The role of birth cohorts in long-term trends in liver cirrhosis mortality across eight European countries

Sergi Trias-Llimós1, Maarten J. Bijlsma2 & Fanny Janssen1,3

Population Research Centre, Faculty of Spatial Sciences, University of Groningen, Groningen, the Netherlands,1 Max Planck Institute for Demographic Research, Rostock, Germany2 and Netherlands Interdisciplinary Demographic Institute, The Hague, the Netherlands3

ABSTRACT

Background and aims Understanding why inequalities in alcohol-related mortality trends by sex and country exist is essential for developing health policies. Birth cohort effects, indicative of differences by generation in drinking, have rarely been studied. This study estimated the relative contributions of birth cohorts to liver cirrhosis mortality trends and compared sex- and country-specific cohort patterns across eight European countries. Design Time-series analysis of population-level mortality data. Setting Austria, Finland, Hungary, Italy, the Netherlands, Poland, Spain and Sweden; 1950–2011. Participants National populations aged 15–94 years. Measurements We modelled country- and sex-specific liver cirrhosis mortality (from national vital registers) adjusting for age, period and birth cohort. Findings Birth cohorts (adjusted for age and period) made statistically significant contributions to liver cirrhosis mortality in all countries and for both sexes (P < 0.001), and more so among women (average contribution to deviance reduction of 38.8%) than among men (17.4%). The observed cohort patterns were statistically different between all but two country pairs (P < 0.001). Sex differences existed overall (P < 0.001), but not in the majority of countries (P > 0.999). Visual inspection of birth cohort patterns reveals birth cohorts at higher risk of liver cirrhosis mortality. Conclusions The inclusion of the birth cohort dimension improves the understanding of alcohol-attributable mortality trends in Europe. Birth cohorts at higher risk of liver cirrhosis mortality were born during 1935–49 in Sweden and Finland, around 1950 in Austria and the Netherlands and 1960 or later in Hungary, Italy, Poland and Spain.

Keywords Age–period–cohort analysis, alcohol, cohort, Europe, liver cirrhosis, mortality.

INTRODUCTION

Alcohol-attributable mortality, or the share of overall mortality attributable to alcohol, is higher in Europe than elsewhere in the world because of the high prevalence of alcohol consumption [1]. However, the levels of and the trends in alcohol prevalence and subsequent alcohol-related mortality differ substantially across European countries and between the sexes [2–5]. Understanding the long-term trends in alcohol-related mortality, the differences in these trends across countries and between the sexes and the factors that explain these trends is essential for developing health policies.

Previous studies that assessed the long-term trends in alcohol-related mortality focused mainly on calendar time as the time component and on liver cirrhosis mortality as the indicator of alcohol-attributable mortality [6–10]. However, the inclusion of another time dimension, such as birth cohort, has been crucial to understanding mortality [11] and cancer incidence trends [12,13]. Individuals who were born in the same period, and thus belong to the same birth cohort, have similar experiences at the same age, and are likely to adopt similar behaviours. In the particular case of alcohol, restrictions, prices and advertisements related to alcohol influence drinking behaviour directly at younger ages [14], which tends to predict patterns of alcohol use during the life-course [15,16]. In addition, individuals who started drinking at younger ages are more prone to suffer from alcohol dependence [17] and to develop other alcohol-related problems, such as alcohol use disorders or injuries [18,19]. Therefore, in studying trends in alcohol prevalence and subsequent mortality, it is necessary to not only look at changes over age (= age effects)—increasing mortality with age—and calendar
time (= period effects)—mortality change over subsequent years—but also to examine the role of birth cohorts (= birth cohort effects), i.e. differences in mortality between those born in 1950 and those born in 1960. Indeed, recent studies on alcohol consumption trends have found that birth cohorts are significant explanatory factors [20,21]. These findings indicate that drinking habits are formed not just collectively (= period effects), as Skog posited [22], but also by generation (= birth cohort effects).

The relevance of birth cohorts has also been proved in the few studies that have assessed alcohol-attributable mortality. Analysing data for the period 1970–89, Corrao et al. [23] found increasing liver cirrhosis mortality risks for cohorts born in the first half of the 20th century in northern and eastern Europe. Recent studies at the country-specific level found a decline in alcohol-related mortality risks for birth cohorts born after World War II in Sweden [24], and in Nordic countries, Germany and France, based on data from 1980 to 2009 [25].

However, these previous studies did not examine trends over a long historical period, nor did they make pan-European country comparisons. Longer time-series make it possible to compare more birth cohorts at the same age, and are therefore likely to provide more precise cohort estimates. In addition, because alcohol consumption and liver cirrhosis mortality trends are not always similar across European countries [5,10], it is important to examine the country-specific role of birth cohorts across European countries.

OBJECTIVES

First, we estimate the extent to which birth cohorts explain liver cirrhosis mortality trends in countries across different European regions by examining simultaneously the age, period and birth cohort effects. Secondly, we compare the birth cohort patterns across countries and between sexes.

METHODS

Design

We estimated liver cirrhosis mortality trends from 1950 to 2011 for the national populations aged 15–94 years of eight European countries belonging to different regions and with different alcohol consumption levels, patterns and trends: Austria, Finland, Hungary, Italy, the Netherlands, Poland, Spain and Sweden.

Data

Liver cirrhosis mortality data by calendar year, 5-year age groups and sex from national vital registration systems were retrieved from the World Health Organization (WHO) Mortality Database [26]. These data were complete and of medium or high quality for all countries except Poland, because of a more substantial proportion of ill-defined causes [27]. Because only a small proportion of ill-defined causes of death can be attributed to liver cirrhosis [28], the potential underestimation of liver cirrhosis mortality in Poland is small. We used International Classification of Diseases (ICD) codes 581 in ICD-7, 571 in ICD-8 and ICD-9 and K70, K73, and K74 in ICD-10 [7]. We redistributed the deaths in the open-ended age group 85 + in ICD-7, ICD-8 and ICD-9 to the age groups 85–89 and 90–94 by means of their average relative share in ICD-10 by country and sex. The mortality rates were obtained by dividing the deaths by the age-, sex- and year-specific exposure population which we obtained from the Human Mortality Database [29]. These 5-year age group mortality rates were subsequently turned into 1-year age group mortality rates by applying two-dimensional P-splines smoothing [30]. The combination of ages 15–94 and years 1950–11 resulted in the inclusion of the 2-year overlapping birth cohorts (1855/56, ..., 1995/96). Because of missing data, in some countries different years and birth cohorts were included (see Supporting information, Table S1).

STATISTICAL ANALYSIS

Descriptive analysis

All analyses were performed separately for men and women. To compare liver cirrhosis mortality across countries, the liver cirrhosis mortality rates were directly age-standardized using the European population of 2011 from Eurostat [31] as the standard. Age-standardized and age-specific liver cirrhosis mortality trends were plotted and inspected visually.

Age-period-cohort (APC) modelling

Liver cirrhosis mortality rates were modelled as a function of age, period and birth cohort. We fitted four different Poisson regression models for each country–sex combination (see Box 1), with the natural logarithm of population at risk as the offset term. To deal with the identification problem in APC modelling that results from the linear dependence between age, period and birth cohort [age = calendar year (period) minus year of birth (cohort)], we applied the standard Clayton & Schifflers approach [32,33]. This approach distinguishes the shared linearity between period and birth cohort by means of identifying the drift, next to age, period and cohort. Drift represents the linear change in the outcome that is shared between period and birth cohort. By constraining two categories in the variable of interest (birth cohort), we can estimate and visualize non-linear birth cohort effects unaffected by
linear time-trend changes. We used as reference categories age 50, calendar year 1980 and birth cohorts 1900 and 1960. We examined country differences (in the full data set and between pairs of countries) and sex differences (in the full data set and in each country) by performing likelihood ratio tests comparing an APC model with sex–APC interactions or country–APC interactions with the same model excluding the sex–cohort or country–cohort interactions, respectively.

Box 1 APC modelling

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>Statistical notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (A)</td>
<td>(\ln[\lambda_a] = \mu + \alpha_a)</td>
</tr>
<tr>
<td>Age + drift (AD)</td>
<td>(\ln[\lambda_{ad}] = \mu + \alpha_a + \delta)</td>
</tr>
<tr>
<td>Age + period (AP)</td>
<td>(\ln[\lambda_{ap}] = \mu + \alpha_a + \beta_p)</td>
</tr>
<tr>
<td>Age + period + cohort (APC)</td>
<td>(\ln[\lambda_{apc}] = \mu + \alpha_a + \beta_p + \gamma_c)</td>
</tr>
</tbody>
</table>

Where \(\lambda \) is the liver cirrhosis mortality rate. \(\mu \) is the intercept, \(\alpha, \beta \) and \(\gamma \) represent the age, period and birth cohort effects and \(\delta \) represents the drift. APC = age–period–cohort.

To assess the relative contributions of birth cohorts to the model fit, we calculated the percentage of scaled deviance between the models A and APC, that is attributed to the drift, to the non-linear period and to the non-linear birth cohort components. We also assessed the fit of the different models to the data with likelihood ratio tests. Because the observations for the extreme cohorts were less complete, we limited our graphs to cohorts born between 1900 and 1980. All data analyses were performed using R version 3.2.5 in R studio 0.99.451 (R Studio, Boston, MA, USA).

RESULTS

Descriptive results

Age-standardized liver cirrhosis mortality rates—higher for men than for women and at different levels for the different countries—seem to exhibit different patterns over time across the analysed countries (Fig. 1). In Austria, Italy, Spain and Sweden the decline in liver cirrhosis mortality rates started around 1975, whereas in Hungary in the 1990s and only very recently in Finland.

Examining the age-specific graphs (see Supporting Information, Figure S2) reveals that for some populations the age-specific period patterns are clearly parallel (i.e. Italian men), which suggests the predominance of period effects, whereas in other populations (i.e. Polish and Dutch women) different period patterns can be observed for different age groups, which suggests the predominance of cohort effects.

APC modelling: the contribution of birth cohorts

Birth cohorts made statistically significantly contributions to the fit of the liver cirrhosis mortality model \((P < 0.01)\) compared with the AP models. These contributions were larger for women (unweighted average of
38.8%) than for men (unweighted average of 17.4%) in all countries except Spain, and differed across countries (Fig. 2). The contributions of birth cohorts were larger than the contributions of period and drift effects for Dutch and Polish women. In addition, the contributions of birth cohorts exceeded 20% for women in all the other analysed countries except Spain. The APC models for all country–sex combinations provided a good fit to the data ($P > 0.05$).

APC modelling: the effects of age, period and birth cohort

Liver cirrhosis mortality rates increased with age for men until approximately ages 60–75 in all countries except Italy, where they continued to increase along the analysed age groups (Fig. 3). Liver cirrhosis mortality generally peaked at slightly older ages for women than for men. In Hungary, however, the pattern among women looked similar to that of men, while in Italy no decline was observed. Compared to the reference category (age 50), age effects were largest for women and in the southern European countries.

The period effects (including drift) logically showed the same pattern as the age-standardized liver cirrhosis mortality trends described above (see Supporting Information, Figure S1).

Overall, the non-linear birth cohort patterns were statistically different across countries and between sex (Table 1). Although sex differences were found in Italy, Spain and Hungary ($P < 0.001$), they were insignificant in all other analysed countries ($P > 0.999$). Birth cohort patterns were statistically different between all pairs of countries except for Netherlands–Finland ($P = 0.932$) and Netherlands–Austria ($P > 0.999$). The graphs of the birth cohort effects (Fig. 4) suggest that the statistical difference in cohort patterns between most countries, and between sexes in some countries, is due mainly to differences in timing. Mortality started to decline for birth cohorts born around the 1940s and 1950s in Sweden and Finland, and for cohorts born around the 1960s in Spain and Hungary. In Italy (men) and Poland the onset of the decline was 5–10 years later.

DISCUSSION

Summary of results

Birth cohorts contributed significantly to liver cirrhosis mortality trends in all eight European countries studied and for both sexes. The relative contributions of birth cohorts differed across countries, and were larger for women than for men. The observed cohort patterns were statistically different between all but two country pairs. Sex differences in the patterns existed overall, but not in the majority of countries. Visual inspection of birth cohort patterns reveals that birth cohorts at higher risk of liver cirrhosis mortality were born around 1935–1949 in Sweden and Finland, around 1950 in Austria and the Netherlands and around 1960 or later in the other analysed countries.

Evaluation of data and methods

In all the APC analyses, an important methodological issue that arose was the treatment of the identification problem (birth cohort = period – age). Like previous
demographic [11] and epidemiological studies [12,34], we applied the standard Clayton & Schifflers approach [32,33] because it detects drift, or the co-linear pattern of period and cohort. Using this approach enabled us to identify cohort effects that could not be ascribed to period, although the total cohort effect was underestimated when the share of drift was large. However, because the contribution of drift for many countries (the Netherlands, Austria, Finland, Sweden and Poland) appears to have been relatively small, our estimated cohort effects—and, consequently, age and period effects as well—are probably close to the real effects.

In our analyses, we compare countries across different European regions. Instead, we could have considered countries as nested in regions, which enables the comparison of cohort trends between regions by modelling country-level random effects and fixed-effect regional indicators [35]. We focus on the comparison of individual countries because it was as yet unknown to what extent cohort trends between individual countries within a region differ. Indeed, the evidence generated by this study (significant differences between pairs of countries within each region) indicates important within-regional variation. Therefore, we recommend that if a hierarchical (i.e. country-level random effect) approach is taken, more than two countries per region are selected so that regional effects can be estimated precisely despite potentially large within-regional variation.

Table 1 Tests for cohort effect differences\(^a\) by sex (in each country)\(^b\) and between countries\(^c\) in liver cirrhosis mortality (P-values).

<table>
<thead>
<tr>
<th>Sex</th>
<th>Austria</th>
<th>Finland</th>
<th>Hungary</th>
<th>Italy</th>
<th>Netherlands</th>
<th>Poland</th>
<th>Spain</th>
<th>Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>>0.999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>>0.999</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td><0.001</td>
<td><0.001</td>
<td>0.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>>0.999</td>
<td>>0.999</td>
<td>0.932</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>>0.999</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Spain</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Sweden</td>
<td>>0.999</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Bold indicates statistically significant differences in cohort effects. *For the grouped data of eight countries the P-values for both sex and country differences were < 0.001. †Likelihood ratio test for sex-specific cohort effects in each country. ‡Likelihood ratio test for country-specific cohort effects between pairs of countries.

Figure 3 Estimated age effects of liver cirrhosis mortality in eight European countries, 1950–2011, by sex. (a) Dotted lines illustrate 95% confidence intervals.
In assessing the long-term trends in alcohol-related mortality in several European countries we used liver cirrhosis mortality as a proxy, as was performed in previous studies [6–10], which enabled us to avoid having to cope with ICD revisions for more specific causes of death. Note, however, that liver cirrhosis mortality is a good indicator of alcohol-related chronic diseases, but not of acute conditions. However, because most of the mortality attributed to alcohol is from chronic diseases (i.e. [2,36]), this is unlikely to have affected the results greatly. Furthermore, although viral hepatitis [37] and, to a lesser extent, obesity (i.e. [38]), are risk factors that sometimes accompany liver cirrhosis, their low prevalence (viral hepatitis) [39] and different patterns over time (general increase in obesity) [40] suggest that they were of minimal importance. At the population level, liver cirrhosis mortality trends over calendar time generally seem to follow the patterns of per capita alcohol consumption in most European countries [8,9], which indicates that alcohol was both the main contributor to, and the driver of, liver cirrhosis mortality trends [10].

Comparison of results with previous APC studies on alcohol-related mortality

Our birth cohort patterns estimates are directly comparable to those of two studies that assessed mortality from a few major diseases attributed to alcohol in Sweden [24] and in the Nordic countries, Germany and France [25]. The birth cohort patterns we observed appear to be similar to the birth cohort patterns in alcohol-attributable mortality found in previous studies for Finland and Sweden, which again supports the use of liver cirrhosis mortality as a proxy for alcohol-related mortality. By including countries with different alcohol consumption levels, patterns and trends we were able to observe important timing differences between and across countries in the birth cohort effects on liver cirrhosis mortality. Unlike for alcohol-related period trends, Sweden and Finland are forerunners in the cohort decline in alcohol-attributable mortality, whereas Poland seem to lag behind.

Our formal assessment of the actual contributions of birth cohorts to liver cirrhosis mortality trends by country, which was not performed previously, provided us with additional information about the relative importance of cohort and period patterns.

Explanation of results

We observed potential differences between the sexes and across countries in the contributions of birth cohorts to the liver cirrhosis mortality trends. Although different contributions of drift can affect the comparison of the contributions of birth cohorts, we can be certain that the cohort contributions in Poland and the Netherlands were larger for women than for men. These potential sex and country differences in the contributions of birth cohorts can be linked to differences between the sexes and countries in the abruptness of changes in alcohol consumption over time, and subsequent changes in alcohol-attributable

Figure 4 Estimated non-linear birth cohort effects of liver cirrhosis mortality in eight European countries, 1950–2011a. (a) Dotted lines illustrate 95% confidence intervals
mortality over calendar time versus cohort. For example, the small contributions of birth cohorts to liver cirrhosis mortality that we observed in Italy and Spain can be linked to the rapid decline in alcohol consumption over calendar time in those countries [1]. This is reflected in the clear bell-shaped curve in liver cirrhosis mortality across all age groups (Fig. 1) and, more importantly, for the separate age groups (see Supporting information, Figure S2), which could indicate that the economic factors and policy changes have affected drinking behaviour of the population more equally. Similarly, in Hungary the rapid changes in liver cirrhosis mortality over calendar time (Fig. 1) are well reflected in a relatively low contribution of birth cohorts compared to period (Fig. 2). Conversely, for the Netherlands and Poland the period changes in liver cirrhosis mortality were much less pronounced and varied for the different age groups (see Supporting information, Figure S2), which made room for larger contributions of the birth cohort dimension relative to the period dimension. Because women tend to drink less than men [5], variation in alcohol consumption over calendar time due to contextual effects (such as policy and cultural changes) is also likely to have been smaller. Indeed, our results showed more level period trends in liver cirrhosis mortality for women than for men combined with less parallel age-specific trends for women which, again, resulted in cohort effects making stronger contributions for women than for men.

Birth cohort effects are larger when changes in mortality over time are observed for a few, rather than for all, age groups. As young drinkers are expected to be more prone to change their drinking behaviour than older drinkers with well-established patterns [21], they may be more likely to alter their patterns not only in response to changes in alcohol policy, but also to changes in levels of social awareness of alcohol damage. Therefore, it is plausible that changes of this kind have affected the drinking behaviour of the younger age groups in particular, and therefore resulted in cohort effects.

The observed differences in the timing of the increase and the subsequent decline in the risk of dying from liver cirrhosis for the subsequent cohorts—which occurred earlier in Sweden and later in Poland—seem to be very much in line with the assumption that economic progress led to contextual changes, especially for young people. Indeed, positive changes in alcohol policies and increased social awareness of alcohol damage generally occurred earlier in more economically advanced countries than in less economically advanced countries [41]. This hypothesis is also in line with the existing literature for Sweden, as the early peak in the cohort pattern has been linked to alcohol policies and social awareness [21,24].

The birth cohorts at higher risk of liver cirrhosis mortality can also be linked to country-specific alcohol consumption when those generations were young adults. In most southern European countries, the decline in alcohol consumption started around 1975 [1], and was driven mainly by economic factors and policy changes [42]. This is in line with our observation for Spain, that cohorts born around 1960 (aged around 15 in 1975) had a higher risk of liver cirrhosis mortality. Similar links between the observed patterns for liver cirrhosis mortality and alcohol consumption can be made for Austria and the Netherlands, as alcohol consumption started to decline moderately in the late 1970s, while the cohorts at higher risk of liver cirrhosis mortality were born in the 1950s. In Finland, by contrast, alcohol consumption did not decline during the 20th century [1]; however, a decline in cohort liver cirrhosis mortality could be observed for birth cohorts born after 1950. The cohorts at higher risk of liver cirrhosis mortality in Finland were adolescents and younger adults between the mid-1960s and the mid-1970s, when a dramatic increase in alcohol consumption in the country occurred (from 2.5 to 6.5 litres per person per year) in response to changes in alcohol policies [43]. For Poland and Hungary, information about consumption levels is less reliable because of a large share of underreported home-made alcohol consumption [5], which tends to be more toxic [44]; however, the late peak in the cohort pattern is certainly in line with the observation that the change in context (and decline in alcohol sales data) occurred later in these countries than in most of the other analysed countries.

Further research should assess whether the decline in alcohol-related mortality risks along generational lines will continue for younger generations, given that in some European countries binge drinking has increased among recent generations [45,46].

CONCLUSIONS

Overall, the inclusion of the birth cohort dimension adds significantly to our ability to describe and understand alcohol-attributable mortality trends in Europe. We observed clear differences across countries and between the sexes in the effects of birth cohorts on liver cirrhosis mortality trends, which could be linked to differences in the abruptness of changes in alcohol consumption over time. Also, differences in the timing of the birth cohorts experiencing smaller risks than their predecessors were observed, with Sweden as a forerunner and Poland lagging behind all other analysed countries.

The cohort dimension should not be ignored in future studies, as it can not only provide information to health policymakers about the age-specific impact of their health policies and other contextual changes; it can also provide information about which birth cohorts are at elevated risk of alcohol-attributable mortality, and will therefore affect future mortality levels.
Declaration of interests

None.

Acknowledgements

This work is financed by the Netherlands Organization for Scientific Research (NWO) in relation to the research programme 'Smoking, alcohol, and obesity. ingredients for improved and robust mortality projections', grant no. 452-13-001. See www.futuremortality.com

References

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Table S1 Age, period and birth cohorts included in the analysis by country.
Figure S1 Estimated period effects (including drift) of liver cirrhosis mortality in eight European countries, 1950–2011, by sex.
Figure S2 Age–period liver cirrhosis mortality by country and sex (1950–2011).