Benefits of personality characteristics and self-efficacy in the perceived academic achievement of medical students
Guntern, Sabine; Korpershoek, Hanke; van der Werf, Greetje

Published in:
Educational Psychology

DOI:
10.1080/01443410.2016.1223277

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Benefits of personality characteristics and self-efficacy in the perceived academic achievement of medical students

Sabine Guntern, Hanke Korpershoek & Greetje van der Werf

To cite this article: Sabine Guntern, Hanke Korpershoek & Greetje van der Werf (2017) Benefits of personality characteristics and self-efficacy in the perceived academic achievement of medical students, Educational Psychology, 37:6, 733-744, DOI: 10.1080/01443410.2016.1223277

To link to this article: http://dx.doi.org/10.1080/01443410.2016.1223277

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 24 Aug 2016.

Submit your article to this journal

View related articles

Citing articles: 1 View citing articles
Benefits of personality characteristics and self-efficacy in the perceived academic achievement of medical students

Sabine Guntern, Hanke Korpershoek and Greetje van der Werf
Groningen Institute for Educational Research (GIoN), Groningen, The Netherlands

ABSTRACT
This study investigates the joint impact of personality characteristics and self-efficacy on the perceived academic achievement of medical students on top of their prior high school performance. The sample consisted of medical students in their pre-clinical years. The students' grade point average scores at high school were included as control variable in our explanatory models. Based on previous findings in the literature, we selected self-discipline, social activity and emotional stability from the Five Factor Model of Personality as predictor variables. Furthermore, following the social cognitive theory of Bandura, we added self-efficacy (students' belief in their academic skills) as an additional predictor. The logistic regression analyses confirmed the importance of self-discipline (positively related) and social activity (negatively related) for these students' perceived academic achievement. Additionally, we found a positive contribution of self-efficacy. The results of this study (as discussed in the final sections) have implications for support programmes in the practical field.

Introduction
In the past few years, considerable research has been done on the prediction of academic success. The results of this research have demonstrated the importance of personality characteristics (Busato, Prins, Elshout, & Hamaker, 2000; Robbins et al., 2004; Trapmann, Hell, Hirn, & Schuler, 2007). The current study concentrates on the prediction of medical students' perceived academic success in their pre-clinical years. In medical education, the focus on investigating the impact of personality characteristics using the Five Factor Model (FFM) of Personality has been far less extensive than in other areas. However, additional knowledge about the relevance of non-cognitive factors on outcome criteria (e.g. academic achievement, drop-out rates, study satisfaction, study length and clinical outcomes) would be valuable as regards, for example, the nature of future admission procedures for the medical studies. In our research, we added self-efficacy to the FFM-model's personality characteristics (self-discipline, social activity and emotional stability) since self-efficacy has been reported to be positively associated with performance and study behaviour (Pintrich, Smith, Garcia, & Mckeachie, 1993; Robbins et al., 2004). Moreover, we were especially interested in the additional impact of these predictors after controlling for our sample students' prior performance at high school.

It is generally known that personality characteristics improve the prediction of students' academic achievement by approximately 8–10% compared to the impact of cognitive factors, which explain up
to 25% of the variance in their future academic achievement (Robbins et al., 2004; Trapmann et al., 2007). Furthermore, in combination with knowledge of cognitive factors, information on personality characteristics could be used to better guide and support students with achievement problems or with higher risks of dropping out of education (Kyllonen, Walters, & Kaufman, 2005; Lievens, Coetsier, De Fruyt, & De Maeseneer, 2002; Robbins et al., 2004; Trapmann et al., 2007).

Our study has expanded the earlier explanatory models by adding self-efficacy as predictor of perceived academic achievement to the personality characteristics of the FFM of Personality. The medical students were asked to self-identify their performance into the group upper, middle or lower performance third. If self-efficacy indeed makes a unique contribution to students' perceived academic achievement, then students with a low degree of self-efficacy may profit from cognitive-behavioural interventions. Such programmes have already shown to increase students' self-efficacy and enable them to develop alternative ways of dealing with stress, an element often connected with poor academic achievement (Bresó, Schaufeli, & Salanova, 2011; Stewart, 1999).

In the next section, we describe the literature pertaining to the personality characteristics (conscientiousness, extraversion and emotional stability) and self-efficacy as predictors of students' academic achievement leading to our hypotheses about the associations between these predictors and students' perceived academic achievement.

Personality characteristics as predictors of academic achievement

We derived those variables from the FFM of Personality that have commonly been considered as related to academic achievement, namely conscientiousness, emotional stability, extraversion, agreeableness and openness to experience (for a general review: De Raad & Schouwenburg, 1996; Trapmann et al., 2007; for a review in the medical field: Doherty & Nugent, 2011). It is generally acknowledged that conscientiousness, emotional stability and to some extent extraversion are stronger predictors of performance than agreeableness and openness to experience.

The positive impact of conscientiousness on academic achievement was confirmed in several studies conducted in the medical context (Chamberlain, Catano, & Cunningham, 2005; Ferguson, James, O’Hehir, & Sanders, 2003; Lievens, Ones, & Dilchert, 2009; Tyssen et al., 2007). Especially the facets self-discipline (e.g. not getting distracted), achievement striving (e.g. working hard to reach one’s goals) and competence (e.g. being convinced of succeeding) were found to predict academic achievement, whereas order, deliberation and dutifulness were observed to be less influential factors (Lievens et al., 2002). Another meaningful predictor was extraversion, which was shown to be significantly related to medical students’ academic achievement (Lievens et al., 2002, 2009). As reported by Lievens et al. (2009), medical students with high scores on gregariousness and excitement-seeking appear to be less successful than students with lower scores on these facets. Except for excitement-seeking, whose influence on academic achievement remained negative, the other facets of extraversion had a positive impact on students’ achievement later in their education. Another study with dental students (Chamberlain et al., 2005), however, did not identify significant associations between extraversion facets and pre-clinical school performance measures. And regarding emotional stability (the inverse of neuroticism), it was shown that its influence on the achievement of medical students was trivial, which corresponds with findings outside the medical field (Ferguson et al., 2003; Lievens et al., 2002, 2009).

Self-efficacy as predictor of academic achievement

In the educational context, the importance of students’ self-efficacy beliefs has often been investigated and used as a predictor of their academic achievement. According to Bandura (1977), self-efficacy is the confidence a person has in his/her own ability to solve problems and accomplish tasks. Bandura argued that ‘perceived self-efficacy is concerned with judgments of how well one can execute courses of action required to deal with prospective situations’ (Bandura, 1982, p. 122). Self-efficacy is a construct linked to motivational aspects, aspects of persistence and aspects of how much effort individuals put in
their actions (e.g. Burgoon, Meece, & Granger, 2012). Students with higher levels of self-efficacy possess more of these qualities than students with lower degrees of self-efficacy.

Several studies have reported that self-efficacy is positively related to academic achievement (Chemers, Hu, & García, 2001; Pintrich & de Groot, 1990; Pintrich et al., 1993; Robbins et al., 2004). This relationship is explained by the argument that self-confident students are more persistent, even in the case of achievement difficulties (Chemers et al., 2001; Robbins et al., 2004). It is in line with another finding that less confident students tend to avoid challenging situations (Fenollar, Román, & Cuestas, 2007). In the medical field, it has been suggested that self-efficacy involves an affective component. It was found that medical students’ self-efficacy was negatively associated with achievement emotions, such as course-related anxiety and boredom, whereas it was positively related to course-related enjoyment (Artino, La Rochelle, & Durning, 2010). Another study with medical students showed that self-efficacy was significantly positively correlated with first year performance (Stegers-Jager, Cohen-Schotanus, & Themmen, 2012).

The present study

The present study has evaluated the joint impact of personality characteristics and self-efficacy on the perceived academic achievement of medical students. To this end, we extended earlier models focused on the FFM personality factors by adding self-efficacy. Moreover, students’ previous performance (grade point average [GPA] scores at high school) was taken into account as cognitive factor and included in our models as control variable. To the best of our knowledge, combining these two aspects in investigating a sample of medical students in their pre-clinical years has not yet been done before. Increasing our knowledge about the impact of non-cognitive factors on top of cognitive factors provides useful information about medical students’ study behaviour. Another valuable contribution of including non-cognitive factors in our study is that they are amenable to change through suitable intervention (Bresó et al., 2011; Robbins et al., 2004).

As non-cognitive factors we focused on self-discipline, emotional stability and social activity, components that measure students’ personality on a more specific level than broader factor scales. Some authors (Ackerman, Chamorro-Premuzic, & Furnham, 2011; McCrae & Costa, 1997) have argued that measuring personality on a more specific level is presumably more suitable for an educational setting. Therefore, emotional stability was adjusted to situations in an educational context, in which elements such as stress and dealing with frustration are more applicable than, for example, clinical reactions of depression or anxiety. Particular interest was paid to the impact of self-efficacy, which was assumed to be an influential predictor of medical students’ perceived achievement.

Based on former study results, we assumed that on top of cognitive factors as measured via high school grades, non-cognitive factors (self-discipline, social activity, emotional stability and self-efficacy) would explain additional variance in medical students’ perceived pre-clinical achievement (hypothesis 1). Starting from the literature, we expected a rather small influence of emotional stability (hypothesis 2). Moreover, we expected a positive impact of self-efficacy (hypothesis 3) and of self-discipline (hypothesis 4) on our students’ perceived academic achievement. No concrete assumption was made about the influence of social activity on their perceived academic achievement because the literature has been ambiguous as regards this topic.

Method

Participants

In total 863 medical students from Switzerland and Austria participated in this study. These students had achieved the highest scores on a selective admission test, aimed at choosing the ‘best’ applicants for the medical studies. At the time of the survey, the students were in their pre-clinical years. They
were asked to fill out a questionnaire about study-relevant personality characteristics and self-efficacy (this was done voluntary while no rewards were offered for participation). We informed the students about the study’s objective of supporting prospective applicants in their study decision. The answers of the students were intended to be used for the development of a self-administered assessment for applicants to the medical study.

The participation rate was approximately 30% of all students to whom the assessment was offered. Based on the availability of students’ high school grades (indicated by 34%), the final sample size consisted of 291 students. The main age of the students in the sample was 21 years (SD = 2.8), of whom 54% was female (n = 156) and 46% male (n = 135). The majority of the students were in their second year (n = 198, 68%), and one third in their first year (n = 93, 32%). The first two years of medical education are usually considered to be the pre-clinical years with a main focus on natural sciences. In the higher study years clinical internships form an integrated part of the programme.

Measuring personality characteristics and self-efficacy

The questionnaire employed to measure the personality characteristics was based on the well-documented FFM of personality (McCrae & Costa, 1997). The NEO-PI-R, a tool for measuring the FFM, served as standard instrument for our scale construction. We exclusively focused on study-relevant personality characteristics. Therefore, we constructed a new questionnaire (Table 1). Additionally, this questionnaire was adjusted to the medical context. Several steps were realised to build a reliable and valid questionnaire. First, a comprehensive literature research guided the selection of the FFM scales. We chose those FFM scales whose impact on study success was proven according to this literature. Second, the scales were formulated in the style of the NEO-PI-R item texts, after which experts evaluated their comprehensibility. Third, our definitive item selection was based on reliability and exploratory factor analyses.

The final questionnaire included the following personality characteristics: self-discipline (a facet of conscientiousness; 14 items, \(\alpha = .91 \)), social activity (a facet of extraversion; 11 items, \(\alpha = .89 \)) and emotional stability (12 items, \(\alpha = .86 \)). Emotional stability focused on students’ ability to cope with frustrations and stress, which we believed to be the most relevant component in the medical context where students are required to function in a highly demanding environment. We therefore measured emotional stability on a more specific level than done by the NEO-PI-R. Some scale item examples are the following: *I can put away disappointments, I start having self-doubts quickly and I easily get insecure* (emotional stability); *I have difficulties to start working, I finish my tasks in time and I get easily distracted* (self-discipline); *I am not a shy person, I like to meet new people and I am open toward foreigners* (social-activity).

Furthermore, a self-efficacy scale (16 items, \(\alpha = .88 \)) was added to the questionnaire to measure the students’ self-confidence. The operationalisation of this component was based on Bandura’s social cognitive theory (2001). Again, we adjusted its items to the educational context of medical students. Some item examples are: *I am convinced to finish my studies successfully, I also tackle difficult tasks with confidence and I trust in my intellectual abilities*. The item responses for all scales ranged from (1) not at all applicable to (5) entirely applicable.

Table 1. Scale overview.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Items</th>
<th>(\alpha)</th>
<th>Scale definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-discipline</td>
<td>14</td>
<td>.91</td>
<td>The ability to start and finish tasks in time. Self-disciplined students do not get distract easily</td>
</tr>
<tr>
<td>Emotional stability</td>
<td>12</td>
<td>.86</td>
<td>Emotional stable students are self-confident and can put frustrations away</td>
</tr>
<tr>
<td>Social activity</td>
<td>11</td>
<td>.89</td>
<td>Students with high scores are communicative and prefer being together with others</td>
</tr>
<tr>
<td>Self-efficacy</td>
<td>16</td>
<td>.88</td>
<td>Self-efficient students are convinced about their abilities also in times of difficulties</td>
</tr>
</tbody>
</table>

Note. \(\alpha \) = Cronbach’s alpha for 863 medical students.
Measuring prior performance and perceived academic achievement of medical students

The variables to measure medical students’ cognitive factors were their prior performance at high school (‘what was your grade point average (GPA) in the high school diploma’) and their perceived academic achievement at university so far (‘in which performance third were you so far in the examinations you passed at university’). Based on their passed university examinations so far, the medical students were asked to rate their performance into the categories: (1) the upper performance third, (2) the middle performance third or (3) the lower performance third. Approximately half of the students (51.2%) estimated to be in the upper third (n = 149), 43.6% estimated to be in the middle third (n = 127) and 5.2% estimated to be in the lower third (n = 15).

As aforementioned, the sample was reduced on the availability of medical students’ high school grades (GPA). Analyses of variance, however, showed no significant differences for personality characteristics between the students who reported their GPA (referring to the selected group; n = 291) and the students who did not report their GPA (referring to the non-selected group; n = 572). As regards self-efficacy, the selected students scored slightly lower than the non-selected students [M_{selected} = 3.87, SD_{selected} = .54; M_{non-selected} = 3.96, SD_{non-selected} = .53; F(1, 861) = 5.35, p = .021, η² = .006]. As a result, self-efficacy was slightly underestimated in our sample.

Given that a relatively large number of better performing students participated in the survey, a selection bias may have occurred. But then, medical students are known as a highly performing group for which the lowest performance group will in fact be rather small because they had to pass a highly selective admission test in order to get study permission. Moreover, the sample size of the lower performance group was too small for logistic regression analysis with study year as control variable. Therefore, the middle and lower performance groups were combined.

Control variables

Since our study aim was to investigate – in addition to prior performance – to which degree personality characteristics and self-efficacy predict the perceived academic achievement of medical students, we used the students’ high school grades as control variable. Furthermore, to confirm the overall impact of our factors, we controlled for study year.

Data analyses

We started our analyses by examining the correlations among the predictors self-discipline, social activity, emotional stability and self-efficacy. In regression analysis, highly correlated scales should be excluded because they to some extent provide overlapping information. Subsequently, to determine the additional amount of explained variance in the perceived academic achievement component, we conducted hierarchical regression models by entering the control variables prior to the predictor variables. Next, because our outcome variable was categorical while our predicting variables were continuous, logistic regression analyses were performed. If the outcome variable is dichotomous, a logit transformation is required to be better able to interpret the results (Peng, Lee, & Ingersoll, 2002).

To establish the relative predictive impact of the predictors we looked at their odds ratios. Odds ratios inform us about the change in the odds produced by a unit change in the predictive variable when all other predictors are held constant (Peng et al., 2002). Applied to our data, if the odds value of our predictors (self-discipline, social activity, self-efficacy) is larger (smaller) than 1, then the chance for being in the better performing group increases (decreases) by the factor of the odds ratio. Furthermore, to gain more insight into what the expected value of the predictors would be in the population, we also investigated the predictors’ confidence intervals. A confidence interval of 95% means that if a series of identical studies were performed, 95% of these intervals would enclose the results (Gardner & Altman, 1986).
Results

Descriptive results

As reported in Table 2, the correlations among the predictors were moderate, although the connection between emotional stability and self-efficacy was relatively high. Moreover, as shown in Table 3, emotional stability did not correlate with perceived academic achievement, which is why it was excluded from our further analyses.

The other predictors did correlate with the medical students’ perceived academic achievement. High school grades, self-discipline and self-efficacy were positively related to their overall perceived achievement. Furthermore, self-discipline significantly correlated with students’ perceived achievement in the first study year, but did not do so in the second study year. And whereas there was no correlation between social activity and perceived academic achievement in the first study year, it was significant and negative in the second year.

Hierarchical logistic regression analyses

Hierarchical logistic regression analyses were performed using study year and high school grades as control variables, and self-discipline, social activity and self-efficacy as predictors of perceived academic achievement (Table 4). The high school grades explained 20% of the variance in examination performance after controlling for study year ($\chi^2 (1) = 47.97, p < .001$). Personality characteristics and self-efficacy accounted for an additional amount of 7% of the variance in perceived academic achievement ($\chi^2 (3) = 17.88, p < .001$) after controlling for study year and students' prior performance at high school.

All predictors included in the model were significantly related to perceived academic achievement. The high school grades had the largest impact on examination performance. Furthermore, the odds ratios for self-efficacy and self-discipline both indicated that the odds of belonging to the better performance group was 1.43, resp. 1.39 times greater for each unit of increase in the score on these scales. Thus, the percent change in the odds of the better performing group was 43%, resp. 39% corresponding.

Table 2. Means (M), standard deviation (SD) and correlations between predictors.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Range</th>
<th>M</th>
<th>SD</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) High school grades</td>
<td>1–6</td>
<td>5.14</td>
<td>.46</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(2) Self-discipline</td>
<td>1–5</td>
<td>3.40</td>
<td>.73</td>
<td>.22**</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(3) Emotional stability</td>
<td>1–5</td>
<td>3.39</td>
<td>.64</td>
<td>−.04</td>
<td>.07</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(4) Social activity</td>
<td>1–5</td>
<td>3.76</td>
<td>.69</td>
<td>.05</td>
<td>.11</td>
<td>.28**</td>
<td>–</td>
</tr>
<tr>
<td>(5) Self-efficacy</td>
<td>1–5</td>
<td>3.87</td>
<td>.54</td>
<td>.27**</td>
<td>.24**</td>
<td>.67**</td>
<td>.32**</td>
</tr>
</tbody>
</table>

Note. Pearson correlations for 291 medical students with **$p < .01$.

*High school grades (GPA) ranged from 1 to 6. All study participants though had at least a grade of 4, because such a grade is required to pass the examinations.

Table 3. Zero order correlations with the perceived examination performance.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Performance group</th>
<th>Overall</th>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 291)</td>
<td>(n = 93)</td>
<td>(n = 198)</td>
<td></td>
</tr>
<tr>
<td>High school grades</td>
<td>.40**</td>
<td>.27**</td>
<td>.47**</td>
<td></td>
</tr>
<tr>
<td>Self-discipline</td>
<td>.20**</td>
<td>.34**</td>
<td>.14</td>
<td></td>
</tr>
<tr>
<td>Emotional stability</td>
<td>−.03</td>
<td>.01</td>
<td>−.05</td>
<td></td>
</tr>
<tr>
<td>Social activity</td>
<td>−.10</td>
<td>.03</td>
<td>−.17*</td>
<td></td>
</tr>
<tr>
<td>Self-efficacy</td>
<td>.19**</td>
<td>.21*</td>
<td>.18*</td>
<td></td>
</tr>
</tbody>
</table>

Note. Spearman’s rho for 291 medical students with *$p < .05$; **$p < .01$.

*Lower performance group is coded with 1 and better performance group with 2.
to a one unit increase while holding the other predictors fixed. The relationship between social activity and performance group was negative. If the social activity of students increased by one unit, the odds of belonging to the better performance group decreased. Since the confidence intervals of all predictors did not include 1, there is relative strong evidence that self-efficacy and self-discipline affect students’ perceived achievement positively, while social activity has a negative impact on that outcome variable.

Discussion

Our study aim was to investigate to which degree personality characteristics (self-discipline, social activity and emotional stability) and self-efficacy predict the perceived pre-clinical academic achievement of medical students on top of their prior performance at high school. Therefore, we included students’ pre-university performance as a control variable. Furthermore, we also controlled for the study year to investigate the overall impact of our factors. This was necessary to do because the correlations of the factors with students’ perceived academic achievement were different for the first and second study year. In literature, it was reported that a varying impact of cognitive and non-cognitive factors on the same outcome variable across the study years is not unusual (Lievens et al., 2009; McManus, Woolf, Dacre, Paice, & Dewberry, 2013). One explanation for an increased impact of cognitive factors is that achieving the current learning goals depends on the learning outcome of earlier years (McManus et al., 2013). However, other researchers have argued that the impact of cognitive factors presumably decrease in higher education (Ackerman et al., 2011; Furnham, Chamorro-Premuzic, & McDougall, 2003), whereas the one of non-cognitive factors increase in higher education. For example, Lievens et al. (2009) showed that conscientiousness and extraversion of medical students became more important in clinical years. Generally speaking, the impact of the factors seems to depend on the predicted variable (Lievens et al., 2009).

We found that the students’ high school grades accounted for 20% of the variance in their perceived academic achievement. When adding self-discipline, social activity and self-efficacy, the explained variance increased to 27%. Thus, hypothesis 1 was confirmed, while our results regarding this premise are in line with previous findings in both the educational (Robbins et al., 2004; Trapmann et al., 2007) and medical context (Ferguson et al., 2003). Hence, non-cognitive factors accounted for an increased amount of explained variance of approximately 7% in our students’ perceived academic achievement on top of their prior performance at high school. In highly selective fields such as, for example, medical education, relatively weak associations between predictors and outcome variables can already be considered useful (Adam, Bore, McKendree, Munro, & Powis, 2012). Additionally, non-cognitive factors provide valuable information on the cognitive factors. Personality characteristics, for example, inform about students’ behaviour in a specific situation (Kyllonen et al., 2005; Lievens et al., 2009; Robbins et al., 2004; Trapmann et al., 2007).

Table 4. Hierarchical logistic regression analyses for the perceived examination performance.

<table>
<thead>
<tr>
<th>Step</th>
<th>Step 1, $R^2 < .001$</th>
<th>OR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study year</td>
<td>.96</td>
<td>.59–1.57</td>
<td>.88</td>
<td></td>
</tr>
<tr>
<td>Step 2, $R^2 = .203$</td>
<td>.84</td>
<td>.49–1.44</td>
<td>.53</td>
<td></td>
</tr>
<tr>
<td>Study year</td>
<td>.88</td>
<td>.51–1.55</td>
<td>.67</td>
<td></td>
</tr>
<tr>
<td>High school grades</td>
<td>2.32</td>
<td>1.72–3.13</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>Self-discipline</td>
<td>1.39</td>
<td>1.07–1.79</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>Social activity</td>
<td>.65</td>
<td>.48–.87</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>Self-efficacy</td>
<td>1.43</td>
<td>1.07–1.91</td>
<td>.02</td>
<td></td>
</tr>
</tbody>
</table>

Notes. OR = odds ratios; 95% CI = 95% confidence interval. All predictor scores are standardised into z-values.
Second, we tested the relative predictive impact of the personality characteristics and self-efficacy on the students’ perceived pre-clinical academic achievement. All of our predictors, self-discipline, social activity and self-efficacy, had a significant impact on the perceived academic achievement of our sample of medical students. Particular attention was paid to the influence of self-efficacy, a variable which we assumed to be more valuable than students’ emotional stability in the educational context. This assumption was based on findings that emotional stability is generally not a significant predictor of academic achievement (Chamberlain et al., 2005; Lievens et al., 2002, 2009). In this respect, we agree with the argumentation of other authors that self-efficacy reflects emotional stability in an academic setting (Judge & Bono, 2001; Robbins et al., 2004). Although we expected the impact of emotional stability to be rather small, our results did show a non-significant correlation between this factor and our students’ overall performance ($r = -.03$, $p > .05$). Therefore, hypothesis 2 was not confirmed. Furthermore, our results revealed that self-efficacy was a significant predictor of perceived academic achievement, thereby confirming hypothesis 3. The most likely explanation of the positive impact of self-efficacy is that self-confident students work harder and are more persistent than unconfident students (Chemers et al., 2001). It is assumed that self-efficacy is susceptible to change through cognitive-behavioural interventions (Bresó et al., 2011; Robbins et al., 2004). On the other hand, also the way in which teachers, practitioners and others give feedback has an influence on this variable. Fenollar et al. (2007), for example, reported that accurate, timely and specific feedback has a positive influence on students’ confidence.

Our findings also indicated a positive impact of self-discipline on our medical students’ perceived pre-clinical academic achievement (confirming hypothesis 4). In our questionnaire, we measured the students’ ability to start and finish tasks in time. It seems that students who performed better were less deflectable and better able to stick to their schedule than less self-disciplined students. In general, the positive impact of conscientiousness on study success has been well confirmed in the literature (for non-medical samples: e.g. Robbins et al., 2004; for medical samples: e.g. Lievens et al., 2009).

To continue, better performing students scored lower on social activity (a facet of extraversion), implying that, on average, they were less outgoing and presumably spent more time on studying than students with higher social activity scores. Other studies using extraversion as a predictor have shown ambivalent results. Some have reported a significant negative association between extraversion and academic achievement in pre-clinical years (Lievens et al., 2002, 2009), whereas other studies have not shown this association (Chamberlain et al., 2005; Ferguson et al., 2003). Here, however, the operationalisation of extraversion may play a role. In our study we restricted extraversion to the aspect of social activity, ignoring its other facets, such as warmth, gregariousness, assertiveness, excitement seeking and positive emotions. The results correspond with those of a study of Chamorro-Premuzic and Furnham (2003), in which only facets which measure the need to meet with others were significantly related to the total examination grades of the students (activity: $r = -.24$, $p < .01$; gregariousness: $r = -.20$, $p < .01$). However, the negative impact of social activity (odds ratios smaller than 1) does not imply that social contacts are per se a threat to being successful at university. It has been shown that a social network can certainly be beneficial for students in completing their study successfully (Eggen, van der Werf, & Bosker, 2008). The impact of extraversion seems further to depend on the selected prediction criteria. For example, extraversion was not an important predictor for the perceived academic achievement in medical students’ pre-clinical years, but the impact of extraversion increased over time (Lievens et al., 2009). For study purposes in higher education it may be advisable to not be too extraverted and spend enough time on studying. For practical training or tasks involving social interaction, on the other hand, a dynamic network of contacts may be helpful (for non-medical samples: De Raad & Schouwenburg, 1996; for medical studies: Lievens et al., 2009).

A possible explanation for the joint influence of self-discipline, social activity and self-efficacy is that the predictors in our study were especially conceptualised for the medical context. Our scales particularly focused on students’ working behaviours. As pointed out by other authors (e.g. Dudley, Orvis, Lebiecki, & Cortina, 2006), for prediction purposes it has seemed more valuable to concentrate on narrow personality characteristics within specific contexts than on broader measurements. Therefore, instead of broader factor scales, our questionnaire specifically included NEO-PI-R facets.
Practical implications

The knowledge that personality characteristics and self-efficacy in addition to prior performance at high school have an influence on medical students' perceived pre-clinical educational achievements can be put to use in helping struggling students. The value of self-efficacy is that it may be more easily influenced than the other personality characteristics (e.g. Stewart, 1999). Cognitive-behavioural interventions, for example, can help students to deal with stress in a more effective manner (Bresó et al., 2011; Stewart, 1999). Increasing one's self-efficacy may therefore also be of importance in the work as a physician, which is known to be demanding, especially in terms of social involvement skills, such as being empathic and interacting with patients in times of stress.

Medical studies are known to be highly demanding with different study requirements in the clinical and pre-clinical study years. In the pre-clinical years, medical students need to acquire the scientific knowledge, whereas the focus in the clinical study years lies more on the application of the acquired knowledge in practice. With regard to the selection process of medical students, our research provides useful knowledge about the additional impact of non-cognitive factors (on top of cognitive factors). As argued in the literature (Benbassat & Baumal, 2007; Lambe & Bristow, 2011; O’Neill, Hartvigsen, Wallstedt, Korsholm, & Eika, 2011), the assessment of non-cognitive factors may lead to a better self-selection of the medical applicants. Providing objective and reliable information to the applicants about their working behaviours (compared to the ones of medical students) will enable them to make a well-considered study decision. Therefore, a self-administered assessment containing non-cognitive factors is expected to be beneficial to this group. O’Neill et al. (2011), for example, showed that students who were selected based on a non-grade admission dropped out of medical school less frequently than those admitted based on their highest pre-university GPA. In our opinion, a combination of a voluntary assessment of non-cognitive factors and an obligatory, selective performance test may successfully identify those applicants most suitable for the medical studies.

Limitations

The main limitation of this study concerned the measurements of the high school grades (GPA) and the perceived academic achievements, because they were based on students' self-reports. Relying on students' self-reports restricts the interpretation to students' perceived academic achievement. The reason is that students may have a misconception of their own performance in comparison to their peers or have given socially desired answers even though they had no incentive to do so. They were informed about the study's purpose to support prospective applicants in their study decisions.

Second, another consequence of students' voluntary indication of their high school grades was that the sample had to be reduced because of missing GPA scores. In order to stimulate students to fill out the questionnaire, they were allowed to skip this item if they considered this information as too sensitive. This enabled us to compare the students who did report their GPA with the students who didn’t. The results of the comparison showed a relatively small difference between the two groups in terms of the self-reported performance at university ($\chi^2 (1) = 3.54; p = .06$), indicating that the sample used in the analysis was largely representative of the overall response group. Additional analyses of variance further indicated that the personal characteristics of the GPA reporting group were comparable to those of the GPA non-reporting group, except for self-efficacy (lower scale score for the reporting group than for the non-reporting group). However, the group difference for self-efficacy was not considered to be crucial with respect to the goals of the current study.

Third, the perceived academic achievement was highly unequally distributed with 51% of the medical students ranked themselves as belonging in the upper performance third, 44% in the middle performance third and 5% in the lower performance third. Although our sample is known as a highly performing group (due to a selective admission test), more equally distributed answers were expected. Yet, the distribution of the students in the different performance groups was highly unequal, with only a very small percentage of students in the lowest category. This resulted in a restriction of range in the
outcome variable (upper versus middle/lower performing third). It is likely that this restriction of range led to an underestimation of the associations between the predictors and the outcome variable (see e.g. Robbins et al., 2004; Schmidt & Hunter, 1977). Some evidence for the reliability of our measurements is that students' GPA scores were the strongest predictor of the outcome variable (see also McManus et al., 2013; Sawyer, 2013) and the associations between the predictors and the outcome variable were in the expected directions. A replication of the study is recommendable to see whether stronger associations will be found in a sample of students with a higher variability in academic achievement scores.

Further research

Several research questions remain to be addressed. First of all, a follow-up study that takes more objective measurements of medical students' performance into account is recommended. Students' pre-clinical performance could be taken into account with the high school diploma grades. Maybe an even more important aspect is the operationalisation of students' academic achievement. Another approach to measure students' academic achievement would be to obtain this information from institutional records instead of letting students self-evaluate their performance. With such an approach more insight about the associations between the predictors and students' actual academic achievement would be gained in comparison to students' perceived achievement. At the same time, the associations between the predictors and the academic achievement scores are supposed to become stronger due to a higher variability in the dependent variable.

Second, the introduction of more sophisticated analyses which distinguish, for example, between pre-clinical and clinical study years would further enhance our knowledge on the influence of non-cognitive factors on study success variables. Based on earlier study results (Adam et al., 2012; Lievens et al., 2009), one could assume that social activity has a positive influence on the students' achievement in the clinical years, in which practical training with patient interactions becomes more influential. In a similar vein, self-efficacy is expected to have a positive effect on students' clinical work. Students who have more faith in their abilities are presumably also more successful during work experience. Furthermore, the predictive impact of the personality characteristics and self-efficacy on outcome criteria other than students' academic achievement (e.g. drop-out rates, study satisfaction, study length and clinical outcomes) still needs to be investigated.

Finally, throughout this study it was argued that the integration of non-cognitive and cognitive factors is worthwhile, also with regard to intervention programmes. Especially self-efficacy was discussed in the literature to be positively affected through cognitive-behavioural intervention programmes (Bresó et al., 2011; Stewart, 1999). However, subsequent studies have to confirm this assumption for the sample of medical students. All in all, increasing our knowledge about the impact of non-cognitive factors on top of cognitive factors provides useful information about medical students' study behaviour and their achievement during the non-clinical and clinical study years.

Conclusion

We have contributed to the literature on relevant success factors in the medical studies, where the admission procedures are more selective than in other study fields, by presenting two sources of measurements, namely personality characteristics and self-efficacy for the prediction of perceived academic achievement on top of students' pre-university achievement. A consideration of these variables – already during the admission process and later during the medical studies – offers additional information about students' working behaviour. The value of this information can be seen in its influence on the academic achievement of students and its vulnerability to support programmes for students with performance difficulties.
References

