Primary Sjögren’s Syndrome
Delli, Konstantina

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-07-2023
Comment on ‘Diagnostic accuracies of sialography and salivary ultrasonography in Sjögren’s syndrome patients: a meta-analysis’ by Song and Lee (2014)

Konstantina Delli¹, Pieter U Dijkstra¹², Frederik KL Spijkervet¹, Hendrika Bootsma³, Arjan Vissink¹

Affiliations:

1. Department of Oral and Maxillofacial Surgery
2. Department of Rehabilitation, Center for Rehabilitation
3. Department of Rheumatology and Clinical Immunology

University of Groningen, University Medical Center
Groningen, Groningen, The Netherlands

Edited version of: Clin Exp Rheumatol. 2015;33:293.
Table 1: Overview of the data presented in the source publications and the data presented by Song and Lee.

<table>
<thead>
<tr>
<th>Source publications</th>
<th>Data from source papers</th>
<th>Data reported by Song and Lee (2014)</th>
<th>Sialography</th>
<th>Ultrasonography</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SS: Sjögren syndrome patients, CO: Controls</td>
<td></td>
<td>TP: true positive, FP: False positive, FN: False negative, TN: True negative</td>
<td></td>
</tr>
<tr>
<td>Takagi et al., 2010</td>
<td>188 177 365</td>
<td>177 172 349</td>
<td>146 31 42 141 360</td>
<td>154 50 34 122 360</td>
</tr>
<tr>
<td>Obinata et al., 2010</td>
<td>36 37 73</td>
<td>32 37 69</td>
<td>30 2 6 35 73</td>
<td>28 8 8 29 73</td>
</tr>
<tr>
<td>Poul et al., 2008</td>
<td>45 15 60</td>
<td>37 15 52</td>
<td>35 2 10 13 60</td>
<td>38 4 7 11 60</td>
</tr>
<tr>
<td>Salaffi et al., 2008</td>
<td>77 79 156</td>
<td>68 79 147</td>
<td>56 12 21 67 156</td>
<td>58 13 19 66 156</td>
</tr>
<tr>
<td>Yonetsu et al., 2002</td>
<td>171 123 294</td>
<td>151 123 274</td>
<td>149 2 30 121 302</td>
<td>130 7 41 116 294</td>
</tr>
<tr>
<td>Yoshiura et al., 1997</td>
<td>-Sialography 24 40* 64</td>
<td>23 0 1 21 45</td>
<td>11 1 13 21 46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Ultrasonography 24 41** 65</td>
<td>23 0 1 21 45</td>
<td>11 1 13 21 46</td>
<td></td>
</tr>
</tbody>
</table>

SS: Sjögren syndrome patients, CO: Controls, TP: true positive, FP: False positive, FN: False negative, TN: True negative.

* 39 with nonspecific parotitis and 21 healthy volunteers. ** 19 nonspecific parotitis and 20 healthy volunteers.

With great interest we have read the recently published meta-analysis by Song and Lee [1] in your journal regarding the diagnostic properties of sialography and salivary ultrasonography in Sjögren's Syndrome (SS) patients. A systematic review and meta-analysis on this topic has been lacking so far from the literature and, thus, eagerly expected. We would like to express some concerns regarding Table 1 of their study in relation to the study outcomes. There seems to be a discrepancy between the data shown in the meta-analysis and the data presented in the source studies [2-7].

1. In the study of Takagi et al., 2010 [2], the number of SS cases is 188 as opposed to 177 reported by Song and Lee [1].
2. In the study of Obinata et al., 2010 [3], the number of SS cases is 36 as opposed to 32 reported by Song and Lee [1].
3. In the study of Poul et al., 2008 [4], the number of SS cases is 45 as opposed to 32 reported by Song and Lee [1].
4. In the study of Salaffi et al., 2008 [5], the number of cases with SS is 77 as opposed to 68 reported by Song and Lee [1].
5. In the study of Yonetsu et al., 1997 [6], the number of controls is 21 as opposed to 23 reported by Song and Lee [1].
6. In the study of Yoshiura et al., 1997 [7], the number of controls is 40 * as opposed to 21 reported by Song and Lee [1].

Additionally, summing the numbers of true positives, true negatives, false positives, and false negatives in Table 1 of Song and Lee's paper does not add up to the same numbers [1]. It is possible that the data set was not complete for every participant in the source studies, e.g., the study of Yoshiura et al., 1997, in which data from two control groups were used with different numbers for sialography and ultrasonography [7]. Furthermore, some source studies do not report the number of true positives, true negatives, false positives, and false negatives. If Song and Lee report that discrepancies were resolved by consensus, it might be that there was no need for a third reviewer and do not report inter-observer agreement measures.

We were wondering which numbers were entered in the statistical program to perform the meta-analyses, since these numbers influence the outcome of the study. We would appreciate if the authors could comment on the above raised issues.

References