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Cancer stem cells with increased metastatic potential as a 

therapeutic target for esophageal cancer.
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Abstract

Esophageal cancers (ECs) are highly aggressive tumors, commonly presented in a locally advanced 

stage with a poor prognosis and survival. Up to 50% of the patients are eligible for treatment with 

curative intent and receive the standard treatment with neoadjuvant chemoradiotherapy (nCRT) and 

surgery. Currently, pathologic complete response to nCRT is 20-30%, with a partial or no response in 

about 50% and 20%, respectively. EC recurrences occur frequently even a�er successful anti-cancer 

treatment, suggesting high aggressiveness with increased metastatic potential. A tumor sub-population 

of so-called cancer stem cells (CSCs), is known to display a high metastatic potential and resistance to 

conventional anti-cancer therapy, hereby being responsible for the unbene�cial clinical features.  In this 

review, a concise overview will be given of the current literature on esophageal CSCs and related me-

tastases. Esophageal CSC markers will be discussed followed by the pathways that initiate and sustain 

these cells. In addition, the cellular processes, epithelial-mesenchymal transition (EMT), hypoxia and 

autophagy, known to contribute to cancer stemness and metastasis will be explained. Finally, potential 

option for treatment also related to cancer genome atlas (TCGA) data on EC will be discussed.  
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Introduction

Esophageal cancer (EC) is currently the 8th most common malignancy worldwide and the 6th leading 

cause of cancer related death, accounting for more than 490.000 new cases and 400.000 deaths in 2014 

(world cancer report 2014). �e 5-year survival of this highly aggressive tumor is approximately 20% 

(www.cancer.org). At diagnosis, patients o�en present with locally advanced tumors, including lymph 

node involvement in more than 75%. Usually symptoms, occur when the tumor has in�ltrated over half 

of the circumference of the esophagus or has spread by direct local growth in the adventitial tissues, 

via lymph vessels to surrounding nodes and distantly through hematogenous dissemination. Distant 

metastases are frequently observed in the liver, lungs, bones, adrenal glands, kidney and brain [1]. 

�ere are two typical esophageal cancers, esophageal squamous cell carcinoma (ESCC) and esophageal 

adenocarcinoma (EAC). ESCC, predominantly present in the Eastern and Central Asian world, derives 

from dysplastic squamous cell epithelium that usually occurs in the upper two-third of the esopha-

gus. EAC mainly develops in the distal esophagus, where ongoing gastroesophageal re�ux esophagitis 

potentially transforms squamous epithelium into columnar intestinal epithelium that further evolves 

through low and high grade dysplasia into EAC [1,2].  Alcohol and tobacco are the most important risk 

factors of ESCC whereas EAC is associated with obesity, smoking and chronic gastroesophageal re�ux 

disease (GERD) with premalignant Barrett�s esophagus [3,4]. Nodal metastases occur frequently in the 

mid and upper mediastinum in ESCC and abdominal metastases in EAC [1]. �e treatment of choice 

for locally advanced resectable tumors, both ESCC and EAC, is neoadjuvant chemoradiation (nCRT) 

followed by radical surgery [5]. Regretfully, around 20% of the tumors will not respond at all, more 

than 50% do not respond adequately, and even a�er pathologic complete response early and distant re-

currences occur in most patients [6]. �erefore, it is necessary to investigate the subpopulation of cells 

with increased treatment resistance and metastatic potential, the so-called cancer stem cells (CSCs) [7]. 

CSCs were �rst proposed by Virchow and Conheim; a subpopulation of cancer cells resembles the 

same traits as embryonic cells such as the ability to proliferate, and cancer is derived from the activa-

tion of dormant cells of the same tissue [8]. One of the �rst experiments con�rming the existence of 

CSCs, showed indeed that only a limited percentage of transplanted primary tumor cells could initiate 

a secondary tumor [9]. Subsequent research used FACS and cell surface markers to further characterize 

CSCs and investigate mechanisms involved in the regulation of cancer stemness [10,11]. CSCs are, in 

contrast to non-CSCs, thought to be dormant or quiescent [12,13] and therefore therapy resistant but 
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when re-entering the cell cycle are able to form recurrences or metastases [11,13,14]. In vitro cancer 

sphere forming potential and in vivo tumor initiating potential are o�en used as read-outs for cancer 

stemness [15,16,17]. It is believed that CSCs represent a small percentage of all EC cells with the major-

ity part consisting of more di�erentiated cells [18], albeit this has recently been challenged by studies 

showing plasticity of di�erentiated tumor cells [19,20].  

�is review will focus on EC CSCs as a target for eliminating resistant and highly metastatic cell popu-

lations and the role of the tumor microenvironment in facilitating this process.  

Markers to identify esophageal CSCs 

Although the use of markers to select CSC enriched populations is disputed due to the lack of universal 

markers owing to tumor heterogeneity, it tremendously contributed to current knowledge, including 

that of EC [20-22]. (Figure 1).

CD44, a lymphocyte homing receptor that has a role in adhesion, motility, proliferation and cell surviv-

al [23] has extensively been studied both as a single and combined marker for CSCs. Interestingly, sev-

eral CD44 variants were suggested to be a prognostic marker for adenocarcinoma of Barrett�s esophagus 

[24] and ESCC [25]. Li et. al. [26] suggested tumor stem-like cells to express CD44, being enriched in 

culture and highly expressed a�er irradiation. Next, Zhao et al. [27] showed increased colony forma-

tion, drug resistance and ESCC tumor initiation of CD44 cells. Regretfully, CD44 is being expressed by 

the majority of ESCCs in KYSE30 cells [28]. Combining CD44 with other markers greatly enhances its 

discriminative properties. As such, we [17] identi�ed a CD44+/CD24- subpopulation with CSC-like 

characteristics in esophageal cell lines OE33 (EAC), OE21 (ESCC), and in EC tumor biopsies. CD24, 

a heat-stable cell surface antigen, has a role in cell�matrix and cell�cell interactions [17,29]. CD44+/

CD24- cells had higher sphere forming potential, were more resistant to irradiation, formed tumors 

more aggressively, resided in hypoxic niches and the proportion of CD44+/CD24- cells correlated with 

the tumor growth rate [17]. Furthermore, CD44+/CD24- were present in half of the pretreatment bi-

opsies of patients with residual EAC but not at all in biopsies of patients with complete pathologic 

response a�er nCRT. �ese results suggest that CD44+/CD24- cells have CSC-like features and may 

be a target for therapy [17]. Based only on in vitro data CD44 in combination with aldehyde dehydro-
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genase 1 (ALDH1) was suggested to identify EC stem-like cells [30,32]. Moreover, ALDH1 expression 

in ESCCs was correlated with poor histological di�erentiation, lymph node metastasis and pathologic 

TNM classi�cation [31-33], Even as a single marker, ALDH1 seems to be enriched in ESCC cell line 

derived tumor spheres and solely ALDH1high cells formed lung metastasis [34-36], had high EMT 

potential, were more invasive, showed increased metastic potential and were related to poor patient 

outcome [37,38]. �erefore, ALDH1 seems to be a good candidate CSC marker alone or in combination 

with CD44 [30]. Other combinations published are CD44+/ICAM1+ [39] showing all major CSC-like 

phenotypes, and CD44+/CD133+ that predicts recurrence and prognosis of ESCC [40]. So compiling 

evidence indicates that CD44 in combination with other markers may enrich for EC CSCs and is of at 

least some prognostic value.

Another cell surface marker potentially identifying EC CSCs is ABCG2, member of group G in the 

ATP-binding cassette (ABC) transporter family [41]. In healthy tissue, ABCG2 transporter functions 

as a �rst line defense mechanism against cytotoxic substances. In the gastrointestinal tract, including 

the esophagus, ABCG2 is abundantly expressed in the apical membrane of epithelial cells [42]. ABCG2 

seems to play a role in the proliferation, tumor initiation [43,44] and treatment resistance supported 

by reduced proliferation and migration potential of ABCG2 knockdown cells [45]. Moreover, high 

ABCG2 expression in ESCC surgical material correlated with the pathological tumor grading, TNM 

stages and with metastatic lymph nodes [43]. �is suggests that ABCG2 may be an excellent marker 

for EC CSCs. 

Additionally, CD90 or �y-1 marked cells of EC cell lines showed increased sphere forming and self-re-

newal potential a�er serial passaging, e�ciently generated tumors, showed chemotherapy resistance, 

and had increased invasiveness, migration and lung metastatic potential, when compared to CD90- 

cells, all indicative of CSC properties [46].  Integrin �7 (ITGA7), critical for modulating cell-matrix 

interactions, positive cells, co-express CD90 and has been suggested to mark EC CSCs with high meta-

static potential [47]. Moreover, ITGA7 overexpressing cells highly expressed stemness genes (including 

Sox2, Oct4 and Nanog), showed EMT features, had increased self-renewal and di�erentiation ability 

and showed chemotherapy resistance. Knock down of ITGA7 reduced all these characteristics indicat-

ing that ITGA7 could be a CSC marker and a potential therapeutic target [47]. CD133 (prominin-1) has 

been identi�ed as an EC CSC marker [48] and was suggested to be of prognostic value alone [49] or in 
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combination with ABCG2 [48] or CXRC4 [50]. Finally, CD271 (p75 neurotropin receptor) expressing 

ESCC cells possessed CSC characeristics such as self-renewal, chemotherapy resistance [51] and meta-

static capacity, and could potentially act as prognostic marker for ESCC [52]. Less usable for character-

ization are the intracellular markers Bmi-1, a downstream target of the Hedgehog (HH) pathway and 

transcription factors Sox2, Oct-4 and Nanog [53-57].

It seems clear that EC does contain cells with CSC characteristics which express markers that might 

be of prognostic or predictive value. However, most data are derived from long established cell liness 

and tumor tissue biopsies. Patient speci�c organoids such as those of human metaplastic epithelia of 

Barrett�s esophagus by Sato et al [15] could improve our insight in CSC of EC and related stem cells 

markers.

EC CSC signalling pathways

Wnt/�-catenin, Notch, Hedgehog and Hippo pathways play an important role in proliferation, dif-

ferentiation, and self-renewal of stem cells, have been implicated in the regulation of EC CSCs and 

are potential therapeutic targets (Figure 1). WNT10A, an activator of the Wnt/
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phenotypes [66]. Moreover, YAP1 mediates EGFR and confers chemoresistance [67]. Interference with 

all these pathways using small molecules could have therapeutic bene�ts.

 

Figure 1: Overview of markers and pathways de�ning esophageal CSC populations. 

Cell surface markers ABCG2, CD90, ITGA7 and CD44 are used as single markers while CD44 can be used in combination with 

CD24 (CD44+/CD24-), CD133 (CD44+/CD133+), the intracellular marker ALDH1 (CD44+/ALDH1+) and ICAM1 (CD44+/

ICAM1+) to identify CSCs. ALDH1 can also be used as a single marker. CD133 can be used alone or in combination with ABCG2 

and CXCR4. CD271 is another CSC marker. Other read-outs for cancer stemness are the transcription factors Bmi-1, Nanog, 

Sox2 and Oct4. Hedgehog, Notch, WNT, PI3K/mTOR and Hippo pathways are implicated to regulate CSC populations leading 

to more proliferation, invasiveness, therapy resistance and higher metastatic potential.

Epithelial-mesenchymal transition (EMT)

During cancer progression, a fraction of cancer cells may reactivate EMT, originally necessary for the 

dissemination of di�erent primitive cells to various parts of the embryo [68]. Cancer cells highjack this 

mechanism to invade and develop metastasis [69] (Figure 2). EMT is characterized by loss of epithe-

lial characteristics while transforming into a multipolar, more motile and spindle-like mesenchymal 
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phenotype [14,69-71]. Cancer cells that have undergone EMT are able to cross the endothelium, enter 

the blood and the lymphatic system, to regain the epithelial phenotype via a reversed process called 

mesenchymal-epithelial transition once the proper niche is reached and regrow [70]. EC cells that have 

undergone EMT through tumor microenvironment initiated activation of WNT, TGF-� and Hedge-

hog pathway acquired hallmarks of CSCs such as increased invasiveness, metastases and poor survival 

[56,63,72-78]. Radiation may induce EMT through stimulation of TGF-�1 and HIF-1� signaling in-

creasing CD44 expression and upregulation of transcription factors such as Slug, Snail and Twist or 

downregulation of PTEN [79,80].

Hypoxia 

Hypoxia is a common characteristic in locally advanced solid tumors. Poor tumor vasculature creates 

intratumoral hypoxic areas, inducing neovascularization as a response to oxygen and nutrition depriva-

tion [81,82]. Hypoxia activates hypoxia-inducible factor (HIF) 1 & 2 that modulate metabolism, dereg-

ulate stem cell proliferation, enhance aggressiveness and metastatic potential [81,82] (Figure 2), reduce 

radiosensitivity [83,84] induce EMT, and change cell cycle in EC [85,86]. Interestingly, inhibition of 

HIF1� suppresses tumorigenicity of ESCC both in vitro and in vivo [87]. Indeed, pretreatment biopsy 

levels of hypoxia and HIF1� correlate with therapy resistance and poor prognosis [77,88-90]. Although 

not shown in EC, hypoxia targets Notch, Wnt/�-catenin, Hedgehog, PI3K/mTOR and unfolded protein 

response (UPR) pathways to regulate EMT and CSC stemness [91] and is activated by a number of 

oncogenes or loss of tumor suppressor genes [81]. Inhibition of the PI3K/mTOR pathway or a hypoxic 

environment leads to activation of autophagy [91] and may also be of interest in EC. mTOR pathway is 

a master regulator of cellular growth, proliferation, survival and metabolism and negatively regulates 

autophagy in response to changes in oxygen level and energy status [92].

Autophagy 

Autophagy is an evolutionarily conserved process of eukaryotic cells designed to serve as a survival 

mechanism in which cell components are captured by intracellular membrane structures, degraded 

and recycled [91]. Upon starvation, hypoxia, pathogen invasion and chemoradiation autophagy is up-

regulated to maintain cellular homeostasis and to provide energy [93]. Autophagy may be a protective 
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mechanism in the early phases of tumorigenesis requiring high levels of protein synthesis for the tumor 

to grow rather than protein degradation [94]. As such, inhibition of autophagy could contribute to tu-

mor growth [94]. However, established tumors highjack autophagy to promote survival in response to 

cellular stress during starvation, hypoxia and therapy [94] and activate EMT, increasing invasiveness, 

metastatic potential and CSCs [95] (Figure 2). 

For EC it was shown that chemotherapeutic resistant cells activated autophagy which made them able 

to recover a�er therapy in contrast to chemosensitive EC cells [96]. In addition, inhibition of autophagy 

in resistant cell lines induced sensitization to chemotherapy [96] whereas enhancing autophagy led to 

higher survival in EC [97,98]. Furthermore, whereas radiation can induce autophagy and promote cell 

survival, combination of autophagy inhibitors with radiation enhances its deleterious e�ects on the 

tumor [99,100]. Interestingly, autophagy related markers LC3II positively and p62 negatively correlated 

to poor prognosis in EC patients [101-104]. Altogether, also autophagy seems to contribute greatly to 

the gain of EC cancer stemness by increasing drug resistance, invasiveness and the development of 

metastases, and may o�er great potential for interference strategies.

�e Cancer Genome Atlas (TCGA)

In search for potential novel targets to eradicate highly metastatic CSC populations in EC, data from the 

TCGA network can be used.  In the TCGA for gastroesophageal cancer, four subsets of genetic alter-

ations have been identi�ed; Epstein-Barr virus (EBV) related tumors with PIK3CA mutations/PD-L1/2 

ampli�cations, microsatellite instability-high (MSI-H) tumors, genomic stable tumors (GS) and tumors 

with chromosomal instability (CIN) [105].

Moreover, in the TCGA analyses, a pattern of multiple genetic alterations has been detected with sig-

ni�cant di�erent molecular changes between the two main histologic types of esophageal cancer [106].  

In EAC, ERBB2, VEGFA, GATA4 and GATA6 may be altered more frequently than in ESCC [105,106]. 

Reversely, alterations in the mTOR pathway genes PIK3CA/AKT and PTEN, TP63/SOX2 ampli�cation 

and mutations in NOTCH1 are more frequently observed in ESCC [105,106]. TCGA analyses may be 

used in EC CSC derived organoids in both identi�cation and validation of potentially novel biomark-

ers. Moreover, genome guided trials with strati�cation based on patient tumor derived CSC containing 
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organoids using the TCGA distinct subsets of genetic alterations seem promising and should be devel-

oped in the near future. 

Clinical perspectives 

Although successful EC cancer therapy is measured mainly by the level of downsizing the primary tu-

mor and minimizing metastases [107], CSCs may survive therapy and subsequently re-enter cell cycle. 

�erefore, future therapies should consider CSCs. Due to the anecdotal nature of the current knowl-

edge, CSC markers have not been implemented in EC for prognosis or to monitor disease progression. 

Interestingly, enrichment of CSCs could result from current anti-cancer therapies due to death of bulk 

tumor cells and the dedi�erentiation of EC cells e.g. activating EMT and autophagy [79,80,99,100]. 

Dedi�erentiation of non-CSCs to CSCs induced by tumor microenvironment remains a huge challenge 

as it is not simply targeting a static population [17]. Following this notion, future anti-cancer therapy 

should be based on 1) eliminating the existing CSC population, by e.g. inhibitors of aberrant activated 

signaling pathways and 2) prevent dedi�erentiation, hereby pushing the cancer cells into di�erenti-

ation and making them more susceptible to conventional chemoradiation. Patient�s speci�c aberrant 

activation of e.g. HH, WNT, Notch pathways, hypoxia and autophagy can be exploited to �nd new 

personalized therapeutic targets. 

HH inhibitors

Although HH inhibitors are explored extensively in clinical trials for di�erent solid tumors, clinical 

trials on EC are limited. Vismodegib, a Ptch1 inhibitor regretfully did not show a survival bene�t in 

gastroesophageal junction tumors in combination with chemotherapy (FOLFOX) [108]. Currently, 

Vismodegib combined with nCRT is under investigation in a clinical trial in HH activated EAC (www.

NIH.com). In our hands, Vismodegib did seem to reduce the CSC pool in EC cell lines (unpublished). 

A SMO inhibitor, BMS-833923 combined with chemotherapy is currently under investigation in inop-

erable metastatic EC patients [109], whereas the use of SMO inhibitors sonidegib and taladegib are also 

being explored currently [109,110]. 
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WNT, Notch and YAP1 inhibitors

A few WNT inhibitors, PRI-724, LGK-974, Vantictumab and OMP-54F28 as a single agent or in com-

bination with conventional therapy, are currently in clinical trial in solid cancers [109]. Unfortunately, 

trials on EC still need to be conducted [109]. �e �-secretase inhibitors, R04929097, LY900009, PF-

03084014, BMS-906024, BMS-986115, MEDI0639 (anti-DLL4), OMP-59R5 (anti-Notch2/3), OMP-

52M51 (anti-Notch1), Demcizumab (anti-DLL4) and Enoticumab (anti-DLL4) all inhibiting Notch 

signaling have made it to clinical studies in solid cancers [109]. Unfortunately, so far to our knowledge 

none of these drugs have been used on EC yet [109]. YAP1, the major e�ector target of the Hippo 

pathway, can also be inhibited by the small molecule Vertepor�n. However, its signifance is yet to be 

validated in clinical trials.

Hypoxia and autophagy

Smit and colleagues showed that CD44+/CD24- cells reside in hypoxic niches of EC xenogra� derived 

tumors [17]. Preliminary data from our lab show increases in EC CSCs under low oxygen conditions, 

indicating the need to target hypoxia to eradicate all tumor cells. �ere are two main strategies target-

ing tumor hypoxia. �e �rst one is the application of bioreductive prodrugs and the second approach 

is the use of inhibitors of molecular targets upon which hypoxic cells depend on [111]. A few prodrugs 

are currently in clinical trial such as Tirapazamine, Apaziquone, TH-302, PR-104, Banoxantrone and 

RH1 in other solid cancers and might provide new insights for targeting hypoxia in EC [111]. �e 

second involve two major pathways that are essential in mediating tumor hypoxia, the HIF family of 

transcription factors and the UPR pathway [111]. EZN-2968 and Topotecan are targeting HIF1� while 

Geldanamycin is targeting the UPR pathway. mTOR inhibitors such as Metformin, Rapamycin, Torin-1 

can also be explored in modulating tumor hypoxia [111]. Drugs targeting autophagy, downstream of 

mTOR, such as Ba�lomycin and Chloroquine could also be approached in EC [110].
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Figure 2: �e in�uence of the microenvironment and cellular processes in controlling the pool of esophageal CSCs. 

Autophagy, hypoxia, anti-cancer therapy and EMT, alone or in combination, can lead to an enrichment of CSCs through aberrant 

activation of pathways facilitating the development of recurrences and metastases and increasing treatment resistance. �ese 

processes can be targeted by di�erent drugs. 
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Summary

Currently, several markers to describe EC CSCs have been suggested and may be of prognostic or pre-

dictive value for response to therapy or the development of metastases. �ese markers as well as certain 

signaling pathways could be targeted in eliminating CSCs. However, the great challenge is the tumor 

microenvironment rendering the induction of potentially new CSC populations and needs further ex-

ploration but certainly provides avenues for drug intervention. 

Although EC has a poor prognosis, targeting patients speci�c CSC cues may improve clinical outcome 

in the near future. As such, careful analysis of patient�s speci�c tumor may lead to a personalized med-

icine approach, where both CSC and the bulk tumor can potentially be eradicated leading to a more 

satisfactory outcome for EC patients. 
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