photodestruction of the MPO and cytochrome b₅₅₈. We have diminished the effect of bleaching in our measurements by optimizing the measurement time and the laser power. We found that with a laser power of 0.5 mW on the sample and a measurement time of less than 15 s, no decrease in the Raman signal could be observed. Therefore, we assumed that the effects of photodestruction of the proteins are negligible if every cell is measured only once during 10 s with a laser power of 0.5 mW.

The neutrophil spectra were measured by focusing the laser beam in an area with a large concentration of granules inside the cell. The spectra of 10–15 measurements on different cells were averaged to improve the signal-to-noise ratio. Quartz and buffer signals were subtracted.

RESULTS

In Fig. 2 resonance Raman spectra with an excitation wavelength of 413.1 nm of azurophilic granules (Fig. 2a) and CGD neutrophils without cytochrome b₅₅₈ (Fig. 2b) have been compared with those of isolated MPO (Fig. 2c). The three spectra show a large similarity. The Raman bands of isolated MPO are compiled in Table 1, column 1. The only differences are the band at 1663 cm⁻¹ and a shoulder at the right-hand side of the 1552 cm⁻¹ band in the granule, and the CGD spectra, which cannot be recognized in the isolated MPO spectrum.

In Fig. 2, d–f, the spectra of the azurophilic granules, CGD neutrophils, and isolated MPO after reduction of the redox centers by sodium dithionite are presented. The band-positions in spectra d and e are similar to those of isolated MPO with a reduced redox center (Table 1, column 2); however, the relative intensity of the 1359 and 676 cm⁻¹ bands is larger in Fig. 2e than in Fig. 1, d and f. Furthermore, an extra band around 1558 cm⁻¹ is present in Fig. 2, d and e. The bands at 980 and 1052 cm⁻¹ (indicated with an * in Fig. 2f) originate from sodium dithionite.

Fig. 3 shows the resonance Raman spectra of specific granules (Fig. 3a) and MPO-deficient neutrophils (Fig. 3b). Spectra of the same species after reduction of the redox centers with sodium dithionite are presented in graphs c and d. The strongest bands in Fig. 3, a and b, correspond well to published bands of isolated cytochrome b₅₅₈ (Hurst et al., 1991), which are summarized in Table 1, column 5. Spectra c and d show a large resemblance to the resonant Raman spectrum of reduced cytochrome b₅₅₈ published by Hurst et al. (Table 1, column 6). The bands at 980 and 1050 cm⁻¹ (indicated with an *) originate from sodium dithionite. The

![Figure 2](image-url) **FIGURE 2** Resonance Raman spectra (413.1 nm excitation) of azurophilic granules (a), cytochrome b₅₅₈-deficient neutrophils (b), and a 15 μM MPO solution in phosphate buffer pH 5 (c). Spectra a–c are scaled on the 1366 cm⁻¹ band and show mainly MPO-specific bands. Graphs d–f show spectra of the same species after reduction of the redox center and are scaled on the 1359 cm⁻¹ band. Spectra d–f are similar to spectra of reduced MPO. Bands indicated with an * in spectrum f originate from sodium dithionite.
TABLE 1 Comparison of strongest Raman bands of MPO, EPO, and cytochrome b₅₅₈

<table>
<thead>
<tr>
<th>Oxidized MPO</th>
<th>Reduced MPO</th>
<th>Oxidized EPO</th>
<th>Assignment EPO</th>
<th>Oxidized Cyt. b<sub>558</sub></th>
<th>Reduced Cyt. b<sub>558</sub></th>
<th>Assignment Cyt. b<sub>558</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>333</td>
<td>—</td>
<td>337</td>
<td>Vm*: δ(C<sub>1</sub>C<sub>α</sub>C<sub>β</sub>)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Vm: δ(C<sub>1</sub>C<sub>α</sub>C<sub>β</sub>)</td>
<td>344</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>410</td>
<td>—</td>
<td>410</td>
<td>Vm: δ(C<sub>1</sub>C<sub>α</sub>C<sub>β</sub>)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>676</td>
<td>676</td>
<td>675</td>
<td>Pm*: ν<sub>p</sub>(δ(C<sub>1</sub>C<sub>α</sub>C<sub>β</sub>)</td>
<td>676</td>
<td>676</td>
<td>Pm: ν<sub>p</sub>(δ(C<sub>1</sub>C<sub>α</sub>C<sub>β</sub>)</td>
</tr>
<tr>
<td>—</td>
<td>748</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Pm: ν<sub>p</sub>(δ(C<sub>1</sub>C<sub>α</sub>C<sub>β</sub>)</td>
</tr>
<tr>
<td>1116</td>
<td>1116</td>
<td>1123</td>
<td>Pm: ν<sub>p</sub>(C<sub>β</sub>S)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1366</td>
<td>1359</td>
<td>1369</td>
<td>Pm: ν<sub>p</sub>(C<sub>β</sub>N)</td>
<td>1375</td>
<td>1359</td>
<td>Pm: ν<sub>p</sub>(C<sub>β</sub>N)</td>
</tr>
<tr>
<td>1376</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>1424</td>
<td>1425</td>
<td>Vm: δ<sub>p</sub>(CH)<sub>2</sub></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1486</td>
<td>1472</td>
<td>1485</td>
<td>Pm: ν<sub>p</sub>(C<sub>1</sub>C<sub>α</sub>)</td>
<td>1507</td>
<td>—</td>
<td>Pm: ν<sub>p</sub>(C<sub>1</sub>C<sub>α</sub>)</td>
</tr>
<tr>
<td>1523</td>
<td>1523</td>
<td>1520</td>
<td>Pm: ν<sub>p</sub>(C<sub>1</sub>C<sub>α</sub>)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1552</td>
<td>1545</td>
<td>1551</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>1561</td>
<td>Pm: ν<sub>p</sub>(C<sub>1</sub>C<sub>α</sub>)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1592</td>
<td>1582</td>
<td>1583</td>
<td>Pm: ν<sub>p</sub>(C<sub>1</sub>C<sub>α</sub>)</td>
<td>1582</td>
<td>1585</td>
<td>Pm: ν<sub>p</sub>(C<sub>1</sub>C<sub>α</sub>)</td>
</tr>
<tr>
<td>1614</td>
<td>1606</td>
<td>1616</td>
<td>Vm: ν(C=C)</td>
<td>1622</td>
<td>1614</td>
<td>Vm: ν(C=C)</td>
</tr>
</tbody>
</table>

Assignments of EPO and cytochrome b₅₅₈ bands are taken from Salmaso et al. (1994) and Hurst et al. (1991), respectively.

*Vm: Vinyl modes.
#Pm: Porphyrin modes.
§In-phase vinyl mode.
¶Out-of-phase vinyl modes.

The Raman spectrum of MPO-deficient neutrophils with reduced redox centers (Fig. 3 d) contains a band at 1662 cm⁻¹ that cannot be recognized in the spectrum of reduced specific granules (Fig. 3 c).

In Fig. 4 a linear combination of the Raman spectra of azurophilic and specific granules (Fig. 4 a) is compared with the resonance Raman spectrum of neutrophilic granulocytes with an excitation wavelength of 413.1 nm (Fig. 4 b).
significantly. After a mutation of the Met243 residue to Gln, the thionic group of MPO affect the resonant Raman spectrum that mutations of residues in close proximity to the protoporphyrin moiety. In Table 1 a comparison is given of resonant Raman bands of MPO, EPO, and cytochrome b_{558}. The assignments of resonant Raman bands of EPO was taken from Salmaso et al. (1994), and the assignments of cytochrome b_{558} bands from Hurst et al. (1991).

Fig. 2 shows the large similarity of the resonance Raman spectra of azurophilic granules, CGD neutrophils, and isolated MPO. One difference that can be recognized is the band around 1663 cm\(^{-1}\) in Fig. 2, b and c, that can be attributed to an amide 1 vibration of protein in the cell. Furthermore, in Fig. 2, a and b, the band at 1552 is broader or comprises a stronger shoulder than in Fig. 2 c. Moreover, in the spectra of the azurophilic granules and CGD neutrophils after reduction of the redox centers (Fig. 2, d and e), an extra band around 1558 cm\(^{-1}\) can be recognized. This extra band is most probably caused by Raman scattering originating from oxygen molecules, which is known to have a Raman band around 1558 cm\(^{-1}\). This scattering by oxygen molecules occurs along the pathway of the laser beam through air. A small part of this scattered light can reach the detector. Because the signal levels in the spectra of isolated MPO are much higher, this small oxygen signal cannot be recognized there.

If the graphs 1 a–c are compared with 1 d–f, it is clear that a reduction of the redox centers caused distinct changes in the Raman spectrum of the azurophilic granules and CGD neutrophils. A reduction of the redox centers results in a shift of the 1366, 1486, 1552, 1592, and 1614 cm\(^{-1}\) bands to 1359, 1472, 1545, 1582, and 1606 cm\(^{-1}\), respectively.

The spectra of the oxidized and reduced specific granules in Fig. 3 correspond very well with published spectra of isolated cytochrome b_{558} (Hurst et al., 1991). Furthermore, the spectra of the neutrophils without MPO are similar to the spectra of the specific granules, apart from the protein band at 1662 cm\(^{-1}\) in Fig. 3 d. Therefore, we conclude from the spectra in Figs. 1 and 2 that the neutrophils do not contain components other than MPO and cytochrome b_{558} that contribute substantially to the Raman spectrum measured with 413.1-nm excitation.

The reduction of the redox center in cytochrome b_{558} can be recognized clearly in the Raman spectra of specific granules and neutrophils without MPO. After reduction, the 1375, 1507, and 1622 cm\(^{-1}\) bands shift to 1359, 1472, and 1606 cm\(^{-1}\), respectively. However, the origin of the differences between the resonant Raman spectra of MPO and those of other mammalian peroxidases like LPO and EPO is not fully understood yet. The Raman spectrum of MPO is more complicated, with multiple bands in the 1375 cm\(^{-1}\) band; spectrum c is the difference between a and b. The figure shows that the Raman spectrum of normal neutrophils mainly contains signals originating from MPO and cytochrome b_{558} with this excitation wavelength.

An assignment of the Raman bands of cytochrome b_{558} was published by Hurst et al. (1991). No complete assignment of the Raman bands of MPO has been published, as far as we know. The origin of the differences between the resonant Raman spectra of MPO and those of other mammalian peroxidases like LPO and EPO is not fully understood yet. The Raman spectrum of MPO is more complicated, with multiple bands in the \(\nu_4\) region (oxidation state marker; 1350–1380 cm\(^{-1}\)). Several authors have suggested that these differences can be explained by the symmetry-lowering effects of a chlorin-like structure of the prosthetic group (Sibbett and Hurst, 1984; Babcock et al., 1985; Andersson et al., 1984). However, in recent publications it was shown that mutations of residues in close proximity to the prosthetic group of MPO affect the resonant Raman spectrum significantly. After a mutation of the Met243 residue to Gln, the resonant Raman spectrum of MPO is rather similar to the spectra of LPO and EPO (Kooter et al., 1997). These results indicate that MPO contains an iron-protoporphyrin-like heme, and that the spectral differences can be explained by an interaction of the protein matrix with the chromophore. In Table 1 a comparison is given of resonant

DISCUSSION

FIGURE 4 Comparison of the sum of the azurophilic granules spectrum and the specific granules spectrum (a) with a normal neutrophil spectrum (b, average of 13 measurements) with an excitation wavelength of 413.1 nm. The spectra are scaled on the 1375 cm\(^{-1}\) band; spectrum c is the difference between a and b. The figure shows that the spectrum of normal neutrophils corresponds very well to the combination of the spectra of the specific and azurophilic granules.

In Fig. 4 c the difference between Fig. 4 a and Fig. 4 b is shown. It is obvious that the spectrum of neutrophils corresponds very well to the combination of the spectra of the specific and azurophilic granules.
c, whereas the 1614 cm\(^{-1}\) band of Fig. 3 c is not present in Fig. 2 d.

In Fig. 4 it is shown that the Raman spectrum of normal neutrophils can be fitted with the spectra of specific and azurophilic granules. Therefore, this figure shows that in normal cells the Raman spectrum measured with a 413.1 nm excitation contains mainly signal originating from MPO and cytochrome b\(_{558}\).

Our results show that the contribution of reduced and oxidized MPO as well as reduced and oxidized cytochrome b\(_{558}\) can be distinguished in the Raman spectra of living neutrophils. This is a very interesting result, because this means that processes inside living neutrophils, leading to a partial reduction of MPO or cytochrome b\(_{558}\), can be followed with Raman microspectroscopy. It is known that a reduction of cytochrome b\(_{558}\) occurs after activation of neutrophils with opsonized particles or soluble activators (Borregaard, 1988; Cross and Curnutte, 1995). Furthermore, a reduction of MPO in activated neutrophils has been reported (Winterbourn et al., 1985). Therefore, Raman microspectroscopy seems a very suitable technique for investigating reactions inside activated neutrophils. More knowledge about reactions occurring inside activated neutrophils may lead to more insight into the exact role of MPO and cytochrome b\(_{558}\) in the human immune response.

The authors thank Dr. Dominique Reumaux (Centre Hospitalier de Valenciennes, Valenciennes, France) for the MPO-deficient neutrophils, and Ingeborg M. Kooter (E.C. Slater Institute, Department of Biochemistry, University of Amsterdam, the Netherlands) for the isolated MPO.

Financial support of this work by the Netherlands Organization for Scientific Research (NWO) is gratefully acknowledged.

REFERENCES

Sijsjema et al. Raman Spectroscopy of Human Neutrophils 3255

