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Abstract This paper summarizes the submissions to a

recently announced contact-mechanics modeling chal-

lenge. The task was to solve a typical, albeit mathemat-

ically fully defined problem on the adhesion between

nominally flat surfaces. The surface topography of the

rough, rigid substrate, the elastic properties of the

indenter, as well as the short-range adhesion between

indenter and substrate, were specified so that diverse

quantities of interest, e.g., the distribution of interfacial

stresses at a given load or the mean gap as a function of

load, could be computed and compared to a reference

solution. Many different solution strategies were pursued,

ranging from traditional asperity-based models via Pers-

son theory and brute-force computational approaches, to

real-laboratory experiments and all-atom molecular

dynamics simulations of a model, in which the original

assignment was scaled down to the atomistic scale. While

each submission contained satisfying answers for at least
This article is part of the Topical Collection on Special Issue: The

Contact-Mechanics Challenge.
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a subset of the posed questions, efficiency, versatility,

and accuracy differed between methods, the more precise

methods being, in general, computationally more com-

plex. The aim of this paper is to provide both theorists

and experimentalists with benchmarks to decide which

method is the most appropriate for a particular applica-

tion and to gauge the errors associated with each one.

Keywords Contact mechanics � Adhesion � Modeling �
Nominally flat surfaces

1 Introduction

2016 marked the 50th anniversary of the pioneering work by

Greenwood andWilliamson (GW) on the contact mechanics

of nominally flat, but microscopically rough surfaces [1].

The goal was to explain the widely believed linear variation

of contact area with normal load [2] by defining the problem

and providing an analytical solution to it.

The debate is not yet closed. The field of contact

mechanics still thrives, in part due to theoretical advances

in reducing a highly complex problem to one that can be

handled on small-scale computers. The arguably most

prominent publications on contact mechanics since the GW

paper are the proposition by Whitehouse and Archard [3] to

describe the surface topography as random and fractal, the

GW-inspired work of Bush, Gibson, and Thomas [4] as

well as the scaling theory proposed by Persson [5]. There

has also been much progress in brute-force solutions to the

contact problem. It is now possible to simulate systems that

are sufficiently large to mimic the multiscale nature of

surfaces, while reaching the continuum limit through an

adequately fine discretization [6, 7].

Comparisons between theoretical predictions and rigor-

ous simulations—making no uncontrolled approximations

beyond the model assumptions—are usually limited to the

question of whether a model reproduces the linearity

between load and contact area [6, 8–11]. Such comparisons

are weak tests, since theories merely need to reproduce a

single proportionality coefficient while they usually depend

on more than one adjustable parameter, which may not even

bewell defined from experiment or themodel definition. The

adjustable parameter therefore becomes effectively a fitting

parameter. An important example of such a term is the scale-

dependent radius of curvature of an asperity [12], which

plays a critical role in asperity-based models.

Comparisons of theories and rigorous simulations

beyond the proportionality coefficient of load and true

contact area have been scarce. Notable examples are the

analysis of the following quantities: the gap distribution

function [13], the dependence of mean gap or contact

stiffness on load [14, 15], or the interfacial stress spectrum

[16, 17].

To date, the few in-depth comparisons between theory

and accurate simulations have mainly focused on adhe-

sionless contacts. Rigorous comparison for adhesive

interfaces has been even scarcer. The reason for this may

be that modeling short-range adhesion in continuum

models places large demands on simulations, while longer-

range adhesion in multiasperity contacts is usually arduous

to describe theoretically. In fact, handling short-range

adhesion in simulations of single-asperity contacts and

reproducing (closely) the famous analytical results by

Johnson et al. (JKR) [18] is not an easy task. A fine dis-

cretization is required close to the contact line [19], which

is sometimes also called a contact edge. Thus, a rigorous,

numerical approach to short-range adhesion in mechanical

contacts remains a demanding exercise.

Due to the lack of rigorous tests, it is difficult for the-

orists to choose the most appropriate contact-mechanics

method. For experimentalists, it is hard to know whose

results and whose interpretations to trust. For this reason, it

was decided to pose a contact-mechanics challenge [20]—

very much in the spirit of the Sandia fracture challenge

[21]—allowing theorists and modelers alike to test the

reliability of their preferred method. The challenge was

made public in early December 2015 on arXiv.org [20] and

further announced to the tribological community in a

Cutting Edge article [22]. The final deadline for the sub-

mission of results was June 30, 2016. The reference results,

which had been produced by the organizers of the chal-

lenge, remained undisclosed until all results were received.

In the following, we describe the posed challenge in

Sect. 2. The various solution strategies are sketched in

Sect. 3. The results are presented in Sect. 4 while the final

Sect. 5 compares and contrasts the various approaches and

their complexity, and provides an estimate of the precision

of each method.

2 Definition of the Challenge

This section closely follows the original description [20] of

the model on which the contact-mechanics challenge was

based. We avoid reiterating quantities to be computed, as

this will become evident in the results section. However, a

note was added on how to rescale parameters (in particular

the surface topography and its root-mean-square gradient),

so that the mathematical equations to be solved remained

unchanged. This was done to address a criticism that the

problem definition violates the small-slope approximation

or exclusively pertains to soft matter contacts.

Our surface topography was produced by drawing ran-

dom numbers for the Fourier transform of the height
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profiles ~hðqÞ having a mean of zero and, on average, a

second moment defined by the height spectrum

CðqÞ � j~hðqÞj2
D E

¼CðqrÞ �
1 for kr\2p=q�L
ðq=qrÞ�2ð1þHÞ

for ks � 2p=q\kr
0 else.

8><
>:

ð1Þ

Here, L ¼ 0:1mm is the linear dimension in x and y of the

periodically repeated simulation cell, kr ¼ 20 lm is the

roll-off wavelength, qr ¼ 2p=kr, and ks ¼ 0:1 lm is the

short-wavelength cutoff, below which no roughness is

considered. H ¼ 0:8 is the Hurst roughness exponent [23].

Lastly, h. . .i in Eq. (1) denotes an average over different,

random-surface realizations, or, alternatively, a local run-

ning average of the real spectrum.

A graph showing the spectrum is presented in Fig. 1.

The features of the spectrum are similar to those found

experimentally for a wide variety of surfaces [24, 25].

It might be argued that introducing a small-wavelength

cutoff is artificial. However, it was found to be necessary in

order to be able to compare simulations to any theory that

is based on continuum mechanics. For similar reasons, a

hard-wall interaction was preferred over finite-range

repulsion. Even if the latter might be more realistic and, in

some ways, easier to handle numerically (e.g., when

relaxing the displacement field with a conjugate gradient

method), a hard-wall repulsion allows the interfacial sep-

aration u to be unambiguously determined. Contact can

then be defined to occur where u ¼ 0.

The resulting surface topography arising from the

spectrum is depicted in Fig. 2. It had been made available

for download in various formats, which included a grid-

free representation in Fourier space and real-space

representations at resolutions ranging from 512� 512 to

16; 384� 16; 384. The height spectra were normalized

such that the root-mean-square gradient of the height is

�g ¼ 1. Furthermore, the heights were shifted such that their

minimum value is zero. Further characteristics of the ref-

erence surface topography are: mean height

hhi ¼ 2:633 lm, maximum height hmax ¼ 5:642 lm, with a

root-mean-square height fluctuation of
ffiffiffiffiffiffiffiffiffiffiffi
hdh2i

p
¼

0:762 lm and where hdh2i � hh2i � hhi2. The inverse root-
mean-square curvature, which one may interpret as a typ-

ical local radius of curvature, is Rc ¼ 60 nm.

The surface is pressed down against an originally flat,

elastic manifold. Thus, the first points of contact occur at

small height, i.e., at the dark areas of Fig. 2.

2.1 Elasticity, External Load, and Adhesion

The small-slope approximation is assumed, which is

commonly used in elastic contact-mechanics theories. It

allows one to partition both elastic compliance and

roughness in an arbitrary fashion between the two solids in

contact and to use linear elasticity. All roughness is map-

ped to the indenter, while all compliance is assigned to the

substrate with a contact modulus of E� ¼ 25MPa, which is

characteristic of rubber. Here, E� � E=ð1� m2Þ, where E is

the Young’s modulus and m is Poisson’s ratio. We leave the

individual terms E and m unspecified, because we focus

exclusively on normal displacements.

The external default pressure acts homogeneously

across the system. It is set to 0:01E��g ¼ 250 kPa. In other

words, the total load on the simulated area of 0:01mm2 is

0:0025N. The elastically deformable solid is assumed to be
Fig. 1 Height spectrum C(q) from which the height distribution is

drawn. It is normalized to its value at the roll-off wave number qr

x (µm)

y 
(µ

m
)

z (
µm

)

Fig. 2 Height profile of the random surface that was produced from

the spectrum shown in Fig. 1

Tribol Lett  (2017) 65:118 Page 3 of 18  118 

123



semi-infinite. Like the rigid substrate, it is periodically

repeated in the plane.

Short-range repulsion is realized with a hard-wall

interaction; the indenter is not allowed to penetrate the

rigid substrate. In addition, the two surfaces interact with a

finite-range adhesion functional (a function of a function)

according to

v½g� ¼ �c0

Z
d2r expf�uðrÞ=qg; ð2Þ

where c0 ¼ 50mJ=m2 is the surface energy at perfect

contact, uðrÞ is the local gap or interfacial separation (in

geology also aperture) as a function of the in-plane coor-

dinate r, and q ¼ 2:071 nm. We note that the exponential

cohesive-zone model used here and the Dugdale model

[26] give essentially identical results for a single, parabolic

asperity, see Figs. 9 and 10 in Ref. [19].

Defining a local Tabor coefficient according to

lT � R
1=3
c ðc0=E�Þ2=3=q, we obtain lT ¼ 3. This value can

certainly be classified as short-range adhesion. See also

Figs. 9 and 10 in Ref. [19], where it is also evident that

lT ¼ 3 is close to the JKR limit of infinitely short-range

adhesion, at least as far as contact radius and normal dis-

placement are concerned.

The parameters were chosen to mimic the contact

between rubber and a polished surface, although the con-

tact modulus may be somewhat at the upper range of

practical applications. However, the model was constructed

such that there is no significant adhesive hysteresis up to

moderate contact pressures (modeling viscoelasticity is not

considered); otherwise, the dependence of the mean inter-

facial separation, �u, or the relative contact area, ar, on load

would become history dependent, thereby impeding com-

parisons between theoretical predictions and our

simulations.

Pastewka and Robbins [27] found that surfaces only

became hysteretic or ‘‘sticky’’ when the ratio of ‘‘repul-

sive’’ contact area and load no longer increases linearly

with pressure at small contact area. Similar results [28]

were found by Müser. These findings suggested a value for

the adhesive energy that would make the total contact area

increase by roughly 50% compared to the adhesionless

case—at relative contact areas of a few percent.

2.2 Summary and Discussion of Default Parameters

Two important dimensionless quantities of our default

problem are the Tabor parameter lT ¼ 3 and the surface

root-mean-square gradient �g ¼ 1. Additional quantities in

SI units are: E� ¼ 25MPa, c0 ¼ 50mJ=m2, q ¼ 2:071 nm,

system size L ¼ 0:1mm, externally applied pressure

p0 ¼ 250 kPa.

It might be beneficial to use a problem-adapted unit

system, which is what was done by the organizers of the

challenge (MHM and WBD) in the reference simulations.

(Here, and in the following, we refer to individual authors

of this paper by their initials.) In this unit system, one has:

E��g as the unit for pressure and L as the unit for length.

One can then use E� ¼ 1, L ¼ 1, p0 ¼ 0:01,

c0 ¼ 2� 10�5, and q ¼ 2:071� 10�5.

While one might be misled to believe that using the

small-slope approximation for the default surface with an

rms gradient of one is risky, note that the (small-slope)

force balance equations to be solved remain unchanged by

the following substitutions, which reduce the rms gradient

by a factor of n compared to its original value.
~hðqÞ ! ~hðqÞ=n, q ! q=n, c0 ! c0=n, and E� ! E�=n.

Owing to the possibility of rescaling the mathematical

problem to smaller scales, one can redimensionalize it such

that it becomes a contact problem at smaller scales and

harder materials.

3 Solution Strategies

The different strategies adopted to tackle the contact

challenge—all numerical or theoretical except for one

experimental—are summarized in this section. They are

described in the order of the date of submission. The first

described method, using Green’s function molecular

dynamics, is referred to as the reference solution, pri-

marily because it was pursued by the organizers of the

challenge (MHM and WBD), but also because it is based

on the finest discretization of all submissions while

avoiding any uncontrolled approximations. Since the

number of submissions was large, each method is only

sketched briefly to keep the paper at a reasonable length.

However, all participants of this challenge either cite

published work, in which their method is described, or plan

on writing a detailed follow-up paper.

Before presenting the approaches, we wish to clarify

that the nomenclature of each method was assigned with

some degree of arbitrariness. In most cases, it simply

reflects what technical terms contributors emphasized the

most in the description of their work. Many methods could

be classified as Green’s functions or boundary value or

biconjugate gradient stabilized methods. However, we tried

to avoid multiple uses of similar terms.

3.1 Green’s Function Molecular Dynamics

One numerical strategy is the Green’s function molecular

dynamics (GFMD) [29] method, which two of us (MHM

and WBD) used here, as described in reference [7]. The
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short-range adhesion places large demands on the dis-

cretization. Reaching convergence necessitates fine dis-

cretization, in particular for adhesive necks forming near

contact lines. We found that a discretization scale of a ¼
ks=64 was sufficient for most purposes and consequently

produced reference data on systems with 64k� 64k 	
4� 109 discretization points on the surface. In some cases,

we used a ¼ ks=128 or 	 16� 109 grid points to ensure

that the results were close to the continuum limit. Setting

the damping such that the slowest mode of the system, i.e.,

the center of mass mode, be slightly underdamped, the

system can be typically relaxed within a few thousand time

steps, although equilibration at the smallest investigated

loads, resulting in 0.3% relative contact area, necessitates

roughly ten times more iterations.

3.2 FFT-Based Boundary Value Method

A fast Fourier transform (FFT)-based boundary value

method (BVM) was adopted by four co-authors (RB, PS,

NL, and TAL) and denoted as FFT-BVM. The usual way of

treating a normal contact without adhesion as a classical

boundary value problem would be to minimize the total

potential energy with respect to the stress field through a

conjugate gradient iteration scheme obeying two con-

straints: the stress in the non-contact zone must be zero and

there may be no penetration of the two solids [30]. The

constraints are realized by removing points with negative

pressure from the contact at each iteration step while

adding overlapping points to it. The interdependence

between stress and strain fields is best computed in Fourier

space, while transforming between real and Fourier space

representations with an FFT method [31].

In the current approach, the displacements in the non-

contact regions were taken as unknown variables rather

than the stress in the contact. This procedure proves to be

more robust in the presence of adhesion than the traditional

scheme, which appears advantageous for non-adhesive

contacts. Simulations were run on a single CPU with a

16384� 16384 grid for most cases and on a 32768�
32768 grid for the reference point.

3.3 Persson Theory

One of the contributors to this paper, BNJP, used his own

theory [5] to tackle the problem. Its fundamental concept is

to solve the problem first at a coarse scale by neglecting all

random roughness and to include the effects that random

roughness has on mean values or distribution functions

(e.g., for contact stress and mean interfacial separation) by

successively including ever finer details of the height

profiles into the calculation. The approach, simply named

‘‘Persson’’ hereafter, has been described in various contri-

butions [5, 32]. Adhesion was neglected in this approach

for the calculation of distribution functions, but can be

possibly included [33, 34]. Average quantities such as

contact area or mean gap include the effect of adhesion. In

a complementary work testing Persson’s theory on adhe-

sion, more details as well as additional results are presented

[35].

3.4 Experiment

One team (KH, AB, KS, SR, PI, and WGS) set up real-

laboratory experiments mimicking the assigned challenge.

The pertinent data are denoted as ‘‘experiment.’’

The surface was scaled globally by a factor of 1000 to

produce a model 10 cm� 10 cm in plane and approxi-

mately 10 mm out-of-plane. The corrugated surface was

3D printed as solid object with an opaque polymethyl-

methacrylate (PMMA) print material and a resolution of

16 lm in all directions. The countersample was molded

with polydimethylsiloxane (PDMS). It was produced with

the appropriate base/agent ratio to match the dimensionless

surface energies as well as possible. The contact was

imaged using a D800 camera with 36.3 megapixels CMOS

sensor looking through the bottom of the countersample

and focused on its free surface. A frustrated total internal

reflection method was used to image the contact area. A

manuscript containing details of the method has already

been submitted [36].

3.5 Winkler Foundation Approach

Team (TA and WGS) tackled the contact mechanics

challenge with a Winkler model, which treats the indented

surface as a tiling of independent elastic elements. In the

simulations, the rough surface was lowered onto a flat bed

of springs. At a given displacement, overlap between the

indenter and the elastic elements was avoided by com-

pressing the springs, thereby creating local contact patches.

To approximately conserve volume, the springs surround-

ing each contact patch were stretched until they touched

the counter-surface. This zone was chosen such that each

contact patch had approximately twice its original area.

The intent was to mimic an elastic system with a Poisson’s

ratio close to 0.5, approximating the PDMS used in the

experiments, see Sect. 3.4. The normal load was computed

as the (negative) derivative of the total energy with respect

to the (negative) normal displacement. The spring stiffness

was adjusted empirically to match the relative contact area

for the reference system. This led to a spring stiffness of

k ¼ E�DA=k, where DA is the surface covered by one

elastic element and k an effective thickness of the bed of

springs, which turned out k 	 1lm.
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3.6 Spatially Resolved Greenwood–Williamson

Team (HAE, MK, and SA) submitted the first modification

of a Greenwood–Williamson-inspired approach. However,

rather than first taking statistics of asperity heights and

curvatures, summit heights were determined individually

and the JKR equations were solved individually for each

summit. The method is therefore called spatially resolved

Greenwood–Williamson (SRGW). The tips of asperities

were identified as those points whose eight neighboring

grid points are more distant from the flat counterface than

the considered central point. Radii of curvature were

determined through spline fitting. The contribution to the

total load was added up for each individual asperity.

3.7 Biconjugate Gradient Stabilized Method

One contributor (JJW) used a ‘‘biconjugate gradient sta-

bilized method’’ [37], which is denoted as BICGSTAB

hereafter. As with many other methods pursued in the

contact challenge, BICGSTAB used (inverse) fast Fourier

transforms to relate displacements and strains. The repul-

sion was recast as a high-order power law, to avoid prob-

lems due to hard-wall interactions. This was done, because

not only first- but also second-order derivatives of the

energy function should be defined for a conventional

biconjugate gradient method to work properly. Also the

adhesive part was modeled with a power law rather than

with an exponential function. Specifically, the following

cohesive-zone model was employed

cðuÞ ¼ 8c0
3q

q
u

� �9

� q
u

� �3
� �

; ð3Þ

where cðuÞ describes the surface energy gained per unit

area at a given interfacial separation g. Note that the hard-

wall limit can be approached in principle, by using a larger

and larger exponent for the repulsion, however, small

exponents are beneficial, from a numerical point of view.

The surface was discretized into 512� 512 or, in some

cases, 1024� 1024 grid points.

3.8 Boundary Element Method with B-Spline

Interpolation

Team (GV and AV) numerically solved the Boussinesq

equation combined with the specified adhesive potential

numerically by using an improved version of their in-house

implementation of the boundary element method (BEM)

[38–40] to minimize the total energy of the system. Within

their numerical scheme, the total (elastic plus adhesive)

energy was minimized by varying the displacement field.

An augmented Lagrangian formalism was applied to sat-

isfy the hard-wall constraint.

The bandwidth was limited to wavelengths k[L=256.
The displacement field was interpolated using periodic

cubic B-splines with 1024� 1024 degrees of freedom.

This allowed the contributors of this method—called

BEM?B hereafter—to run all calculations on a standard

desktop PC with a typical computation time of 2 h per

configuration. As in other methods, the problem was solved

in Fourier rather than in real space. A detailed description

of this method is planned to be published by GV and AV in

a forthcoming paper.

3.9 All-Atom MD

Team (SS and AIV) tackled the problem using all-atom

simulations. This approach is denoted all-atom MD. To

render the solution of the problem computationally feasi-

ble, the system was scaled to atomic dimensions, such that

the atomic bond lengths were slightly greater than the

scaled-down cutoff at short wavelengths. At the same time,

dimensionless numbers describing the contact-mechanics

problem were retained as far as possible.

The most important aspects of the approach can be

summarized as follows: The all-atom MD approach con-

sists of a rough, rigid indenter with the scaled profile of the

defined surface and an originally flat, deformable body

made up of individual atoms. The simulation cell had a

length of L ¼ 97:8 nm in x and y directions, corresponding

to 175 times the lattice constant of calcium, a0 ¼ 5:5884 Å.

Moreover, the z-axis of the deformable body was assigned

to the [100] direction, which had a depth of Lz ¼ 14 nm. At

the bottom of the solid, an additional fixed rigid flat body

provided the needed support for the deformable part, while

periodic boundary conditions were used within the plane.

Interactions between atoms in the deformable body were

described by an embedded atom method (EAM) potential

[41] with the database provided by Sheng et al. [42]

leading to a contact modulus of E� ¼ 28:57GPa. More-

over, the short-range repulsion was governed via a (12–6)

Lennard–Jones (LJ) potential, VðrÞ ¼ 4�fðr=rÞ12 �
ðr=rÞ6g [43], producing a reasonable lattice constant and

bulk modulus for calcium with � ¼ 0:2145 eV and r ¼
3:5927 Å [44]. The Lennard–Jones potential was cutoff at

its minimum and a constant added to constrain force and

energy to go smoothly to zero at the cutoff. Adhesion was

modeled with the assigned exponential interaction poten-

tial, which was adjusted to maintain the dimensionless

surface energy and range of interaction at the described

values. Atoms were taken to be in contact with the counter

body when their distance was less than dc ¼ 4:0354 Å.

More information on the method of defining the contact

distance in non-adhesive atomistic contacts is available in a

recent paper by SS and AIV [45].
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Simulations were performed by the GPU package of

LAMMPS [46–48]. Post-processing was done using

OVITO [49], ImageJ [50] and a number of in-house codes.

3.10 Two Archard-Based Models

Team (RLJ, YX, JS, and AR) used an approach inspired by

Archard’s multiscale stacked (MS) asperity concept [51].

The approach is referred to as MS-Archard in the follow-

ing. In this method, small asperities are placed on top of

larger asperities, which are then placed on top of even

larger asperities, and so on. The net load carried by the

asperities at each hierarchy level—or magnification—does

not change with magnification. Details of the method for

adhesionless contacts are described in the literature [51].

Adhesion was included in the current treatment by using

the average gap between the surfaces, which is estimated

with a method proposed for surfaces with sinusoidal

waviness [52].

RLJ, YX, JS, and AR also submitted results that were

obtained with a modification of the original MS-Archard

concept [51]. The basic idea is to apply a low-pass filter to

the true surface topography, which only keeps the smallest

wave numbers. The low-pass surface is then represented by

an equivalent set of one-dimensional Fourier coefficients

using a spectral method proposed by Rostami and Streator

[53]. Finally, the surface is subjected to a discretized

simulation. The effect of small-scale roughness is incor-

porated by a roughness layer (RL), which resides on top of

the low-pass surface. The RL is constructed such that the

summit area density and the rms curvature of the entire

surface is correctly reproduced.

For the computation of the contact area, the Jackson–

Streator multiscale model [51] is applied. The fractional

contact area of the roughness layer is multiplied with that

of the low-pass surface. For the estimation of the mean gap,

it is assumed that only the low-pass surface amplitudes are

important. The approach is denoted RL-Archard.

3.11 Fast Fourier Transform Integrated Adhesion

Team (DD, SM) also use a FFT-based method [54], in

which adhesive and contact pressures are stored and

relaxed independently within each full iteration loop. The

algorithm uses a common conjugate gradient method to

solve for the positive contact pressures, while the adhesive

pressures are relaxed toward a value that corresponds to the

proposed surface separation. The contributors made chan-

ges to the original work [54] to accommodate the specified

exponential adhesive potential. The periodicity of the sur-

faces favored a transition from a real-space multilevel

integration scheme for the elastic deformation to one that is

Fourier based.

One of the objectives of this model is to permit a coarse

representation of a surface (for computational speed) while

still being able to capture the key adhesive effects in a local

and deterministic manner. The approach taken in the given

implementation was to integrate the adhesive pressures

between adjacent nodes rather than relying on surface

interactions at individual nodes. This procedure should

capture part of the adhesive force that can be missed at a

steep surface gradient without a fine mesh. The adhesive

potential of this challenge also permitted an accurate sur-

face integral over each internode element rather than pre-

vious approximations [54]. Since the treatment of adhesion

received particular attention, the method is called FFT-IA,

where IA stands for integrated adhesion.

A surface mesh of 16384� 16384 nodes was used for

the reference case and otherwise a relatively coarse mesh

size of 4096� 4096. The latter was chosen to test the

ability of the integration method to capture the near-contact

adhesion, while enabling a fast solution time of approxi-

mately than 1 h on a single CPU at 4096� 4096.

3.12 Slightly Corrected Greenwood–Williamson

Due to the lack of a contribution based on the original,

statistical approach of Greenwood and Williamson, one

contributor (GC)—who teamed up with another (FB)—was

personally invited (after the submission deadline) to apply

his GW approach [55] to the specified contact challenge.

Their data therefore do not reflect the best attempt of these

contributors at the challenge, which they would have based

on their own boundary value method [56–58], but rather an

analysis of the specified problem in terms of a slightly

corrected Greenwood–Williamson approach (SCGW) [55].

The main modification of SCGW with respect to the

original GW paper [1] consists of allowing the curvature of

the GW asperity tips to depend on the height of the

maxima.

It is important to note that the SCGW approach did not

include adhesion, although it can be included, in principle,

by replacing the constitutive Hertzian contact model with

an appropriate adhesive model. As one can see in the result

section, neglecting adhesion predominantly affects contact

area and local stress or its distribution function but only

slightly influences the mean gap. As such, this contribution

serves predominantly as a benchmark calculation of how

well the SCGW predicts the interfacial separation.

3.13 Interacting and Coalescing Hertzian Asperities

One of the contributors (GC) to the SCGW approach was

given the opportunity to consider another asperity-based

model together with an additional contributor (LA). They

used an approach in which contact patches that start to
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overlap are merged together into a single, larger-scale

coalesced asperity [59]. The elastic coupling between

asperities is included in this approach, which is denoted as

the interacting and coalescing Hertzian asperities (ICHA)

approach.

3.14 GFMD-II

Another group (JM, LP, and MOR) was invited after the

deadline to contribute to the challenge and to clarify some

original discrepancies between two solutions that agreed in

all but one single quantity. Their approach is also based on

GFMD, although the code was developed completely

independently of that by MHM and WBD, see Sect. 3.1.

3.15 Brief Comparison of Pursued Approaches

Before analyzing the results in detail, it is worth comparing

and categorizing the approaches pursued in this study. One

class of strategy, ‘‘brute-force computing,’’ makes no un-

controlled approximations to the assigned mathematical

models, namely GFMD, FFT-BVM, BICGSTAB,

BEM?B, and FFT-IA methods. The results of these

methods should approach the exact values when the

employed mesh sizes are sufficiently small given that the

code effectively minimized the total energy with respect to

the displacement or stress fields. Brute-force methods may

very well differ in how closely they approach an exact

result at a given discretization or how many iterations or

floating point operations are needed to identify a solution at

a required accuracy. A brute-force method is termed effi-

cient if it closely approaches the exact solution even using

a coarse mesh and if it requires only a few iterations to find

the solution for a given mesh.

All additional (numerical) methods in this study (Pers-

son, Winkler, SRGW, all-atom MD, MS/RL-Archard, SC-

GW, and ICHA) do not (fully) solve the assigned partial

differential equations subjected to the given boundary

conditions. Instead, all these methods except the all-atom

MD simulations make use of physical or mathematical

arguments leading to equations that require either much

less computing time and/or less coding time than the brute-

force approaches. There is thus a trade-off between accu-

racy and cost, which is why the methods cannot be

unambiguously ranked unless one predicts all observables

more accurately than another with a lower computational

cost. To facilitate the discussion, we refer to models using

local constitutive stress–strain equations as bearing-area

models (Winkler, SRGW, MS/RL-Archard, SCGW,

ICHA), all of which except Winkler are also referred to as

asperity-based models, since Winkler only uses local

springs, but no input from Hertz or JKR. RL-Archard,

which solves the boundary value on coarse scales, and

ICHA, which considers the elastic coupling between con-

tact patches, could also be classified as hybrids between

bearing-area and brute-force methods.

Two contributions to the challenge stand out in that they

violate—by design—some, if not all, of the assumptions

and approximations postulated as (virtual) reality. These

are the real-laboratory experiment on PDMS surfaces and

the all-atom simulations. Neither contribution truly uses the

small-slope approximation but realizes surfaces with the

assigned rms gradient of one. Other potentially severe

‘‘limitations’’ are the long-time viscoelastic-like responses

that can occur in the experiments while the all-atom sim-

ulations may (and do) show a substantial amount of plastic

deformation in the form of dislocation activity. Including

these contributions to the challenge despite their restric-

tions is nevertheless valuable as their results shed light on

the question as to what extent the challenge is merely a

mathematical exercise, or if it relates to real (experiments)

or realistic (all-atom MD based on realistic interatomic

potentials) cases. The appeal of these two contributions is

also that the linear system size was in one case scaled up by

a factor of 1000 from the assigned 0.1 mm scale to 10 cm

(experiment) and, in another, it was scaled down by a

factor of 1000–100 nm (all-atom MD). The apparent con-

tact areas in these two approaches thus differ by twelve

orders of magnitude in absolute units, which, of course,

should not matter as long as all quantities are properly

scaled.

4 Results

This section compares and contrasts the results of the

various approaches. It is divided into three parts: In the

first, the predictions of spatially resolved observables are

compared, for example, the stress at a given reference load

across a selected path. Only the methods keeping the sur-

face topography in the computer memory—along with

displacement and stress fields—can provide this informa-

tion. The second part compares predictions of distribution

functions, e.g., probability densities of interfacial separa-

tion or interfacial stress, or normal traction, again at the

default load. Observables of this type can be predicted, in

principle, by any stochastic approach to contact mechanics.

One exception to this statement is that Persson theory

cannot predict contact-patch-size distribution functions.

Instead, it could have attempted to predict, in principle, the

stress spectrum, which, however, was not submitted. Since

also all brute-force approaches (except FFT-BVM) failed

to make predictions on the stress spectrum, it was decided

to exclude this property from the result section. In the third

part, the focus is on questions of how global averages (such

as real contact area or mean gap) depend on load or the
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range of adhesion. These are the properties that are usually

measured experimentally and that can be predicted by any

method pursued in this study. However, reproducing a few

of those numbers, e.g., the proportionality coefficient

between real contact area and load at small loads, does not

mean that the correct answer was produced for the right

reason. It might also have been fortuitous or achieved by

varying adjustable parameters. In contrast, the correct

reproduction of the complex, multiscale displacement or

stress field cannot happen fortuitously.

It should be emphasized that participation in the contact-

mechanics challenge did not require contestants to submit

all quantities that could be potentially computed with their

method of choice. The contributors were allowed to select

those properties that they either felt comfortable with or

were able to compute until the day of the submission

deadline. Due to the existence of a deadline, no data could

be adjusted or complemented, as it is otherwise possible,

for example, during the refereeing stage of a submitted

manuscript.

4.1 Spatially Resolved Observables

To set the stage for quantitative comparisons and to

demonstrate that the assigned challenge relates to large

and small scales alike, we compare the contact topogra-

phy of our reference solution (GFMD) in Fig. 3 with the

two submissions, having taken the liberty of changing the

100 micron scale of the problem to 10 cm (experiment)

and to 1 micron (all-atom MD). One can certainly rec-

ognize an excellent agreement of the overall features,

which can be seen as surprising in light of the following

reasons: (a) the experiment and all-atom MD use the

assigned root-mean-square gradient of one, while GFMD

employs the small-slope approximation by design,

(b) there are significant deviations from linear elasticity

including strong dislocation activity in the all-atom MD

and long-time-relaxation processes of PDMS in the

experiments, (c) the surface energies supposedly do not

match very well, (d) no periodic boundary conditions are

employed experimentally, and (e) all-atom MD includes

thermal vibrations but violates the continuum approxi-

mation at the smallest scales—both in contradiction to the

problem definition.

Usually, one would want to model any of the above-

mentioned effects, which were purposefully neglected in

the assignment of the challenge to pose a well-defined

mathematical problem. Given the close resemblance of the

contact topography, one may now argue that only the

desire to predict special observables, such as the amount of

plastic deformation, would warrant the tremendous effort

needed to go beyond the usual assumptions of small slope

and linear elasticity.

To ascertain how different methods predict the overall

gap topography, we compare the profile of the gap (the

interfacial separation between substrate and indenter) along

the path 0� y\100 lm at x ¼ 50 lm in Fig. 4. All brute-

force methods, shown in the top panel of Fig. 4, predict

almost identical results, at this scale of representation. The

approximative methods, presented in the bottom panel of

Fig. 4, show a much larger spread in the estimates for the

gap topography.

The good agreement between the various predictions for

the gap by the ‘‘exact methods’’ can be explained as fol-

lows: Differences between the methods predominantly

pertain to the resolution, i.e., to small-scale features that

are too fine to be noticed at the used scale of representation.

Only the BICGSTAB method occasionally shows visible

deviations from the other exact methods in some parts of

the gap profile, e.g., near y ¼ 12; 39; and 72 lm. This

deviation might have resulted from the redefinition of the

infinitesimally short-range repulsion to one that is short-

ranged but (controllably) finite.

Conversely, the approximate methods show relatively

large scatter in their prediction of the gap cross sec-

tion. The discrepancy between these data and that of exact

methods can also be rationalized. Bearing models, such as

SRGW and Winkler foundation, systematically overesti-

mate the gap outside of the contacts, because elastic

deformation is neglected in these regions. In particular,

outside the contact points, bearing models predict gaps that

are essentially parallel to the gap between the undeformed

surfaces. It is interesting to note that SRGW and Winkler

Fig. 3 Comparison of contact geometries. The upper left panel shows

the experimentally deduced contact lines, the center top panel the gap

topography obtained with GFMD (white is contact, gaps from small in

black through blue and yellow to large in red), and the upper right panel

shows atoms in contact (black point) as obtained by all-atom MD. The

lower row shows the superpositions of GFMD with experiment (left)

and with all-atom simulations (right) (Color figure online)
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predict similar gaps outside the contacts, although they are

based on rather different micro-mechanical models—un-

like SRGW, Winkler would not reproduce the Hertzian

contact profile for an ideal parabolic indenter. In contrast,

experiment and all-atom simulations either correlate rather

well with the reference solution or tend to underestimate

the gap. The way in which they do this is highly correlated,

although the physical properties of polymers and metals are

quite distinct, which in turn should also lead to differences

in the nature of the deviations from the problem assign-

ment. The only obvious common deviation of these

approaches from the problem definition is that both

experiment and all-atom simulations violated the requested

small-slope approximation, because the in-plane coordi-

nates were scaled with the same factor as the normal

coordinates in both cases. This kept the rms surface gra-

dient at unity.

Even if the gaps or displacements predicted by the dif-

ferent methods look quite similar at coarse scales, non-

negligible differences may occur at small scales. Differ-

ences in the solutions become particularly visible in the

stress. This is because strain and thus elastic stress (in the

bulk) result from first-order derivatives of the displacement

field, which in turn makes predictions of the stress much

more sensitive to smoothing, finite discretization, or other

approximations, than those of displacements. Figure 5

shows how the interfacial stress is expected to vary along a

fraction of the cross section at x ¼ 50 lm, which was

selected to be the largest meso-scale asperity in contact.

The interfacial stress is the sum of the adhesive and the

constraint force per unit area. In mechanical equilibrium, it

is balanced by the internal elastic stress.

GFMD and FFT-BVM agree so closely in their predic-

tion for the stress trace, shown in Fig. 5, such that differ-

ences cannot be spatially resolved. FFT-IA also coincides

with the two former methods inside the contact, but it

slightly underestimates the adhesive stress close to the

contact lines. (At a contact line, i.e., where the gap is

positive but still negligible compared to q, the range of

adhesive interaction, the interfacial stress takes its maxi-

mum value of c0=q, which is approximately one in the

chosen unit system. Any deviation from r ¼ c0=q at the

contact line does not have to indicate an error in the

method or the code but can also arise from integrating the

adhesive pressure over the finite area corresponding to a

single node, only part of which exhibits the maximum

adhesive pressure.)

The BEM?B method can be interpreted as a smeared-

out version of the exact solution. BICGSTAB follows the

correct trend but shows non-negligible deviations, which

are probably due to the redefinition of the hard-wall con-

straint with short but finite-range repulsion. While SRGW

shows the largest discrepancy with respect to the GFMD

reference solution, it appears to have the stress peaks at the

right positions and, although it generally overestimates the

compressive stress, the results reflect the correct order of

magnitude.
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Fig. 4 Gap along the cross section at x ¼ 50lm as a function of the

y coordinate. The top graph shows results from methods containing no

uncontrolled approximations, while the bottom graph summarizes

remaining data sets. Experimental and all-atom results are trans-

formed back to the scale of the assigned challenge
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Fig. 5 Interfacial stress along a selected part of the cross section at

x ¼ 50lm. GFMD and FFT-BVM agree so closely that no differ-

ences can be seen at this resolution
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4.2 Distribution Functions

Not every approach to contact mechanics can or should

deliver full spatially resolved information on the contact

topography or the interfacial stress. In many cases, it is

sufficient to know distribution functions, which then allow

one to deduce quantities of tribological interest. The three

distribution functions considered here are those of contact

patch size, interfacial separation, and interfacial stress.

These quantities can be relevant for the following reasons:

one may argue that each contact patch contributes to the

electrical contact conductivity proportional to the square

root of the contact patch area [60, 61]. Thus, knowing the

contact-patch-size distribution might enable the electrical

contact resistance to be estimated. The gap distribution

allows one to estimate quite accurately the resistance to the

flow of a liquid through the thin gap between the two solids

in contact, in the framework of a (modified) effective

medium theory [62]. Finally, the stress distribution func-

tion can shed light on questions such as what fraction of the

predicted contact area bears a stress greater than the

(macroscopic) hardness of the solids assuming linear

elasticity. Its answer would allow one to roughly estimate

the relevance of plastic deformation.

In the present context, we are predominantly interested

in the various distribution functions to ascertain the

strengths and weaknesses of different approaches. We start

our analysis with the contact-patch distribution function,

which is not only (implicitly) contained in the ‘‘exact’’

brute-force approaches but also in bearing-area models

such as GW or Winkler.

Greenwood–Williamson-inspired approaches assume a

certain distribution of asperity heights and loads that each

asperity has to carry. GW-based models therefore implic-

itly contain statistics about the size of contact patches. To

give modelers the opportunity to check these statistics, the

probability of a randomly picked cluster to have size a was

computed. Results are presented in Fig. 6. GFMD and

FFT-BVM find virtually identical results with small dif-

ferences only at very small and very large cluster sizes. The

largest probability density occurs around a ¼ 1000 nm2.

This means that if we give each patch the same probability

to be drawn, it is most likely that a patch with a size around

1000 nm2 is picked. BEM?B finds excellent agreement

with the reference GFMD solution and FFT-BVM. How-

ever, the probability of the existence of small contact

patches is slightly overestimated. This is probably due to

the relatively coarse representation of the surfaces, which is

known to lead to an overestimation of the number of small-

scale patches from non-adhesive contacts [63]. While the

other exact methods and also ICHA (which is still based on

a coarse-scale BEM solution) appear to show a similar

PrðaÞ power law as those resembling the reference solution,

nuances matter, which are discussed further below.

A maximum in PrðaÞ, as revealed in Fig. 6 for adhesive

contacts by GFMD and FFT-BVM, was not identified in

purely repulsive contact in a study by Campaña [63].

Instead, he found an almost constant value of PrðaÞ for

small-scale patches. Apparently, short-range adhesion

suppresses the possibility of forming such small-scale

contacts, which is in agreement with single-asperity JKR

contact mechanics.

To avoid erroneous conclusions from Fig. 6, we also

show the cumulative, weighted distribution function in

Fig. 7. It is defined as

CPrðaÞ � 1

N
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Fig. 6 Contact-patch-size distribution function PrðaÞ. The full line

indicates the power law PrðaÞ / a�1:45
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Fig. 7 Cumulative, weighted distribution function CPrðaÞ, which

describes the ratio of contact points belonging to a patch of size less

than a. In the generic bearing-area model, the lowest 3% of the rough

indenter are said to be in contact
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where N is a normalization ensuring that

CPrða ! 1Þ ¼ 1. In the given context, N simply is the

real contact area. The function CPrðaÞ describes the frac-

tion of points belonging to a cluster of size less than a, e.g.,

GFMD and FFT-BVM find that roughly 50% of randomly

picked contact points belong to a cluster of a size less than

3 lm2, while the remaining points belong to larger clusters.

This means that while most clusters are small, most points

exist in relatively large clusters: 80% of the contact belongs

to patches greater than 1 lm2, although the largest number

density of clusters is found around a ¼ 0:001 lm2.

Given that pk2s is approximately only 0:03 lm2, one may

conclude that most points belong to contact patches whose

linear dimensions are much larger than ks. The smallest

scale, however, predominantly determines local quantities

such as rms gradient or curvature. In other words, most

contact points belong to meso-scale patches whose linear

dimensions are so large that one simply may not treat the

asperity with the radius of curvature as measured on top of

the asperity at the finest scale.

While the contact-patch distributions of the methods

reporting PrðaÞ appeared similar, their cumulative, weigh-

ted distributions, CPrðaÞ show noticeable differences. The

only two methods yielding essentially identical results over

several decades are those that found the correct values in

the stress at the contact lines, i.e., GFMD and FFT-BVM.

Their predictions are also supported by BEM?B, for which

statistics were only reported for islands up to 1 lm2 size.

Three other methods (BICGSTAB, FFT-IA, and ICHA)

fall on another curve in the range 0:1\a=lm2\1. The

likely reason for the differences in the scaling is that

BICGSTAB, FFT-IA, and ICHA defined contact to occur

in the points of compressive, interfacial stress, while the

other methods defined it as points of zero gap. If we denote

a typical contact patch size at to satisfy CPrðatÞ ¼ 1=2,

BICGSTAB, FFT-IA, and SCGW find at to be a third of

the reference solution, which also counted points of tensile

stress toward the real contact. In contrast, Winkler and a

generic bearing-area model overestimate the typical con-

tact patch size by a factor of ten. This result is significant

given that self-affine roughness extended only over a little

more than two decades of wavelength but not unexpected,

because bearing-area models predict contact patches to be

too localized and therefore too large compared to full

solutions that include long-range elasticity [16]. In fact, for

the asperity-based model SCGW, which only uses statis-

tical properties of asperity heights, errors turned out to be

so large that the results were not included on the graphs.

The gap distribution function PrðuÞ is discussed next. As

mentioned above, it allows one to predict the Reynolds flow

through an interface quite accurately. Only solutions that

used brute-force methods included adhesion in the

calculations of PrðuÞ, whereas Persson and ICHA reported

results without adhesion. In the latter case PrðuÞ is acquired
only for the summit heights. To compare the merits of these

two methods and the effect of adhesion on gaps in general,

GFMD simulations without adhesion were conducted in

order to also provide a reference solution for that case.Results

are shown in Fig. 8. No predictions from simple bearing

models were submitted. They could have been obtained, in

principle, by an appropriate shifting of the Abbott–Firestone

curve [64] and by mapping all negative gaps to zero.

As expected from the spatially resolved gaps in Fig. 4,

all brute-force methods yield almost identical statistics for

gaps exceeding 0:1 lm. However, distribution functions

differ at very small separations. GFMD and FFT-BVM

reveal behavior that is typical for short-range adhesion,

namely a strongly reduced probability for small gaps due to

the formation of adhesive necks near the contact line. (As

one moves away from a JKR contact line, the gap quickly

increases, while it increases only slowly—in fact, initially

with zero slope—near a Hertzian contact line.) Interest-

ingly, the validity of the BEM?B solution extends all the

way down to 2� 10�2 lm, even though the bandwidth of

the height spectrum was severely limited.

Persson provides good results for the adhesionless case.

In particular, the distribution for large gaps is well repro-

duced, as is the scaling of PrðuÞ for small u. It would be

interesting to assess if the theory could also predict the

diminution of PrðuÞ for u ! 0, which is induced by short-

range adhesion.

The last distribution function to be analyzed is the stress

distribution function PrðrÞ. While its shape can be

approximated in the absence of adhesion as a sum of two

GFMD
FFT-BVM
BEM+B
BICGSTAB
FFT-IA

10-2 10-1 100

u  (μm)

0.0

0.1

0.2
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0.7

Pr
(u

)  
 (1

/μ
m

)

GFMD
Persson
ICHA (only summits)

without adhesion

Fig. 8 Gap distribution function for the reference system and for the

adhesion-free case. The arrow marks the value of the mean gap

yielded by the GFMD reference solution. PrðuÞ is normalized, as all

other distribution functions in this work. This may not be apparent to

the eye, because of the logarithmic x-axis
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Gaussians that only depend on p�, PrðrÞ contains much

more difficult-to-reproduce features once short-range

adhesion is included, see Fig. 9.

The shape of the PrðrÞ can be best rationalized by

decomposing it into contact and non-contact contributions.

Interfacial stresses averaged only over contact points can

be described by a slightly skewed Gaussian, which extends

significantly to tensile (negative) stresses. The non-contact

stresses lead to a pronounced integrable peak at small

negative pressures. This contribution is directly related to

the gap distribution function. The pronounced peak at r !
0� simply reflects that most non-contact points have an

interfacial separation that greatly exceeds the range of the

adhesive interaction.

As in all other cases, FFT-BVM reproduces the refer-

ence solution very accurately. There is a first instance of an

Oð10%Þ deviation, which can be rationalized by the fact

that FFT-BVM uses linear system sizes of ‘‘only’’ 32,000

instead of 128,000 in GFMD. Despite their much less fine

discretization, FFT-IA and BICGSTAB also produce quite

accurate stress distributions, in particular for the points in

contact. An interesting observation can be made on

BEM?B: Due to its limited bandwidth, the stress distri-

bution is not yet quite as broad as it would be if all features

were spatially resolved down to the finest scale.

The only two bearing models providing stress distribu-

tions, SCGW and ICHA, address the adhesionless case.

They must therefore be compared to the GFMD reference

data without adhesion. In contrast to SCGW, ICHA model

predicts the large-stress tail of the reference solution quite

well, although it clearly overestimates PrðrÞ at small r. A
fortuitous side effect of this error is that the area below the

ICHA-PrðrÞ curve, which is equal to the predicted relative

contact area, correlates nicely with the contact area of the

GFMD reference solution (the area below the gray line in

Fig. 9), although the latter includes adhesion. In addition,

Fig. 9 reveals that the stress distributions of the adhesive

and the non-adhesive cases are quite similar at large

stresses. Differences at small stresses must therefore stem

predominantly from the zones near contact lines.

4.3 Average Quantities

A frequently reported dependence is the relation between

relative contact area ar and load or reduced pressure

p� � p=E��g. Many tribologists consider ar to be one of the

most central properties of their field, while others argue

that true contact area is hard to define rigorously outside of

continuum mechanics, so that reporting it is a purely aca-

demic exercise. In continuum mechanics, true contact can

correspond to either zones of compressive, interfacial stress

or areas that lie within the lines formed by local stress

maxima [65]. This latter definition corresponds to that of

contact being points of zero gap when repulsion is modeled

through a hard-wall constraint, as done in this paper. Since

the challenge is formulated as a continuum mechanics

problem and contact mechanics has traditionally focused

on predicting ar as a function of load, a discussion of the

arðp�Þ dependence should be included here. For non-ad-

hering, randomly rough surfaces arðp�Þ 	 2p� is an excel-

lent approximation as long as ar is less than 20% [6–9, 57].

An appropriate generalization of the linear arðp�Þ rela-

tionship to large loads is ar 	 erfð
ffiffiffi
p

p
p�Þ [5], which even

describes quite accurately how complete contact at large

p is reached asymptotically [7, 66].

Figure 10 compares the various predictions of arðp�Þ
with weak adhesion. For the most part, they reveal rather

similar behavior in a double-logarithmic representation.

The difference between most methods and the GFMD

reference solution is within the symbol size, i.e., within


20%.

Some—not all—bearing-area models show significant

discrepancies with the reference solutions for parts of the

arðp�Þ relationship. The SCGW model, which is based on

the statistical analysis of asperity heights, underestimates

the quasi-proportionality between ar and p� by almost a

factor of two. When the actual asperity distributions are

considered, as in SRGW and ICHA, much better agreement

is found. In the latter model, ar falls slightly below the

reference data, which is not surprising as ICHA was

exempted from having to include adhesion. Winkler pre-

dicts improper scaling of ar with p� at small p�, i.e., the
dependence is much more sublinear than that of the ref-

erence solution.
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Fig. 9 Interfacial stress distribution function PrðrÞ. The peak at

slightly negative stresses is due to all points having large local

separation, i.e., large compared to the screening length q. It contains
roughly 97% of the integral below PrðrÞ. The contribution to PrðrÞ
originating from the true contact area is shown separately for the

GFMD method
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MS-Archard slightly overestimates ar, although the

behavior only becomes qualitatively incorrect at a jump-

into-contact instability, occurring slightly above 30%

contact. This is, of course, a range that has certainly not

been targeted by bearing-area models. Like MS-Archard,

other bearing-area models, such as Winkler, find full con-

tact at relatively moderate pressures. In contrast, Persson’s

data are consistent with a smoother disappearance of non-

contact area. This issue becomes clear when analyzing the

mean gap �u as a function of p�.
Differences between the various contact area predictions

are better resolved in Fig. 11, in which the mean contact

pressure �pc � p=ar is shown as a function of the external

pressure rather than the relative contact area ar. Small

discrepancies now even appear between the otherwise

almost identical results of the reference solution and FFT-

BVM. They could arise to some degree from multistability

related to (hysteretic) contact formation or destruction of

individual contact patches, saddle points, or dimples. In

fact, a given method can produce slightly different results

for �pc at a given value of p during compression and

decompression. However, the trends of all brute-force

approaches and to some degree also RL-Archard (which,

however, contains aboundary value method at coarse

scales) are such that pc changes by less than 50% while the

external load increases by three decades. It is tempting to

speculate that this range would become larger if the ratio of

roll-off and short-wavelength cutoff was increased. Persson

theory somewhat overestimates the mean pressure at very

small values of p. However, as reported in an accompa-

nying paper [35], the slight negative slope of Persson’s

prediction of �pc at small p� is not inherent to the theory but

the consequence of an insufficiently fine discretization of

the stress distribution function in the calculation. As

before, the difference between FFT-IA and the other exact

methods is probably due to FFT-IA only having counted

points of compressive, interfacial stress toward the real

contact area. Lastly, ICHA, which neglected adhesion,

identified the correct asymptotic value of the mean contact

pressure at small loads, i.e., pc.p=2E��g [6–9] for adhe-

sionless contacts.

Another interesting contact property is the mean inter-

facial separation, or the mean gap, �u, between the two

surfaces. The reciprocal of its change with pressure, i.e.,

dp=d�u, also called the interfacial stiffness, is often assumed

to be proportional to the electrical contact conductance, so

that knowledge of �uðp�Þ allows one to estimate that prop-

erty [60, 61].

Figure 12 summarizes the predictions of the pressure

dependence of the mean gap. As expected from the fully

resolved spatial representation of the gap in Fig. 4, all

brute-force methods agree quite nicely for the mean gap. In

a large fraction of the shown pressure range, �u roughly

changes logarithmically with pressure. Persson theory also

conveys the correct trend, in particular at p� [ 5� 10�3.

(Details are shown in an accompanying paper [35]. The

starting discrepancies at p�\5� 10�3 might be attributed

to finite-size effects.)

Bearing-area models do not convey the trend very

accurately, unless they include—as the hybrid models

ICHA and RL-Archard do—an approximate description of

elasticity at coarse scales. The three pure bearing models

(Winkler, SRGW, and SCGW) make almost identical

predictions. For most of the shown pressure range, they

overestimate �u. Relative errors in the mean displacement

are quite substantial at small pressure. In addition, the

mean gap disappears linearly with p at large loads

according to �u / ðp� � p�fcÞ, for p� being slightly below the

pressure p�fc 	 0:8, where full contact is predicted to be
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Fig. 10 Relative contact area ar as a function of pressure p
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Fig. 11 Mean contact pressure �pc as a function of pressure p. The two
GFMD symbols at p ¼ 0:001E� �g represent a compression (lower

circle) and a decompression run (upper circle) coming from zero and

large external pressure, respectively. The SCGW data are not shown

in this graph as all points satisfy �pc [ 0:8E� �g
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reached. Both Archard solutions show complete gap clo-

sure at an even lower pressure than the other bearing-area

models. Yet, at small pressures, the RL-Archard method,

which solves the low-pass surface topography with a

spectral approach, is quite accurate,

In contrast to the bearing models, the brute-force solu-

tions and Persson theory show a more continuous closing

of the gap, which, in the range 10�4 � �u=lm\10�1, can be

described by a �u 	 0:3 � expð�8p�Þ lm dependence. Also

the all-atom simulations predict the gap to close with

pressure in a similar fashion as the continuum-mechanics-

based calculations. Visible deviations occur at reduced

pressures of p� 	 0:04 yielding relative contact areas

slightly exceeding 10%. These deviations correlate with the

onset of significant plastic deformation in the simulated

metals, which results from �pc being no longer small com-

pared to the hardness.

5 Conclusions

The contact challenge attracted participation by many

groups worldwide (Austria, England, France, Germany,

Italy, Iran, The Netherlands, Taiwan, USA) with 12 com-

peting groups pursuing a total of 13 different approaches.

These included traditional Greenwood–Williamson-in-

spired asperity models, the more recent Persson theory,

brute-force computations and even experiments or down-

scaling of the problem to all-atom simulations. Each

approach was able to reproduce at least some of the ref-

erence solutions, which exist because the contact challenge

was in fact nothing but a well-defined mathematical

problem in continuum mechanics. In this sense, all groups

were successful, though some deserve particular mention.

The Lubrecht group at INSA Lyon, who used the FFT-

BVM method, managed to identify the essentially exact

reference solution using a Fourier-based approach on a

single core with a memory of 150 Gigabyte of random

access memory (RAM). This result is also remarkable in

that the number of simulated points into which the surface

was discretized, 32,000 by 32,000, distinctly exceeds that

of most experimental surface topography measurements,

which are typically 1000 by 1000 and rarely—if ever—

more than 4000 by 4000. The reported 3 weeks and 3000

iterations needed by the Lubrecht group to relax the 32k�
32k surface reduces to 1 h and 700 iterations for a 4k� 4k

system on a standard laptop with standard RAM and to 1

min and 200 iterations for a 1k� 1k discretization on a

laptop. This means that highly accurate contact mechanics

calculations using experimentally provided height profiles

can, in principle, be done in reasonable times with com-

puters available to everybody without having to add extra

RAM.

Another remarkable contribution is the experimental

work by the Sawyer group at University Florida. The

problem was scaled up by a factor of 1000 and then

reproduced thanks to 3D printing technology as a real-

laboratory experiment. The optically deduced contact

topography at the reference load correlates remarkably well

with that obtained by accurate simulations. The experi-

mental contribution thus reveals quite clearly that the

challenge has an analogue in the laboratory and that

modelers might have to apologize considerably less for

commonly made approximations (e.g., small slopes, linear

elasticity) than they frequently do.

Last but not least, the all-atom simulations by the Vakis

group in Groningen deserve particular mentioning. They

revealed that the posed challenge also relates to metallic

systems, albeit at smaller scales. It turned out again that

adding features to the problem, which were purposefully

neglected in the formulation of the challenge but ubiqui-

tous in most systems (plastic deformation), did not induce

large changes in the overall displacement fields or pressure

distributions, at least not for the relatively moderate loads

used in this challenge. In contrast, Pei et al. [67] and also

later Pérez-Ràfold et al. [68] found plasticity to matter

quite substantially. The reasons why the all-atom simula-

tions by SS and AIV revealed less plasticity than the just-

mentioned works may be that the all-atom MD model

pertained to smaller scales, where larger stresses are nee-

ded to induce plasticity. In addition, the all-atom MD

model started from a defect-free crystal, for which dislo-

cations are not easily nucleated. A previous, hybrid

atomistic/continuum study of the contact between rough

solids [69] also found little plasticity in the absence of

defects.
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Fig. 12 Mean gap as a function of pressure. The arrow marks the

mean gap for the case where a rigid indenter touches the undeformed

elastic manifold in a single point
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Overall, there was excellent agreement between all

rigorous methods, which all described stress–strain rela-

tions in Fourier space. Those implementations that mini-

mized the total energy with respect to displacement rather

than to stress appeared to facilitate the description of dis-

placement-dependent adhesion. At this point, it is hard to

judge if this is generally true, or if the time commitment by

the contributors or the technical details of the respective

implementations are responsible for why one code found

an almost fully converged answer on single nodes, while

others ‘‘only’’ were able to predict the elastic displacement

fields correctly at a slightly coarsened scale.

Bearing-area models reproduced the dependence of the

contact area on load reasonably well even for relative

contact areas clearly exceeding 50%. This is somewhat

surprising, since asperity-based models assume positive

surface curvature everywhere, while close to full contact,

the measure of positive and negative curvature becomes

almost identical. In addition, predictions on the interfacial

separation—whether the first moment or its distribution—

were generally not reliable. This is because conventional

bearing models neglect elastic deformation between the

contacting peaks, whereby the gap is overestimated. Sur-

prisingly, the quite simple Winkler model gave almost

identical results to the much more sophisticated asperity-

based models, except at very small loads, where the Win-

kler model overestimated the relative contact area. Yet, for

both Winkler and asperity-based models, predictions of the

mean gap or gap distribution functions are expected to

become even less reliable when the roughness extends to

more than 2.5 decades [70]. Also the contact-patch-size

distribution was rather flawed in bearing-area approaches

neglecting the effect of long-range elastic deformation.

Since there now exist simple analytical formulae relating

contact area and load, one may wonder what the added

benefit of conducting such simulations may be, more so as

coding a bearing model—with the exception of Winkler—

is not necessarily simpler than putting in place a rigor-

ousboundary value method.

In contrast to other methods with uncontrolled approx-

imations, Persson theory reproduced both the dependence

of mean gap and contact area on pressure. Like bearing-

area models, Persson theory does not necessitate much

computing time; however, it is also rather complicated to

code. Unfortunately, no predictions were made for the gap

or stress distribution in the presence of adhesion, so that we

cannot judge (based on the data submitted to the contact-

mechanics challenge) how well Persson theory performs

for the considered short-range adhesion.

It might be appropriate to comment on two methods that

did not enter the challenge. First, one may notice that no

participant used a finite element method (FE), although FE

should, in principle, be in a position to deliver exact results.

It appears, however, that FE is not sufficiently efficient to

tackle the assigned problem within reasonable simulation

times. Its strength instead lies in its flexibility with respect

to geometry and the possibility to go beyond linear elas-

ticity. Second, no work based on Sneddon’s method [71]

was entered for the competition. It allegedly allows one to

distinctly reduce the complexity of a contact problem such

that it can be solved in a few minutes on a standard desktop

PC. One of the reasons for its absence from this competi-

tion may have been that the common formulation of

Sneddon’s method is only valid for non-adhesive, singly

connected domains of spherical symmetry and it rapidly

fails once one or two of these assumptions no longer hold.

The fact that the considered contact is adhesive, non-

spherical, and non-connected may have kept proponents of

the method from comparing their solution to one that they

did not know ahead of time [72].

In conclusion, a rather complex contact mechanics

problem was successfully solved with a variety of methods.

Rigorous, numerical approaches to the posed challenge,

which was nothing but a well-defined mathematical prob-

lem, found almost identical results on all properties. Small

deviations only occurred for those quantities whose com-

putation necessitate a fine grid or arose from different

definitions of true contact. Persson theory, experiments,

and all-atom simulations all contained uncontrolled

approximations to the challenge, but identified the correct

trends—and in some cases almost exact numbers for

properties beyond the a(p) relationship. Bearing models

also predicted the dependence of relative contact area on

pressure rather well and additionally offered an alternative

interpretation for other properties. Overall, we feel that this

challenge has not only assessed the merit of various con-

tact-mechanics approaches but enhanced our understanding

of contact mechanics. As such, it could provide a model for

future challenges to the tribology community.
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