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Abstract 

The brain and the immune system are the only two systems of the human body that can 

dominate all others by extracting resources, including glucose. The brain dominates during 

daytime hours and stressful situations, whereas the immune system protects us principally at 

night, during periods of infection and when wounds are healing. Both systems are similarly 

capable of drawing on energy and other essential resources using strategies beneficial to their 

own function and anatomy. Human evolution has made the brain the most important of the 

body’s systems, resulting in a shift from strong to smart. However, the immune system is very 

old and robust; when necessary it is activated by a variety of non-specific immune challenges 

such as psychoemotional stress and most often when immune activating risk factors 

(including endotoxemia) are not solved in an appropriate timeframe. When chronically 

activated, the immune system demonstrates even more selfish behaviour than the selfish 

brain, inducing chronic low-grade inflammation and multiple related diseases. But before 

castigating the immune system for this behaviour, it is crucial to recognise that it is only 

doing what it is made for: trying to protect us. 
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immune system; selfish brain; inflammation; evolution; stress; chronic disease; Alzheimer; 

fibromyalgia syndrome; insulin resistance 
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1. Introduction 

 

1.1. The selfish brain and immune system in evolution 

Low-grade inflammation; the cause of causes 

Chronic inflammatory diseases (CID) are increasing in frequency, while treatments for these 

conditions are still in their infancy (1). Many of these diseases hardly existed 200 years ago (2) 

and proximate interventions addressing their genuine aetiologies have not been very 

successful (3). Chronic inflammation involves the innate and adaptive immune system (4), 

which can be considered very costly at the level of the use of resources, including energy (5), 

proteins and certain minerals, such as calcium (6) and magnesium (7-9). Long-term 

activation of the innate and adaptive immune system causes further maturation of antigen 

presenting cells (10). It is therefore plausible that low-grade inflammation is a direct cause of 

multiple diseases related with increased activity of the innate and adapted immune system 

including multiple autoimmune disorders and cancer. A recent meta analysis showed a linear 

association between C reactive protein (CRP), a marker for low grade inflammation and risk 

for breast cancer (11)). 

 

Physiological processes in all living organisms are direct consequences of evolutionary 

pressure promoting overall evolutionary fitness, defined as survival taking precedence over 

reproduction and direct survival/reproduction taking precedence over long-term 

survival/growth (12). Because of this precedence being set, injuries or atrophy of tissues such 

as skin, bone and tendons occur when resources needed for survival are scarce, including 

situations of starvation (13), and in times of energy depletion due to acute and even chronic 

inflammation (1). Many CIDs manifest at older age and therefore exert little selection pressure. 

Our ancestors had much lower life expectancies and rarely suffered from CIDs or the 

resulting adverse health consequences, and when they did this would hardly have affected 

survival and reproduction (14). Nevertheless, although inflammation can affect important 

organs such as the liver and liver inflammatory mechanisms are essential for the 

maintenance of liver health, it is important to note that even in these situations, hepatic 

gluconeogenesis is maintained during immune activation, providing the energy required for 

survival and reproduction (15, 16).  

 

During the preparation of this review, which started in 2008, other authors published the term 

“selfish immune system” and so we refere to those publications (17, 18). Nevertheless this 

paper has been written as original and focuses on total different insides of the selfish 

character of the immune system. The purpose of this review is to give evidence that the 

immune system overrides the brain in situations of low grade inflammation and that the 

dominance of the immune system is the major reason for the development of most if nota ll 
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chronic diseases. It is obvious that the comparance between a solid organ such as the brain 

and a circulatory organ such as the immune system is difficult. Nevertheless, if we do not 

consider anatomy, both Systems are perfectly comparable at the level of behaviour, health and 

disease  

 

1.2. Protective role of the immune system during human evolution 

Robust adaption to new environmental challenges involves epigenetic changes that 

influence rapid (epigenetic; individuals, some generations) and long-term (genetic; 

generations) adjustment of the phenotype, for instance by epimutation, single nucleotide 

polymorphisms and gene copy number variation (19, 20). Numerous environmental factors 

have shaped the human genome, including climate, food and microbial load (21). Although 

the first two challenges certainly show selective pressure in humans, the main selective 

pressure seems to derive from pathogens because of their high degree of potential lethality 

(22).  

 

When hominins began exploring new environments looking for food and scavenging, they 

were exposed to new pathogens. For example, dead meat, when spoiled, is a perfect source of 

pathogens such as Escherichia coli, Salmonella and other possible lethal microbes (23). The 

struggle to survive in new situations led to the development of an incredibly effective and 

robust immune system. The survival mechanisms evolved at least four times and entailed: 

upregulation of anti-inflammatory and anti-pathogenic strategies (24), spontaneous physical 

activity (25, 26), the development of a highly sophisticated behavioural immune system (27), 

and higher immunological reactivity, when compared with our evolutionary closest 

counterpart, the chimpanzee (28, 29).  

 

The higher reactivity of the immune system enabled the exploration of new environments 

and, when necessary, the ability to mount a massive innate immune response to prevent 

lethal infection (30). This response is extremely costly and would have hardly permitted the 

further brain growth observed in later hominins if the pro-inflammatory reaction to 

pathogens had prevailed over the needs of the brain on a chronic basis. The use of the first 

three strategies might have been necessary because of a much lower energetic cost, thus 

protecting against pathogenic load, without suffering from the possible secondary damaging 

effects of a pro-inflammatory strategy (31). It is therefore conceivable that the combination of 

these three strategies ‘liberated’ energy for larger brains and an expansion of brain functions.  

 

Failure of these three strategies (i.e. upregulation of anti-inflammatory and anti-pathogenic 

strategies, spontaneous physical activity and the development of a highly sophisticated 

behavioural immune system) necessitates a protective high-cost pro-inflammatory response 
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and the entire body is then at the disposal of the immune system; “prima vivere e dopo 

filosofare” (first live and then philosophise). This selfish behaviour of the immune system is 

observed not only in acute inflammation but also in chronic inflammation, the major 

difference between these two states being a shift from a hypermetabolic state to a 

hypometabolic state. Figures 1 and 2 show how the immune system puts the body at its 

disposal in acute inflammatory (Figure 1) and chronic inflammatory (Figure 2) states. 

Observing the actual pandemic increase of non-communicable diseases, we consider that it 

is this selfish behaviour of the immune system that causes the majority, if not all, of these 

diseases. Although the selfish immune system gave humans the ability to explore the entire 

world, it now seems to be responsible for most modern diseases, including cardiovascular 

disorders, autoimmune and neurodegenerative diseases.  

 

 
Figure 1. The immune/metabolic response during acute inflammation.   

The increased need for energy during acute inflammation causes a hypermetabolic state and allocation of resources, 

including proteins and minerals, to the immune system. Insulin levels are down-regulated by inhibition of pancreatic B-cells 

and glucose can be used by the immune system through development of adaptive insulin resistance of competing organs 

such as muscles, fat and liver. Short-term use of neurotransmitters by the immune system increases the activity level of the 

innate immune inflammatory response, ‘helping’ the need to mount an intense but optimal reaction that will resolve in a 

maximum of 4 to 7 days. Sickness behaviour induced by hyperleptinaemia and pro-inflammatory cytokines further saves 

energy, induces sleep and adaptive cachexia. The optimal IIS response is short-term and will moderately activate antigen-

presenting cells. The adaptive immune system will produce anti-inflammatory memory cells that can be recruited when the 

host encounters a different immune challenge of the same type. This adaptive immune response generally ends after a 

maximum of 27 days, leaving sufficient energy to maintain health of the organs disposed of during the start of the immune 

response. Resolving substances such as protectins and resolvins finish immune activation and homeostasis of the whole 

body is recovered through normalised energy distribution. Ach, acetylcholine; APC, antigen presenting cell; IIS, innate 

immune system. 
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Figure 2. Chronic low-grade inflammation and hypometabolism.  

In the modern world, long-term pro-inflammatory activity of the immune system is frequently caused by anthropogenic 

factors and other conditions that challenge the immune system only weakly, but chronically. In normal situations any 

inflammation would produce a compensatory immune suppression, which is why low-grade inflammation needs a logical 

explanation. To maintain pro-inflammatory activity, the immune system itself puts the entire body at its disposal, but at the 

same time protects the body against multiple organ failure by inducing a hypometabolic state. Cortisol and noradrenaline 

induce gluconeogenesis and this extra glucose is allocated to the immune system by increasing insulin resistance of 

competing organs. At the same time, leptin reactivates the immune system, whereas brain regions associated with satiety 

develop leptin resistance, inducing increased food craving. Low thyroid hormone (rT3>T3) decreases total energy 

expenditure (protective hypometabolism) and rT3 is needed to fight pathogens. Nerve-driven immunity provides the 

immune system software (serotonin and dopamine) to maintain pro-inflammatory activity, whereas immune-suppressive 

mediators are down-regulated (cannabinoids and acetylcholine). Retraction of sympathetic fibres of inflamed/immune 

tissue and increase of sensory fibres are hardware strategies of nerve-driven immunity. Chronic pro-inflammatory activity is 

further maintained by a shift from an anti-inflammatory androgenic to a pro-inflammatory oestrogenic state in both males 

and females. The total picture of this ‘selfish immune system behaviour’ might be considered protective when it does not 

last too long; it is however highly deleterious when the human body starts developing all kinds of modern disorders such as 

autoimmune diseases, neurodegeneration and other maladies. Nevertheless, even today it is usually better to develop a 

CNCD than to die of cancer or infection.  
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1.3. Acute inflammation resolves itself; controlled resolution 

The immune system is self-regulating through negative biofeedback mechanisms, just like 

any other system in the human body. Acute inflammation induces the production of several 

substances responsible for finishing the immune reaction, including arachidonic acid 

derived lipoxins, EPA-derived protectins and DHA-derived resolvins (1), but only if the 

aforementioned fatty acids, notably the fish-derived fatty acids EPA and DHA,  are available in 

sufficient amounts (32-34). These substances decrease the activity of pro-inflammatory cells 

of the innate immune system and, at the same time, stimulate migration of phagocytizing 

macrophages to the danger zone/battlefield (35-37) 

 

Another more intrinsic negative biofeedback signal is lactic acid. The activated immune 

system uses (cytoplasmic) glycolysis as energy metabolism, in which 90% of glucose 

molecules are converted into lactic acid, a metabolic shift from mitochondrial oxidative 

phosphorylation (MOP) to cytoplasmic substrate level phosphorylation (SLP) (38). This 

metabolic shift seems counterintuitive when considering that only 2 molecules of ATP are 

generated from 1 molecule of glucose during SLP, whereas MOP yields 36 molecules of ATP. 

This is, however, conceivable in the light of the velocity of SLP, which is a hundred times 

faster than MOP (38, 39). 

 

A second benefit of SLP is that the glucose molecule is only partially used for ATP generation. 

Lactic acid and other macromolecules are metabolites of SLP that confer several favourable 

positive conditions during acute inflammation that guarantee cell division and cytokine 

production and render the immune system to a state independent of food and oxygen. The 

immune system’s capacity to engage in SLP is also known as the ‘Warburg effect’, which not 

only provides the immune system with fast energy, but also the precursor (glucose) needed 

for the synthesis of structural elements for the production of all DNA, RNA, organelles and the 

majority of cell membranes (for an excellent review, see 40). The oxygen-independent 

fermentation of glucose in the cytoplasm thus leads to the production of amino acids as 

precursors of proteins, (deoxy)ribose for DNA and RNA, glycerol for lipids and NADPH 

through the pentose phosphate pathway, needed for the production of phospholipids and 

glutathione (40). The activated immune system is now capable of growth and proliferation, 

largely without the need to uptake oxygen and building blocks. Considering the sickness 

behaviour associated with acute infectious disorders, characterised by cachexia {food 

absence} and even diaphragmatic breakdown {low oxygen} (41, 42), this makes sense.  

 

Lactic acid supports the role of lipoxins, resolvins and protectins in finishing the 

inflammatory response in a maximum of 4 to 7 days. Finishing the inflammatory response in 

time protects the body against possible deleterious secondary effects caused by the immune 
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system itself. Not only have intrinsic mechanisms emerged to end an acute inflammatory 

response, but brain-coordinated strategies, including the production of substances such as 

cortisol (43), certain cannabinoids (44), acetylcholine (45) and catecholamines (46, 47), are able 

to switch off the immune system. These inhibiting mechanisms are activated through 

coordinated processes during acute inflammation and the same holds true for the serotonin 

and dopamine pathways (see chapter ‘behaviour at the disposal of the immune system’). 

Observing the multiple mechanisms responsible for inhibiting the pro-inflammatory activity 

of the immune system, it can only be concluded that the inflammatory response should be 

finalised in time, leading to controlled resolution even after infection (48). 

 

Therefore, why is immune-inhibition absent when people suffer from weak inflammation 

caused by anthropogenic factors (AF)? AF activate the immune system through indirect 

pathways and causes a weak, ‘cold’ inflammation, without any of the typical signs of ‘hot’ 

inflammation (49). Usually adipocytes are activated by AF, such as high caloric food intake 

and psycho-emotional stress. Although this type of inflammation is not as strong, it still 

produces a metabolic shift of the immune system, giving rise to the production of substantial 

amounts of lactic acid, which serves as a potent immune suppressor through the creation of 

significant acidosis (50, 51). The question therefore remains how the immune system 

‘manages’ its activity for years and years, in spite of intrinsic and extrinsic mechanisms that 

inhibit the immune system and generally protect the body, but especially the selfish brain, 

against secondary damaging effects.   

 

We suggest that the immune system manages long-term activity by pursuing at least two 

strategies, firstly to achieve energy (glucose) and secondly to reactivate itself. The first strategy 

has to induce constant gluconeogenesis and energy allocation to the immune system and the 

second strategy has to reactivate the immune system. Pro-inflammatory immune system 

activity depends on several conditions. 1. Pro-inflammatory cytokines have to be produced 

through activation of the key regulator of the immune system being nuclear factor-! B (NFkB), 

2. Immune cell growth and cell proliferation depends on activation of the mammalian target 

of rhapamacin (mTOR), 3. cytoplasmic glycolysis is needed for the production of 

macromolecules and energy during immune activation and this requires the activation of 

hypoxia-induced factor-1 (HIF-1) and 4. The activated immune system demands large 

amounts of glucose and therefore a higher number of glucose transporters type 1, achieved 

by upregulation of c-myc (52-54).  
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Strategies used by the immune system to reactivate itself include: 

¥ Insulin resistance and high insulin levels 

¥ Leptin resistance and hyperleptinaemia 

¥ Low thyroid hormone syndrome 

¥ Catecholamine resistance of the immune system 

¥ Cortisol resistance of the immune system 

¥ Systemic androgens to oestrogens shift 

¥ Peripheral serotonin recruitment 

¥ Peripheral dopamine recruitment 

 

The majority of these different strategies are associated with sickness behaviour exhibited 

during acute infection (55). This behaviour is characterised by symptoms such as cachexia, 

fatigue, increased sleep and fever. It suggests that the activated immune system itself is 

responsible for fasting during infection and ‘senses’ that food will not be available under these 

conditions. The outcome is the mentioned shift from MOP to SLP, resulting in immune cell 

proliferation and activity becoming independent from food intake, all to enable the infection 

to be cured (56). Chronic activity of the immune system, during which the same metabolic 

shift occurs, would require a large amount of glucose, which is the basic energy fuel of the 

activated immune system and, of which, the limited availability constitutes the basic problem 

in chronic non-communicable diseases (CNCD) (56). This ‘nutrition-independent’ state may 

be responsible for the recently evidenced decrease in basal metabolic rate in chronic 

inflammatory disorders, rendering the subject vulnerable to the development of multiple 

metabolic disorders, including metabolic syndrome and diabetes mellitus type 2 (57). 

 

In summary, the metabolic shift observed in conditions of an activated immune system 

renders the system glucose-dependent and will therefore activate all strategies to maintain 

glucose homeostasis through systemic gluconeogenesis (43). The immune system can apply 

multiple strategies to maintain activity, although at a low level and puts the whole body at its 

disposal, including the brain, if necessary. This selfish behaviour has a protective effect 

during acute infection, but may have a dramatically deleterious effect in the long run, 

evidenced by the number of people suffering from CNCD in our society (58, 59). Low-grade 

inflammation should therefore be regarded as the cause for the majority, if not all, cases of 

CNCD. Treatment should therefore target the strategies used by the immune system to 

maintain its activity over a prolonged period of time. The only way to provide the correct 

treatment is to understand the ways the immune system puts the whole body at its disposal, 

which is the aim of this review. 
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1.4. The selfish immune system; brain damage leads to more brain damage 

caused by the immune system and overriding the brain as most dominant 

organ 

The immune system is one of the systems with a high level of biological robustness (60). 

Some diseases and their effects produced by the robust character of the immune system will 

not necessarily benefit the host, but that is the price to pay. We provide evidence that the 

mechanisms leading to pathologies affecting the whole body, including the brain, should be 

considered robust and part of the survival strategies developed during hominin evolution (61). 

 

The interactive neuro-endocrine-immune system evolved to cope with acute immunological 

challenges such as infection and wound healing, but is also activated by non-immunological 

danger for which it was not designed (2, 62). Theories explaining biological priorities 

consistently put the human brain in first place (63, 64). However, brain functions, blood 

circulation and anatomy are disrupted in those suffering from Alzheimer’s disease, 

Parkinson’s disease, fibromyalgia syndrome (FMS), chronic fatigue syndrome (CFS) and 

depression  (65-68), which suggests that certain pathophysiological processes override the 

protective behaviour of the selfish brain.   

 

FMS depression and Alzheimer’s disease (AD) are obviously not diseases of choice, but may 

rather reflect the involuntary alternative of suffering from a low energetic state leading to a 

non-permissive brain disorder (e.g. AD, depression and FMS), rather than dying from multiple 

organ failure (69-71) caused by a chronic activated pro-inflammatory immune system.   

 

Rogers (72) stated that “Inflammation seems useful when controlled, but deadly when it is not. 

For example, ‘head trauma may kill hundreds of thousands of neurons, but the secondary 

inflammatory response to head trauma may kill millions of neurons or the patient” and the 

same holds true for people who suffer a stroke (73, 74). The inflammatory response of the 

immune system causing severe secondary damage to the brain after traumatic brain injury or 

ischaemic stroke seems maladaptive in the face of the ‘selfish’ brain hypothesis. It would, 

however, correspond with the ‘selfish’ immune system hypothesis, which states that danger 

gives precedence to the immune system, and thereby overriding the selfish brain.  

 

It may even be the case that dramatic inflammatory response following brain injury is not 

caused by the injury itself, but by the presence of infectious pathogens. Pre-existing infection 

is present in one third of clinical ischaemic stroke patients  (75). Clinical data suggest that 

stroke risk peaks at three days after infection onset and that this risk remains high for three 

months (76). Almost three out of every four people in the world who suffer a fatal stroke live in 

developing countries and malaria, Chagas disease and Gnathostomiasis seem to be the major 
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causes for this surprising fact (77). Children and young adults are less susceptible to all-cause 

strokes with the exception of infectious stroke and diseases such as sickle cell disease. A 

recent case-control study revealed that pre-existing infection is an independent risk factor for 

stroke in 33% of affected children also in developed countries, such as the USA where 2,400 

children suffer from strokes every year (78). These data suggest that a possible pathogenic 

presence ‘programmed’ a severe pro-inflammatory immune response when the brain or the 

heart muscle are damaged. The selfish behaviour of the immune in these cases should be 

considered as adaptive but also possibly deleterious. Nevertheless the fact that people 

suffering from immune suppression after stroke are highly susceptible for sepsis and dead 

(79) suggests that the selfish behaviour of the immune system should be considered as 

needed when damage to the heart or the brain has been done. 
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2. It’s all about energy – The selfish immune system 

 

2.1. Robustness and energy reallocation between visceral organs, muscles, 

the immune system and the brain 

The immune system is one of the energetically most costly systems in humans when 

‘activated’. Consequently, immune metabolism has a profound effect on the functioning of 

the body. Metabolic conflicts between organs seem to explain the emergence of several 

disorders and, more specifically, modern non-communicable diseases such as autoimmune 

disorders (80).  

 

Anthropogenic danger signals, such as psychoemotional stress and sleep deprivation,  are 

capable of activating the immune system and a chronically activated immune system 

demands high energy, protein and immune-specific minerals such as calcium (2). Such high 

costs would never have permitted the development of the phylogenetic newer metabolic 

expensive brain in general and, more specifically, the neocortex during evolution. A recent 

review describes how exercise (searching for food, water and shelter) in primates and early 

hominids produced a shift from a pro-inflammatory immune reaction with a high metabolic 

demand to an anti-inflammatory response with a low metabolic demand (31). This shift made 

it possible to allocate energy to other organs e.g. the brain without large amounts of energy, 

proteins and minerals having to be invested in the immune system, whilst at the same time 

maintaining protection against microbes.  

 

2.2. Energy and energetic conflict as the driving force behind evolution 

Changes in energy allocation between organs are a consequence of energy conflicts that 

affect all animals, but non-human primates and humans in particular  (81, 82). Several 

scenarios have been proposed, with the brain being the organ to benefit from loss of colon 

length and high caloric dense food [the expensive tissue hypothesis] (81, 82)], a decrease in 

muscle mass, an increase in fat mass (49), cooking (83), human locomotion costing less 

energy (84) and, very recently, a change in the expression of glucose transporters beneficial to 

the brain (85). To our knowledge, as yet it has not been suggested that immune function may 

also have benefitted from a smaller gut, a lower energy demand for locomotion, an increase 

in fat mass and tissue-specific differences in the expression of glucose transporters. The latter 

entails a higher expression of GLUT1 in activated immune cells, when energy is needed to 

protect against pathogens and other immune challenges (86), at the expense of GLUT4 

expression in muscles and adipocytes (87-90).  
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The work of Fedrigo et al. (85) shows that glucose transport capacity has been essential for 

brain growth and function during human evolution. They demonstrated that human brain 

cells express more activity of the SLC2A1 gene, which is the genetic code for the production 

of GLUT-1 glucose transporters compared with the chimpanzee and macaque (human > 

chimpanzee > macaque). At the same time, SLC2A4 expression in muscle is significantly 

higher in chimpanzee > human > macaque.  

 

Logical reasoning makes it plausible that a concomitant per gram tissue reduction of SLC2A4 

in skeletal muscle and an increase of SLC2A1 in the brain will lead to higher glucose uptake by 

the brain at a given plasma glucose concentration. This would result in a shift of glucose 

allocation away from the body (strong) and towards the brain (smart).   

 

2.3. Glucose to the immune system – prioritising energy guidance 

Along a similar vein, the same holds true for glucose allocation to the immune system. The 

energy demand of lymphocytes and leukocytes increases dramatically upon activation (2, 4) 

and all activated immune cells express GLUT1 glucose transporters (86, 91). Higher expression 

of GLUT1 will promote energy allocation to the immune system, which could be considered 

to be an ‘energy demand reaction’ (92). Glucose allocation to the immune system maintains 

its function even under strong energy restriction (80).   

 

The foregoing demonstrates that activation of the immune system through danger signs will 

attract and redistribute energy, favouring the brain and the immune system.  Prolonged 

activation of the immune system (as has been observed in people with CIDs) would allocate 

glucose chronically to the immune system through immune-controlled down-regulation of 

GLUT1 transporters at the level of the blood-brain barrier and would decrease GLUT4 

transporters at the level of muscle and adipose tissue (93-96). 
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3. Evolution shaped the selfish immune system 

 

3.1. Evolution and the human selfish immune system - over-reactivity of the 

human immune system when compared with chimpanzees 

It has been shown that the human immune system is relatively over-reactive when compared 

with our closest evolutionary relative, the chimpanzee (97). The increased activity of the 

human immune system holds true for both the innate and the adaptive immune systems (98). 

It seems that all major cell groups of the human immune system show lower levels of 

mediators capable of down-regulation of the immune response against pathogens and 

phytohaemagglutinin (28). These mediators, called inhibitory sialic acid-recognising Ig-

superfamily lectins (SIGLEC), are expressed on most immune cells including B lymphocytes 

(99). The difference between chimpanzees and humans is three-fold. Firstly, humans express 

different SIGLECs; secondly, humans exhibit lower SIGLEC numbers and little or none are 

present on T lymphocytes, and thirdly, they show a lower production rate of inhibitory 

SIGLECs when challenged with pathogens or other immune stimuli (99, 100).  

 

The observed development of a more reactive immune response in humans is probably a 

consequence of being faced by unique immune challenges to numerous pathogens through 

scavenging, increased population density, hunting and migration (101, 102).  

 

3.2. The selfish brain is less selfish than the much more ancient immune 

system 

The brain is selfish in almost every situation, including mild and severe stress (103) and 

multiple studies support the ‘selfish brain’ hypothesis. Acute mild mental stress requires 12% 

additional energy from the human brain (104) and the same holds when humans are 

challenged by intense exercise (105). The group of Peters showed that social stress also 

augments the brain’s energy need  (106) and that the brain switches to the use of ketone 

bodies (107) and lactic acid (107) when glucose is unavailable. Therefore, several lines of 

research give evidence for the ‘selfish brain’ hypothesis in which it is stated that brain energy 

is maintained through multiple pathways, including activation of central stress axes and the 

use of multiple energy sources (glucose, ketone bodies, lactic acid). Immune activation also 

produces activity of central stress axes and a state of high arousal of the central nervous 

system, the purpose being to sense and avoid further danger (108). An acute inflammatory 

response produces energy allocation to the immune system until this is resolved, and only 

when the system is challenged by mono-metabolic danger signals (108). However, multi-

metabolic risk factors produce an energetic conflict between the immune system and the 

brain. The combined need for resources (energy-producing macronutrients, blood, oxygen) 
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of the stressed brain, of the activated immune system and of other organs responsible for 

maintaining organ functions during multiple metabolic signalling challenges, caused by 

psychogenic, psychosocial and physical factors at the same time, would probably override the 

maximum capacity of energy uptake by the gut and, although speculative, would demand a 

maintained heart rate of around 180/minute and a chronically increased blood pressure at 

around 160/120 mm Hg. This would lead to severe damage to the heart and probably the 

brain, which is contrary to the evolutionary drive of maintaining brain function and anatomy 

against at any cost (106). The only feasible response to maintain life throughout chronic 

situations of high energy demands of ‘conflicting’ organs, is the ‘creation’ of an organ-

specific low thyroid hormone syndrome and other adaptations with the purpose of lowering 

the activity of all organs and puts the body at the disposal of the immune system. This is 

evidenced by the development of immunological sickness behaviour, immunologically 

induced secondary damage of vital organs, protective depression, gluconeogenesis by the 

liver and kidneys, and the use of metabolic hormones and neurotransmitters by the immune 

system to benefit its pro-inflammatory activity and thereby protect against possible lethal 

pathogens (109, 110, 111, 112).  

 

It is definitely true that the brain ‘behaves’ selfishly in almost every situation, including an 

energy deficient intra-uterine environment. Nevertheless, although it seems that one of the 

most fundamental biological drivers in humans is supplying the brain with nutrients and 

energy, how is it possible for people to suffer from diseases related with lack of brain energy?’ 

Something has to be so wrong that it may even cause a reaction that overrides this interest 

and ‘accept’ the collateral damage to the selfish brain. Acute sepsis, severe burn wounds, 

multiple traumata and major surgery are known to allocate up to 100% of resting energy 

expenditure to the immune system, but these are acute situations which often lead to instant 

death, even in children (3, 4, 113-116). Neurodegenerative disease, fibromyalgia, and chronic 

fatigue disorders develop slowly and should therefore be caused by factors that demand long-

term energy allocation to systems other than the brain, e.g. the immune system, ultimately 

affecting the transport of resources to the selfish brain. Sedentary lifestyle, overeating, 

childhood abuse, oral sepsis, chronic life stress, leaky barriers, perceived social stress, 

environmental toxins, social jetlag, meal frequency and even father-daughter conflict all 

activate the immune system and an energy demand response based on activation of the SAM 

and HPA axes (117-121). This latter response should provide energy for, primarily, the brain 

and secondarily, the immune system. When brain allocation fails, brain functions and 

possibly anatomy will be disturbed. The latter occurs in people suffering from acute infection, 

but also in those suffering from Alzheimer’s disease, FMS, CFS, depression and other diseases 

affecting the central nervous system. It seems that multiple metabolic danger signals produce 

a state mimicking acute life threatening danger, allocating energy to the immune system and 

disposing of energy from the rest of the body, including the brain.  



30 
!

4. Genetic and environmental evidence supporting the 

hypothesis 
 

4.1. Genetic evidence for the selfish immune system hypothesis 

Depression and other maladies, including FMS and neurodegenerative disorders, such as 

Parkinson’s and Alzheimer’s diseases, are related to increased immune activity (122, 123, 124). 

All of these disorders seem to have a genetic predisposition and the majority of the genes 

related with neuro-degenerative disorders and depression influence the immune system. 

Raison hypothesised that if depression is related to certain polymorphisms, then these genes 

are primarily protective in the face of infection (for review see 125). The same holds for genes 

related to Alzheimer’s disease and FMS.  

 

The gene most widely accepted to be associated with Alzheimer’s disease susceptibility is 

ApoE 4 (apolipoprotein E4), although many others have been proposed as Alzgenes (126). 

Classical functions of apolipoprotein E relate to metabolism (transporter of lipids in the 

periphery and in the central nervous system (127)). More recently, it was found that ApoE 

influences the innate and adaptive immune systems (128). The overall influence of ApoE on 

the innate immune system is complex and depends on ApoE polymorphism. ApoE4 induces 

an inflammatory response, whereas ApoE3 inhibits inflammation and enhances repair (see 

references in 128). The pro-inflammatory activity of ApoE4 is classically seen as deleterious, 

but can also be considered protective in the light of the pathogen-host defence (PATHOS-D) 

hypothesis proposed by Raison and Miller (125). In our recent evolution, the share of the 

ApoE3 allele appears to have increased at the expense of the ancestral ApoE4 (129). ApoE3 has 

spread significantly in first world populations, whereas the prevalence of ApoE4 is still very 

high in cultures historically exposed to disease-causing pathogens (116, 130-132). The 

observation seems consistent with the protective role of ApoE4 against infection. The 

Yoruban population in Nigeria has a 70% lower incidence of dementia when compared to 

African Americans. This difference is probably caused by the lifelong low-fat diet of the 

Yorubans  (133).  

 

Candidate genes possibly associated with increased susceptibility to fibromyalgia syndrome 

have been reported, but no definite conclusions can be drawn as yet (134). The serotonin 

transporter gene SLC6A4 is perhaps the strongest candidate in terms of its relation to FMS (51, 

135, 136). Two major SLC6A4 polymorphisms have been identified. The short allele carrier 

produces a protein, which is less efficient in the reuptake of serotonin and carriers show an 

increased risk for the development of depression when facing psychosocial challenges. 

Carriers of the short allele further show higher levels of circulating pro-inflammatory 

cytokines compared with anti-inflammatory cytokines (IL-6/IL-10 rate) when challenged 
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with a psychosocial stressor (137).  

Another disease with an immunological genetic background is celiac disease. Celiac disease 

is caused by the intake of gluten and it’s interaction with a great number of genes, of which 

most are related with an increased reactivity of the immune system (138). More specific, it are 

alleles related with IL18, IL23, IL2 and IL12 that increase the susceptibility for celiac disease, 

but at the same time people expressing these genes are probably better protected against 

pathogens, including virus and bacteria (139) 

 

4.2. Pathogens shaped genetics to the benefit of the immune system and 

pathogen load prioritises the immune system over the brain 

If the PATHOS-D hypothesis is correct, that the microbial world is co-responsible for the 

chronically increased activity of the immune system and disposal of expensive brain 

functions, then pathogenic load should not only affect brain function and anatomy of older 

people, but also younger individuals. Evidence for this supporting the PATHOS-D hypothesis 

comes from studies investigating the development of intelligence during human evolution in 

general and, more recently, the past two hundred years. A recent study of Eppig (140) showed 

that infectious disease and the consequent immune activity is the most important predictor 

of lower intelligence in almost every population on earth. Nutrition was also correlated with 

IQ, but became insignificant when corrected for infection. The connection between 

pathogen load, infection and intelligence seems plausible considering the high energetic cost 

of infectious disease. (141).  
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5. Long -term immune activity: the need for reactivation and 

fuelling strategies 
 

5.1. Evolutionary stored energy limits the timescale of immune activity 

Both the innate and adaptive immune responses are normally self-limiting (142). The self-

limiting timeframe of 28 days is probably based on the energy-resource model. A (much) 

longer massive activity of both systems would lead to severe secondary damage and even 

death because of sustained energy deficit of vital organs including the liver, kidneys and heart 

muscle (143). Recruitment of the adaptive immune system, although very expensive at first 

exposure time (141), and the generation of immune memory, should be considered beneficial 

from an evolutionary point of view, because of the shortening of the immune response and 

protection against energy depletion, when the host is newly exposed to the pathogen (64). 

Chronic low-grade inflammation literally means long-term low activity of the innate immune 

system and lack of the production of self-limiting substances, such as resolvins and 

protectins (142). Chronic low-grade inflammation probably starts after a non-optimal acute 

inflammatory response (supranormal or subnormal) and when self-limiting mechanisms or 

strategies fail (143). Sterile wounds, low pathogenic load and non-specific immunological 

challenges such as psychogenic stress activate the immune system, but lack the strength of 

optimal immune activation which would normally lead to complete resolution (144). 

Nevertheless if the factors that activate the immune system in a subnormal manner are not 

resolved, the capacity to maintain immune activity is essential for survival, as evidenced in 

people suffering from inflammation-associated immune suppression. People suffering from 

inflammation-associated immune suppression (IAIS) are highly susceptible for the 

development of different types of cancer and secondary infections, and IAIS significantly 

increases the mortality rate (145, 146). IAIS is induced by immunological intrinsic (e.g lactic 

acid)., but also multiple brain derived strategies including the activation of the 

parasympathetic nervous system. This is where the immune system has to put the body at its 

disposal, thereby overriding the selfish brain. 

 

5.2. The consequence: the whole body at the disposal of the selfish immune 

system 

The way in which the immune system puts the body at its disposal might follow a 

coordinated sequence. The initial activation of energy demanding central stress axes allocates 

resources to the immune system through induction of gluconeogenesis and insulin 

resistance of competing organs, such as, bone, muscle, adipose tissue and the liver (1, 40). 

Once the innate immune system (maximum 4-7 days) and, when necessary, the adaptive 

immune system (27–42 days) has/have triggered the immune response, problems should 
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have been resolved. If immune activation is required for a longer period of time, this induces 

further insulin resistance/hyperinsulinemia, hyperleptinaemia/leptin resistance, and 

hypercortisolism/glucocorticoid resistance. The possible hypermetabolic state produced by 

the constantly activated immune system could cause multiple organ disorders, failure and 

even death (MODFD). The development of a low thyroid hormone state (rT3>T3) protects the 

body against MODFD, putting homeostatic regulation at the disposal of the immune system. 

The pro-inflammatory activity can also be maintained by higher aromatase activity and the 

production of pro-inflammatory oestrogens (see below): a further step in putting the whole 

body, including the reproductive system, at the disposal of the immune system.  
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6. Fuelling and reactivation strategies of the immune system 
 

6.1. Thyroid hormone prevents multiple organ failure during 

hypermetabolism and maintains immune homeostasis; thyroid hormone 

at the disposal of the selfish immune system 

Immune activity depends on aerobic glycolysis (147). It is only possible to maintain aerobic 

glycolysis when the intrinsic inhibitory pathways of the immune system can be overruled. 

Low T3 and high rT3 can maintain aerobic glycolysis in immune cells. Thyroid hormone T3 

induces mitochondrial activity in all kinds of cells, including immune cells (148). T3 can even 

strongly activate mitochondrial oxidation in cancer cells and render them more sensitive for 

chemotherapy (149). Intracellular T3 would therefore inhibit the inflammatory activity of the 

immune system, which would be highly deleterious during severe infection or other 

immunological challenges. Extracellular T4 and T3 are necessary for immune activation (150), 

but intracellular T4 is converted by deiodinase 3 (D3) into rT3 and T3 is rapidly downregulated 

by the same enzyme, preventing mitochondrial activation and maintenance of cytoplasmic 

substrate level phosphorylation through upregulation of D3 by the pro-inflammatory 

cytokine IL-6 (151). The final state is that of a low thyroid hormone syndrome (LTHS). 

 

LTHS does not only benefit the immune system, but is also protective against the possible 

secondary damage of chronic immune system activation. These rather deleterious effects of 

immune activation on other organs and tissues is prevented by down-regulation of the 

conversion of T4 into T3 both systemically and tissue specifically, causing the reduction of 

overall metabolic rate, but especially the activity of organs less important for direct survival 

during immune activity, such as muscle tissue, liver, kidneys, the heart muscle and the 

digestive system (152-154). The lower activity of these organs protects them against acute 

organ failure and sudden death of the host. The protection and lower metabolic rate is a 

product of low thyroid syndrome and high reverse T3 (rT3) (151). This state is protective 

initially, but can be deleterious in the long run (155).   

 

A recent discovery by the group of Klein and Schaefer has shed new light on the interaction 

between the immune system and metabolism. Their group proposed a new model of 

controlled metabolic regulation by an activated immune system (156-158). They showed that 

TSH can be produced by several tissues other than the thyroid gland. Dendritic cells (DCs) and 

several cells from the small intestine are capable of producing TSH and this happens mostly 

during bacterial or viral infection (159). Certain leukocytes also produce TSH, but with a 

slightly different structure and this hormone has been named TSHbeta splice variant (160). 

The TSHbeta splice variant seems to change the thyroid phenotype inducing a shift from T3 

to rT3. This shift decreases total body metabolism because of lower systemic T3 (159) and 
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initially saves the brain by continued conversion of T4 to T3 in the brain itself (161).  

 

The possible function of D3 expression in activated innate immune cells is intriguing. 

Thyroid hormones (TH) play a role in differentiation and proliferation of cells, with high T3 

inducing cell differentiation and low T3 inducing cell proliferation. Granulocytes are short-

lived, fully differentiated cells that migrate to the site of infection and do not proliferate, 

which may argue against a role for D3 induction in differentiation or proliferation of activated 

granulocytes. Studies in the 1960s suggested a role for thyroid hormone in the bacterial killing 

capacity of leukocytes. Iodide in combination with hydrogen peroxide (H2O2) provides one 

of the most effective antibacterial substances of the immune system. Thyroid hormones are 

an important source of iodide, and leukocytes generate inorganic iodide by the uptake of 

iodide and by de-iodinating T4, (162). In combination with the recent demonstration of D3 

induction in infiltrating leukocytes during infection, we suggest that D3 induction helps to 

generate iodide as part of the innate immune response (150). Studies in S. pneumonia-

infected D3 knockout mice indeed showed a defective bacterial clearance compared with 

wild-type mice, which supports this hypothesis (163). Further evidence is given by the work of 

Kwakkel et al, showing a dramatic increase of D3 production by neutrophils when challenged 

with bacterial LPS (164).  

 

The resulting state of immune activation, low T3, high rT3, combined with the energy 

demand reaction of the HPA axis and the sympathetic nervous system maintains 

immunological homeostasis during prolonged stress. The brain will maintain anatomy and 

function as long as brain metabolism can be guaranteed. The same holds for the immune 

system, although long-term stress and inflammation suppress immune activity (46). The 

latter situation could expose the host to possible infection and death. Protection of the host 

integrity will now depend on the use of alternative mechanisms to postpone this dangerous 

state whilst maintaining pro-inflammatory immune activity. This would be the time at which 

the immune system 1. puts every possible organ at its disposal to guarantee its own metabolic 

homeostasis, 2. induces resistance to hormones with pleiotropic immunological functions 

(leptin, insulin, cortisol) and 3. produces a state of nerve-driven immunity, putting almost all 

neurotransmitters, including dopamine, serotonin, acetylcholine, glutamate and GABA at its 

disposal (165-169). 

 

6.2. Gluconeogenesis and glucocorticoid resistance at the disposal of the 

immune system 

Endogenous cortisol has several effects on the immune system, including suppression 

through activation of the inhibiting factor kappa B (IkB) (170), apoptosis of immune cells that 

are no longer needed (171) and migration of immune cells to the so-called ‘battlefield’ 
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(dangerous zone) or back into the ‘barracks’ (lymph knots, bone marrow, thymus) (172) and 

through activation of macrophage migration activating factor (173). Intact cortisol signalling 

in the immune system would lead to suppression of the immune system, which is why 

immune cells show an intrinsic mechanism to develop cortisol resistance, which is essential 

during acute infection but at the same time co-responsible for low-grade inflammation (174). 

Glucocorticoid resistance (GR) of the immune system leads to hypercortisolaemia and 

constant gluconeogenesis. The glucose produced by GR-gluconeogenesis can cover the 

energetic needs of the selfish immune system. GR-gluconeogenesis can be induced in 

muscle, the liver, kidneys and perhaps even the pancreas (175-178). So GR serves two basic 

strategies to maintain immune activity: immunological GR prevents inhibition of the 

immune system and GR-induced hypercortisolaemia increases glucose production, 

necessary for the constant nourishment of chronic active selfish immune cells.  

 

Glucocorticoid resistance itself seems to protect the host against possible viral infection, 

including HIV, by maintaining high activity of the anti-viral Th1 component of the adapted 

immune system (179, 180), although GR can be highly deleterious (181). The GR observed 

during chronic inflammation is universal and mostly occurs along with another ancient 

protective mechanism: insulin resistance (182). Cells of the immune system show inherent 

genetically imprinted resistance mechanisms, which protect the body against the immune-

suppressive effects of glucocorticoids, although side-effects can be severe, including chronic 

leukaemia (174).  

 

GR is observed in rheumatoid arthritis, inflammatory bowel disease and COPD and is mostly 

considered deleterious (183). Treatment of these diseases normally focuses on increasing 

cortisol sensitivity (184) with contrasting results (1). Increasing GC-sensitivity can even lead to 

higher mortality when animals are challenged with pathogens such as E. Coli (185). If intrinsic 

or acquired GR conveys protection against pathogenic load, than asthma, rheumatoid 

arthritis and inflammatory bowel disease should be associated with increased pathogenic 

microbial load. Indeed, the group of Siala showed that reactive and undifferentiated 

oligoarthritis is associated with the presence of a high number of bacteria in the synovial fluid 

(186, 187). Patients with arthritis also show a high incidence of glucocorticoid resistance (188). 

Those with chronic asthma present higher bacterial colonisation of the lower airways, linked 

to the severity and duration of asthma (189), whilst GR is also a characteristic of asthmatic 

patients (190). Inflammatory bowel disease (IBD) normally evolves with pathogenic bacteria 

(20) and, as mentioned above, patients suffering from IBD also show a high prevalence of GR 

(191).  
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It therefore appears that GR prevents suppression of the innate immune system and the 

glucocorticoids-induced shift from Th1 to Th2 activity of the adapted immune system (192), 

thus maintaining protection against microbial infiltration and infection. GR serves the selfish 

immune system to maintain activity, nourish itself with glucose, but with just one purpose, 

which is to protect the individual from lethal infection. 

 

6.3. Leptin and insulin at the disposal of the selfish immune system 

Leptin and insulin are needed to maintain long-term activity of the immune system and the 

immune system itself increases the production of leptin by adipocytes via TNF!  signalling 

(193). Leptin is highly inflammogenic (194) and hyperleptinaemia, together with central leptin 

resistance, maintains pro-inflammatory activity and energy allocation to the immune system 

(195, 196). Proinflammatory cytokines induce leptin production by adipocytes, as does food 

intake.  

 

Adipose tissue is present in immune-cell-harbouring tissues, such as lymphoid organs, bone 

marrow and adipocytes that infiltrate wounds (34) and so adipocyte derived leptin can have 

direct influence on immune cell functioning.  

 

Leptin activates all types of immune cells and increases glucose uptake during 

immunological activity. The principal target of leptin-induced immune cell reactivation is the 

key immune response regulator nuclear factor-! B, responsible for transcription of genes 

encoding for IL1, IL6 and TNF!  (197). In summary, leptin activates the immune system 

through different pathways with a focus on the innate immune system and Th1. Under 

physiological circumstances, this leads to increased protection against infection and 

pathogenic growth. During low-grade inflammation, leptin should be considered to be a re-

activator, which can perpetuate immune activity. 

 

The strategies used by the immune system to maintain its activity and guarantee glucose 

availability could merely have evolved for their beneficial effects; a basic rule in evolutionary 

biology. This also holds true for the leptin and insulin responses observed during acute and 

chronic inflammation. The leptin response during inflammation supports different protective 

traits. Hyperleptinaemia during immune activity informs the brain about the adequacy of 

long-term energy stores in adipose tissue, asking for/demanding permission to produce a 

costly fever reaction and a short-term hypermetabolic state, following immune activation 

(198, 91). The hyper-leptinaemic state will also produce inflammatory cachexic behaviour, 

which is protective at the start when facing an acute inflammatory response, but could be 

deleterious when chronic, as is observed in patients and animals with chronic kidney 

inflammation (199).  
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Long-term hyperleptinaemia leads to central leptin resistance. Several researchers noted that 

hyperleptinaemia is required for the development of leptin resistance (200). Central leptin 

resistance is responsible for an increased risk of overeating (201) and overeating rapidly 

produces leptin resistance (202). Central leptin resistance can be considered to be an 

evolutionary advantage when energy availability is low, or when the need for energy is 

chronically increased as observed during prolonged immune activity (203). The beneficial 

effect of hyperleptinaemia and LR is observed in different situations. Hyperleptinaemia and 

LR protect against cardiovascular disorders by preventing lipid deposition in the heart muscle 

itself (204, 205), although recent publications have challenged this view (206). The influence 

of leptin on the anti-pathogenic function of the immune system has recently been 

demonstrated in two new studies from the same group (207, 208). Children with low leptin 

levels are more susceptible to infection (209). The required pro-inflammatory effect of leptin 

to fight against pathogens has also been demonstrated in a recent in vitro study (210). The 

overall effect of leptin on the immune system seems to be permissive, which implies that 

intact leptin-signalling towards the immune system maintains Th1-Th2 functioning and, if 

necessary, ‘permits’ pro-inflammatory activity (211).  

 

Like leptin, insulin is also recognised as a pleiotropic hormone. Energy demands of the brain, 

or the immune system during starvation, infection or stress are covered by gluconeogenesis 

and the temporary development of insulin resistance of various organs, caused by 

proinflammatory cytokines and stress hormones (212, 213). Energy allocation to the immune 

system is achieved by activating the energy-demand stress systems (sympatho-

adrenomedullary, axis, SAM and hypothalamic-pituitary-adrenocortical axis, HPA) and stress 

systems-induced gluconeogenesis. Hyperinsulinaemia precedes stress-induced and 

inflammation-induced insulin resistance (214). Hyperinsulinaemia is seen immediately after 

a stress challenge and/or direct immunological activators, such as injuries and pathogen 

invasion (215). Low insulin levels increase the susceptibility to develop infections, suggesting 

that insulin protects against pathogens (216). Acute inflammation produces down-regulation 

of insulin levels through inhibition of pancreatic " -cells (217) and also insulin resistance in 

competing organs for glucose uptake (such as liver, muscles and adipose tissue (212). In this 

way, glucose becomes available for the energy-demanding immune system. Chronic 

inflammation maintains the state of insulin resistance and enhances insulin production, 

leading to hyperinsulinemia (218). In the latter situation, glucose remains available for the 

immune system and insulin can now be used as reactivator through the mTOR pathway in 

immune cells, protecting against possible infections which is, however, deleterious in the 

long run (219). Insulin can also upregulate the specific glucose transporters on immune cells, 

including GLUT1, GLUT3 and GLUT4, thereby increasing glucose uptake by leukocytes and 

lymphocytes (220). Insulin signalling through insulin receptors on immune cells stimulate 

the IRS-1/PI3K/AKT pathway that activates mTOR1 and mTOR2 (221). mTOR signalling 
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recruits c-myc, NFkB and HIF1, facilitating further glucose uptake, production of pro-

inflammatory cytokines and maintenance of cytoplasmic aerobic glycolysis, respectively 

(222-224).  

 

It seems clear that leptin and insulin pathways are capable of fuelling and reactivating the 

immune system, not only during acute infection, but also to maintain long-term activation. 

The capacity of redistributing glucose to the immune system and away from peripheral 

tissues mediates the immune response and has been crucial to human survival. In other 

words: leptin and insulin signalling beneficial to immune system activity are vital for survival, 

and are  meanwhile also responsible for chronic low-grade inflammation and its associated 

diseases. 

 

6.4. The reproductive system at the disposal of the selfish immune system 

The combined metabolic shift produced at the disposal of the pro-inflammatory activity of 

the immune system is directly responsible for the pro-inflammatory systemic 

hypoandrogenic state observed in individuals suffering from low- grade inflammatory 

disorders (225). This systemic hypoandrogenic state is not produced because of lower 

testosterone production in the sex organs. To the contrary, obese males, characterised by 

increased plasma leptin and low-grade inflammation, exhibit a higher testosterone-

dependent risk of prostate cancer (226), while the same holds true for the polycystic ovaria 

syndrome in females (227).  

 

The testosterone boost produced by metabolic hormones precedes the increased systemic 

and tissue-specific conversion of testosterone into pro-inflammatory oestrogens. This shift 

has been observed in different diseases, including obesity and inflammation-related breast 

cancer (228).  

 

The systemic shift from testosterone to oestrogens could benefit the anti-pathogenic pro-

inflammatory activity of the immune system. Males with higher testosterone levels are more 

susceptible to parasite infection, microbial transmission (229) and have decreased resistance 

against tick infection (230). Conversely, low testosterone protects against bacterial infection 

in general and specifically against prostate infection (231). It is therefore conceivable, but at 

the same time striking, that both males and females exhibit higher aromatase activities during 

inflammation as evidenced in patients with rheumatic diseases, characterised by high pro-

inflammatory oestrogens and low testosterone levels (232). The protective effect of oestrogens 

against microbial infiltration and infection is supported by epidemiological data showing that 

postmenopausal women are disproportionately susceptible to recurrent urinary tract 

infections  (233). Urinary tract infections (UTI) in elderly patients are more treatment resistant 
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and oestrogen replacement diminishes UTI frequency (234). Chronic inflammation and stress 

lead to low testosterone and high oestrogens in men (235) and high oestrogen levels protect 

against possible infection.  

 

A possible negative effect of this shift from testosterone to oestrogen is the loss of fertility (41). 

Obese men, characterised by high aromatase activity in adipocytes (236) and low-grade 

inflammation (237), have lower fertility (238). Individuals engaged in a chronic struggle 

against pathogens rather not reproduce, preventing damage to offspring, which is beneficial 

to overall reproductive success (125). The septic danger posed by non-sterile wounds is 

included in the selective pressure factors shaping human behaviour (phenotype) and genome 

(genotype). It has been shown that the shift from testosterone to oestrogen in the skin is 

highly protective against pathogenic infection, prolonged infection, wound healing and 

overall cutaneous repair (239). It is consequently conceivable that the immune system also 

puts the reproductive system at its disposal. Immediate survival overrules reproduction. Once 

again, the immune system dominates the whole body, including the timing of reproduction 

and, if necessary, protecting genetically-related individuals against possible pathogenic 

damage, or damage to the immune system itself (240). Oestrogens activate the immune 

system through several mechanisms including stimulation of NFkB, c-myc and mTOR, 

facilitating immune cell proliferation and inflammatory activity (241). 

 

6.5. Behaviour at the disposal of the immune system: serotonin-dependent 

reactivation of the immune system 

The observed changes in behaviour during inflammation suggest that the immune system 

actively affects neurophysiological function, putting behaviour at its own disposal. Pro-

inflammatory cytokines such as TNF! , IL-1 beta, and IL-6 produce adaptive behavioural 

effects when entering the brain (55). Sickness behaviour includes social withdrawal, increased 

sleeping time, fatigue and exercise avoidance.  This reduces energy uptake by muscles and 

the brain and this is reallocated to the immune response. 

 

Several pathways explaining inflammation-induced sickness behaviour have been proposed 

and all of them probably contribute to this state (120). Sickness behaviour not only benefits 

the host’s immune system in terms of energy/resource reallocation, but also helps the 

immune system to fight pathogens and restore homeostasis when immune activity is no 

longer needed (55). Pro-inflammatory cytokines (IL1" , IL6, TNF-!  and IFNy) and stress 

hormones, produced during inflammation, activate tryptophan 2,3-dioxygenase (TDO) and 

indoleamine 2,3-dioxygenase (IDO), affecting serotonin production from its precursor 

tryptophan and favouring the production of kynurenine and quinolinic acid (242) The 

resulting serotonin depletion is considered to be one of the factors causing sickness 
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behaviour (243), which, when considered from a proximate prospective, could be considered 

a maladaptive response. The latter is supported by showing that quinolinic acid, produced by 

cells in the central nervous system, is highly neurotoxic and associated with the development 

of numerous neurodegenerative conditions, including Parkinson’s and Alzheimer’s diseases 

(215).  

 

An evolutionary explanation for the underlying mechanism considers that upregulation of 

IDO and TDO during acute inflammation protects the host significantly by depleting 

tryptophan and efficiently suppressing the growth of pathogens and malignant cells (120). 

Serotonin further inhibits activation of the sympathetic nervous system (244), while SNS is 

needed for energy production and its allocation to the brain and the immune system during 

inflammation. Inhibition of serotonin production during inflammation will therefore favour 

SNS activity and energy production/allocation to the immune system.  

 

Serotonin is present in high concentrations at the sites of inflammation and is used by 

activated immune cells as co-stimulator through reuptake via the serotonin transporter 

protein (245). This is beneficial, considering the need to mount an optimal immune response 

during inflammation, but could be deleterious in the long run and cause several disorders 

including autoimmune diseases (245). IDO will not only deplete tryptophan but also serotonin 

and both pathways will inhibit the immune system activity when it is no longer needed, 

thereby recovering tissue homeostasis and facilitating tissue repair. A feeling of sickness and 

even pain are common consequences of this highly effective neuroimmunological reaction 

but that is the price to be paid (246). 

 

The total picture of inflammation-caused sickness behaviour should be considered beneficial 

to the host. Only when inflammation is supramaximal, such as in sepsis, or when 

inflammation lasts too long, sickness behaviour has more of a negative impact because of the 

possible damage caused by immune system dependent pathways. These deleterious effects to 

the brain show that, if necessary, the immune system will take over and override the interests 

of the selfish brain, supporting the ‘selfish immune system’ hypothesis. 

 

6.6. Behaviour and immune system co-evolution: dopamine-dependent 

reactivation of the immune system  

The use of dopamine as an immunological co-stimulator has been studied extensively and is 

of high clinical importance (247). Dopamine recruitment by the immune system has 

profound effects on inflammatory behaviour. Humans have engaged in exploring new 

environments and this demands several traits, including curiosity (25), a large brain and 

immune protection.  
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Dopamine is considered to be the main neurotransmitter responsible for curiosity (248), 

novelty seeking (249), motivation and aggressiveness (250). A polymorphism of the dopamine 

receptor D4 (DRD4) is associated with novelty seeking, risk-taking and increased exploratory 

behaviour (251). Novel environments produce new immunological challenges, including 

climate, food availability and pathogens (252). The long allele of the DRD4 receptor is related 

to the migratory distance from Africa. Matthews and Butler (251) suggested that this allele 

been positively selected, as opposed to genetic drift.  

 

Other behavioural traits, in addition to the association of 7R DRD4 polymorphism with 

environmental exploration and novelty seeking, are increased anger and a decreased feeling 

of disgust (253). Disgust is amongst the most intensively investigated emotions belonging to 

the behavioural immune system (248). Immune defence is usually a reaction following tissue 

damage or some pathogenic infection. It is highly costly and intense and long-term activity 

could result in secondary lesions and even multiple organ failure. Humans have explored 

new environments with constant new immunological challenges throughout evolution. The 

development of a pro-reactive behavioural immune system, preventing contact with possible 

pathogens could have been beneficial to save energy and guide them to important other 

physiological functions, including those of the brain and skeletal muscles (254, 27). Disgust as 

a proactive strategy to avoid disease, produces aversion to a wide range of factors. High levels 

of disgust, i.e. increased activity of the behavioural immune system, produce neophobia (255), 

rejection of other individuals, decrease in mating behaviour (256), food neophobia (257), 

prejudicial attitudes to old people (258) and even discrimination (259).  

 

The behavioural immune system (BIS) can be very sensitive and dominate free will. However, 

individuals, carrying the longer allele of the DRD4 gene exhibit a higher level of novelty 

seeking, less disgust and more spontaneous activity (236). This implies that people with 

increased exploratory behaviour through DRD4 polymorphism would be at a higher risk of 

pathogenic infection, because of less aversion and disgust. This combination argues against 

the current opinion about pathogens dominating selective pressure in human evolution 

(260). The only feasible explanation would be that the longer allele of the DRD4 gene should 

have some immune function, protecting the ‘seeking’ carrier against pathogens.  

 

The evidence for an immune function of the long allele of the DRD4 comes from different 

investigations studying the influence of the expression of dopamine receptors on innate 

immune cells and lymphocytes of the adaptive immune system. The various immune cells 

express different dopamine receptors (DRD1-DRD5) (165). The net function of dopamine 

receptor activation is an increase in the pro-inflammatory activity of the immune system, 

with the exception of the wild type DRD4 (the short allele’) (261). Activation of the wild type 

DRD4 receptor leads to the production of the immune-suppressing cytokine IL10 (247, 254). 
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The long 7R allele, on the contrary, is associated with diminished cAMP production and 

reduced intracellular response (262). Reduced response will lead to lower immune quiescence 

(the normal function of wild type DRD4 (247, 263) and increase the pro-inflammatory effects 

of dopamine by activating other dopamine receptors (165). It is therefore conceivable that 

migration out of Africa selected the longer allele of the D4 dopamine receptor by inducing 

novelty seeking, while increasing protective inflammatory activity. Dopamine can stimulate 

the production of NFkB and pro-inflammatory cytokines such as TNF!  and IL1, although the 

opposite, production of anti-inflammatory IL10, is also possible (165). This probably depends 

on the individual’s genotype, implying that not every individual will be capable of using the 

dopamine mechanism as reactivation strategy. 

 

It seems clear that dopamine (DA) plays an important role in the immune system. Dopamine 

is not only produced in neurons, but also in several immune cells, including T lymphocytes 

(247). Dopamine seems to be recruited by the immune system to protect the host against 

acute infiltration by pathogens. The protective effect of dopamine signalling in the immune 

system against new infections is evidenced by the fact that dopamine activates resting T cells, 

but inhibits activated T cells (165) even in the absence of other danger signals (261). This is in 

line with the effects of other neurotransmitters on the immune system, increasing protection 

against new invaders (evolutionary beneficial) but having a negative effect on the 

immunological memory (264). The immunological ‘use’ of the whole body to fight infection 

makes sense in an evolutionary framework, considering that humans have had to fight 

infections as the main cause of death for thousands of generations and, as stated before, 

almost all humans died because of infection before the start of the 20th century.  

  



44 
!

7. Summary and conclusion 
It can be concluded that the activated immune system puts the whole body at its disposal, by 

reversing the functions of metabolic hormones, organs, and even the nervous system to the 

energetic and pro-inflammatory benefit of the immune system (Figure 3). This response is 

highly protective during acute inflammation/infection and even at the start of a chronic 

process. The longer the inflammatory response lasts, the more it contributes to (severe) loss of 

lean body mass (265, 266), organ dysfunction (4), brain damage and neurodegenerative 

diseases (77). The protective pro-inflammatory activity of the selfish immune system is no 

longer beneficial once severe secondary damage to organs has been caused by the immune 

system.  

 

Life would not have been possible without an immune system, and the development of 

complex organisms needed an even more complex immune system. The human immune 

system belongs to the most complex among all living organisms and serves as the blueprint 

for the development of antivirus software in computer programming (267). Newer systems 

and organs normally dominate older systems as the most basic phylogenetical law in 

evolution. However, this sequence may change in the face of severe or long-term danger, 

known as evo-devo1 mechanisms (268, 269). Evo-devo1 can reach so far back in time that 

inflamed lung and kidney tissue literally resembles a swim bladder (270). Chronic disease is 

characterised by chronic inflammation (and vice versa) and gradual loss of functions and 

even anatomy. It affects the whole body, including the brain. The evidence brought together 

in this review shows that the immune system captures a major part of energy and resources 

during acute inflammation, putting the whole body at its disposal. This state relates to 

disposal of muscles (muscle wasting), the cardiovascular system (high blood pressure, 

atherosclerosis), the gut (digestive problems and food intolerance) and even the brain (loss of 

memory and concentration in, for instance, individuals suffering from FMS). Long-term pro-

inflammatory activation of the immune system would not be possible without putting the 

whole body at the disposal of the immune system. Because of the immune system’s capability 

of recruiting metabolic hormones and neurotransmitters and using them for its own benefit, 

it is the most selfish organ in human beings. The body at the disposal of the immune system 

protects the host during acute inflammation by mounting an optimal response and during 

chronic stress to maintain pro-inflammatory activity and to protect against possible 

infectious pathogens. This situation is initially protective, but becomes severely deleterious 

when the secondary damage to organs and tissues overrides the benefit of infectious 

protection. The environment in which current human beings live constantly challenges the 

body with multiple new metabolic signalling factors. The only organ capable of 

                                                
 
1 Evolutionary developmental biology, or  evo-devo, broadly investigates how body plan diversity and morphological novelties have arisen and persisted in nature  
(132). 
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communicating with all organs involved in the energetic conflict because of these multiple 

metabolic signalling is the immune system. To prevent further conflict, the immune system 

takes over, using its robust power to put the whole body at its disposal and showing its selfish 

behaviour. This selfish behaviour of the immune system has saved hominins for millions of 

years. A slow-changing environment to which the immune system could gradually adapt, 

characterised these years. This selfish behaviour of the immune system has to be considered 

to be the main cause of the majority, if not all, modern diseases. The reason lies in the 

interaction between the evolutionary background of immune function, genetic development 

and notably, the current environment as the primary cause. Genes and functions are old; the 

environment is brand new and this conflict underlies modern disease. It should, however, be 

noted that the immune system is only doing what it is made for: trying to protect us. 

 

 
Figure 3. The total picture of the body at the disposal of the selfish immune system. 

If the immune system succeeds in doing so, the host is protected against inflammation-induced immune suppression, 

which would lead to cancer and possibly lethal infections (bottom right), but at the expense of the development of modern 

low-grade inflammatory diseases (bottom left). GLUT 1, glucose transporter 1: GLUT 4, glucose transporter 4; IS, immune 

system; SAM, sympathetic adrenal medular system; HPA, hypothalamus-pituitary-adrenal axis; GR, glucocorticoid receptor; 

BH4, tetrahydrobiopterin; IDO, indoleamine 2,3-deoxigenase: TDO, tryptophan 2,3-deoxigenase; CVD, cardiovascular 

diseases; FMS, fibromyalgia syndrome; CFS, chronic fatigue syndrome. 
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Abstract 

In this review, we focus on lifestyle changes, especially dietary habits, that are at the basis of 

chronic systemic low grade inflammation, insulin resistance and Western diseases. Our 

sensitivity to develop insulin resistance traces back to our rapid brain growth in the past 2.5 

million years. An inflammatory reaction jeopardices the high glucose needs of our brain, 

causing various adaptations, including insulin resistance, functional reallocation of energy-

rich nutrients and changing serum lipoprotein composition. The latter aims at redistribution 

of lipids, modulation of the immune reaction, and active inhibition of reverse cholesterol 

transport for damage repair. With the advent of the agricultural and industrial revolutions, we 

have introduced numerous false inflammatory triggers in our lifestyle, driving us to a state of 

chronic systemic low grade inflammation that eventually leads to typically Western diseases 

via an evolutionary conserved interaction between our immune system and metabolism. The 

underlying triggers are an abnormal dietary composition and microbial flora, insufficient 

physical activity and sleep, chronic stress and environmental pollution. The disturbance of 

our inflammatory/anti-inflammatory balance is illustrated by dietary fatty acids and 

antioxidants. The current decrease in years without chronic disease is rather due to ‘nurture’ 

than ‘nature’, since less than 5% of the typically Western diseases are primary attributable to 

genetic factors. Resolution of the conflict between environment and our ancient genome 

might be the only effective manner for ‘healthy aging’, and to achieve this we might have to 

return to the lifestyle of the Paleolithic era as translated to the 21st century culture. 

 

Keywords 

Chronic systemic low grade inflammation, evolution, brain, encephalization quotient, 

immune system, diet, fatty acids, fish oil, fruits, vegetables, antioxidant network, metabolic 

syndrome, glucose, homeostasis, insulin resistance, cholesterol, lifestyle, antioxidants, 

resoleomics, pro-inflammatory nutrients, anti-inflammatory nutrients. 
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medicine; EBN, evidence based nutrition,  EPA, eicosapentaenoic acid; EQ, encephalization 
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IGF-1, insulin-like-growth factor-1; LA, linoleic acid; LCP, long-chain polyunsaturated fatty 

acids; LDL, low density lipoprotein; LOX-12, lipoxygenase-12; LOX-15, lipoxygenase-15; LOX-

5, lipoxygenase-5; LPS, lipopolysaccharides; LTB4, leukotrienes-B4; LX, lipoxin; NF" B, nuclear 

factor kappa B; NTIS, non-thyroidal illness syndrome; PGD2, prostagladins- D2; PGE2, 

prostagladins-E2; PLA2, phospholipase A2; PPAR; peroxisome proliferator activated receptor; 

RCT, randomized controlled trial; ROS, reactive oxygen species; RR, relative risk; SAA, serum 

amyloid A; SIRS, systemic inflammatory response syndrome; TNF#, tumor necrosis factor 

alpha; TSH, thyroid stimulating hormone; VLDL, very low density lipoprotein. 

 

Introduction 

In recent years, it has become clear that chronic systemic low grade inflammation is at the 

basis of many, if not all, typically Western diseases centered on the metabolic syndrome. The 

latter is the combination of an excessive body weight, impaired glucose homeostasis, 

hypertension and atherogenic dyslipidemia (the ‘deadly quartet’), that constitutes a risk for 

diabetes mellitus type 2, cardiovascular disease (CVD), certain cancers (breast, colorectal, 

pancreas), neurodegenerative diseases (e.g. Alzheimer's disease), pregnancy complications 

(gestational diabetes, preeclampsia), fertility problems (polycystic ovarian syndrome) and 

other diseases (1). Systemic inflammation causes insulin resistance and a compensatory 

hyperinsulinemia that strives to keep glucose homeostasis in balance. Our glucose 

homeostasis ranks high in the hierarchy of energy equilibrium, but becomes ultimately 

compromised under continuous inflammatory conditions via glucotoxicity, lipotoxicity, or 

both, leading to the development of beta-cell dysfunction and eventually type 2 diabetes 

mellitus (2).  

 

Insulin resistance has a bad name. The ultimate aim of this survival strategy is, however, 

deeply anchored in our evolution, during which our brain has grown tremendously. The goal 

of reduced insulin sensitivity is, among others, the reallocation of energy-rich nutrients 

because of an activated immune system (3, 4), limitation of the immune response, and the 

repair of the inflicted damage. To that end, serum lipoproteins adopt a pattern that bears 

resemblance with the ‘hyperlipidemia of sepsis’, accompanied by seemingly inconsistent 

changes in serum cholesterol, increased triglycerides, decreased HDL-cholesterol, and an 

increase of ‘small dense’ LDL-particles, of which the latter three constitute the triad of 

atherogenic dyslipidemia that is part of the metabolic syndrome (5-10). 

 

From the perspective of our brain growth during evolution, we address the question of why 

homo sapiens is so sensitive to the development of insulin resistance. The purpose and the 

underlying mechanisms leading to insulin resistance and the associated dyslipidemia are 

subsequently discussed in more detail. We argue that our current Western lifestyle is the 
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cause of many false inflammatory triggers which successively lead to a state of chronic 

systemic low grade inflammation, insulin resistance, the metabolic syndrome, and eventually 

to the development of the above mentioned typically Western diseases of affluence. To find a 

solution for the underlying conflict between our environment and our ancient genome, we 

also go back in time. With the reconstruction of our Paleolithic diet, we might be able to 

obtain information on the nutritional balance that was at the basis of our genome. We argue 

that insight into this balance bears greater potential for healthy aging than the information 

from the currently reigning paradigm of ‘Evidence Based Medicine’ (EBM) and ‘randomized 

controlled trials’ (RCTs) with single nutrients.  

 

Our brain growth rendered us sensitive to glucose deficits 

Homo sapiens and the current chimpanzees and bonobos share a common ancestor, who 

lived in Africa around 6 million years ago. Since about 2.5 million years ago, our brain has 

strongly grown from an estimated volume of 400 mL to the current volume of approximately 

1,400 mL (Figure 1). This growth was enabled by the finding of a high-quality dietary source2, 

that was easy to digest and contained an ample amount of nutrients, necessary for the 

building and maintenance of a larger brain. The nutritional quality of primate food correlates 

positively with relative brain size and inversely with body weight, suggesting that a larger 

brain requires a higher dietary quality (11). The necessary so-called ‘brain selective nutrients’ 

include, among others, iodine, selenium, iron, vitamins A and D, and the fish oil fatty acids 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), that jointly are abundantly 

available in the land-water ecosystem. There are compelling arguments that a sizeable part of 

our evolution occurred at places where the land meets the water (12-15), but also that we have 

changed our lifestyle in a too short period of time. These changes started from the 

agricultural revolution (around 10,000 years ago) and became accelerated since the industrial 

revolution (about 100-200 years ago). They created a conflict between our current lifestyle, 

including our diet, and our ancient genome, that, with an average effective mutation rate of 

0.5% per million years, still resides for the greater part in the Paleolithic era (16, 17). It is not by 

chance that the above mentioned brain selective nutrients are among those of which we 

currently exhibit the largest deficits worldwide. These deficits are masked by enrichment and 

fortification of our current diet with iodine (in salt), vitamins A and D (e.g. in margarines and 

milk) and iron (flour, cereals). 

                                                
 
2 Food quality refers to the energy content and/or the nutrient content of  a diet. An increase in food quality may derive from  the consumption of a diet  with another 
composition or the modification of the diet by e.g. cooking or genetic manipulation (11). 
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Figure 1. Evolution of our brain size within the past 3.5 million years. 

Our brain has grown fast since the homo erectus (1.7-2.0 million years ago). The newborn homo sapiens, the adult 

chimpanzee and the homo floresiensis (18) have brain volumes of around 400 mL. Adapted from Aiello and Wheeler (19) 

with permission from The University of Chicago Press. 

 

 
Figure 2. Relationship between body weight and basal metabolism in 51 land mammals (20 non-

primates, 30 primates, and humans).   

Adapted from Leonard et al.(11) with permission from Elsevier. 
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Our brain consumes 20-25%3 of our basal metabolism (11-17, 20) and is thereby together with 

the liver (19%2), our gastrointestinal tract (15%2), and skeletal musculature (15%2) among the 

quantitatively most important organs in energy consumption (19). The infant brain consumes 

as much as 74% of the basal metabolism (11, 21). In contrast to most other organs, the brain 

uses mostly glucose as an energy source. There is no other primate equipped with such a 

large, glucose-consuming, luxury organ as our brain. For example, our closest relative, the 

chimpanzee, has a brain volume of 400 mL, which consumes about 8-9% of the basal 

metabolism. Because of the high energy expenditure of a large brain, it was necessary to 

make various adjustments in the sizes of some other organs. There is a linear relationship 

between body weight and basal metabolism among terrestrial mammals (Figure 2). This 

apparently dogmatic relationship predicts that, due to the growth of our brain, other organs 

with high energy consumption had to be reduced in size, what in evolution is known as a 

‘trade-off’4. As a consequence of this ‘expensive tissue hypothesis’ of Aiello and Wheeler (19) 

our intestines, amongst others, had to become reduced in size. However, this exchange of 

expensive tissue probably occurred prior to, or simultaneous with, our brain growth, in which 

the trigger was the consumption of the easily digestible high-quality food (20) that contains 

the above-mentioned ‘brain selective nutrients’ from the land-water ecosystem. Under these 

‘conditions of existence’ (Darwin), a single mutation in a growth regulatory gene is likely to 

have been sufficient for the brain to grow. This notion derives from the existence of 

genetically-determined micro- (22) and macrocephaly (23) and it is as a ‘proof of principle’ 

demonstrated by the differences in the beak lengths of Darwins’ legendary Galapagos finches 

(24-26). Compared with our close (vegetarian) relatives in the primate world, we possess a 

relatively long small intestine and a relatively short large intestine, which corresponds with 

the digestion of high quality food (such as meat and fish) in the small intestine, and the lesser 

need of a long colon for the digestion of complex carbohydrates (e.g. fiber) from a typically 

vegetarian diet (19). Unlike our near primates, such as the gorilla, our teeth and the 

attachments of our jaw muscles are not specialized for the processing of tough vegetarian 

food. Also our muscle mass became adapted, since its current size is relatively small 

compared to our body weight. For instance, when compared with the chimpanzee, we are 

definitely weak. On the other hand, we have a relatively sizeable fat mass, which probably 

serves as a guarantee for the high energy requirement of our brain. 

 

Our brain’s energy consumption is quite stable. Unlike other organs, the energy consumption 

of the brain can not be downregulated at times of a negative energy balance or fasting (11, 20). 

Our brain also gets spared during prolonged fasting, while other organs such as the liver, 

spleen, kidneys and even the heart, are sacrificed for energy generation (27). This hierarchy 

                                                
 
3 These estimates derive from  various publications and  therefore  do not  add to  100%. They should  be regarded as indications . 
4 The beneficial exchange of a certain property into another one   
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also applies to the prenatal brain, whose development is conserved during intrauterine 

growth restriction (28). An example is the Indian 'thin fat baby’, with a birth weight of 2,700 g. 

Compared with its 3,500 g counterpart from the UK, this infant has a similar brain size and a 

relatively large fat compartment, at the expense of the somatic growth of the skeletal muscle, 

kidneys, liver and the pancreas (28). Our brain ranks high in the functional hierarchy and 

should be provided with the necessary energy at all times. 

 

Apart from its large size, there is nothing special about our brain within the primate world. 

Compared with other species, primates have a very economical space-saving brain, but 

among the primates, brain weight correlates with the number of neurons (29-32) and 

intelligence (33). Actually, our brain is no more than an oversized primate brain (29). What 

does distinguish us from other species is the high ratio between our brain size and our body 

weight, which is also named encephalization quotient (EQ) (Figure 3). Toothed whales (brain 

weight 9,000 g) and African elephants (4,200 g) have much larger brains than humans, but 

they have lower EQs (34). Among the primates, EQ does not correlate with intelligence (33). 

Our high EQ has major implications for our energy management, particularly at times of 

‘glucose shortage’. Under normal circumstances, our brain functions almost entirely on 

glucose, consuming up to 130 g/day (27). Compared with the apparently unlimited storage 

capacity for fat, we only dispose of a small reserve of glucose that is stored as glycogen in the 

liver (up to 100-120 g; mobilizable) and muscles (360 g; for local usage), while some glycogen 

can even be found in brain’s astrocytes (35). With the exception of the glycerol moiety, we can 

not convert fat into glucose. The reduced carbohydrate intake that came along during 

evolution with the transition from vegetarians to omnivores rendered us strongly dependent 

on gluconeogenesis from (glucogenic) amino acids. This was possible because we 

simultaneously consumed more protein from meat and fish, which is also referred to as the 

‘carnivore connection’ (36). After the depletion of our glycogen reserves, for instance after an 

overnight fast, we obtain the necessary glucose for our brain via gluconeogenesis from 

glycerol and amino acids. Under normal conditions, these amino acids derive from our 

dietary proteins after a meal, but during starvation, they become extracted from our tissues by 

catabolism of functional proteins, at the expense of our lean body mass. Under such 

circumstances of severe glucose deficit, the energetic need of our brain becomes increasingly 

covered by ketone bodies from fat (37, 38). 
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Figure 3. Encephalization quotient (EQ) of selected mammals.  

The EQ has been normalized with the cat as a reference. Data adapted from Roth and Dicke (34).  

 

A glucose deficit leads to competition between organs for the available glucose. As previously 

mentioned, this occurs during fasting, but also during pregnancy and 

infection/inflammation. Fasting is characterized by a generalized shortage of glucose (and 

other macronutrients), but in case of pregnancy and inflammation we deal with active 

compartments competing with the brain for the available glucose, i.e. the growing child and 

the activated immune system, respectively. During competition between organs for glucose, 

we fulfill the high glucose needs of the brain by a reallocation of the energy-rich nutrients, 

and to that end, we need to become insulin resistant. 

 

Reallocation of energy-rich nutrients by insulin resistance 

The developing child grows fast in the third trimester of pregnancy. In this period, the supply 

of the necessary building blocks like glucose and fatty acids should be independent of the 

maternal metabolic status, which is known as the state of ‘accelerated starvation’ and 

‘facilitated anabolism’ (38). Glucose crosses the placenta without restriction. Fetal needs are 

directive, since the developing fetus is high in the evolutionary hierarchy. If necessary, the 

fetal needs become covered at the expense of the mother, which is known as the ‘depletion 

syndrome’.  
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During infection/inflammation we deal with the metabolic needs of an activated immune 

system for acute survival. The inactive immune system consumes about 23%2 of our basal 

metabolism, of which as much as 69% derives from glucose (47%) and the glycogenic amino 

acid glutamine (22%). Upon activation, the energy requirement of our immune system may 

increase with about 9-30% of our basal metabolic rate. In multiple fractures, sepsis and 

extensive burns, we deal with increases up to 15-30, 50, and 100% of our basal metabolism, 

respectively (3, 4, 39). 

 

The way we save glucose for our brain during starvation, for the brain and the fetus during 

pregnancy, and for the brain and immune system during infection/inflammation, is by 

causing insulin resistance in selected insulin-dependent tissues. These tissues are thereby 

forced to switch to the burning of fat. Due to insulin resistance, the adipose tissue 

compartment will be encouraged to distribute free fatty acids, while the liver will be 

encouraged to produce glucose via gluconeogenesis and to distribute triglycerides via VLDL. 

The aforementioned (asymmetric) ‘thin fat baby’ with its spared brain, relatively high adipose 

tissue compartment, and the growth restricted body (islets of Langerhans included), has 

relatively high cord plasma insulin and glucose concentrations at birth (28). These 

characteristics of insulin resistance and diabetes mellitus are probably necessary for the 

postpartum, saving of as much as possible of the available glucose for the brain, whereas the 

other organs are provided with fatty acids from the sizeable adipose tissue stores. This 

intrauterine 'programming', that follows the prediction of a thrifty postnatal life comes along 

with health risks, notably when the prediction proves false (40, 41). According to the ‘Barker 

hypothesis’, at adult age, these children have a higher chance of diseases related to the 

metabolic syndrome, especially when they are raised in our current obesogenic society. The 

unfavorable interaction of their high EQ with a high body weight is already demonstrable at 

the age of 8 years (42). Essentially, their postnatal risk is attributable to a (probably epigenetic) 

‘intrauterine programming’, that traces back to the high hierarchical ranking of our brain in 

both growth and energy needs, also referred to as ‘the selfish brain’ (43). 

 

Glucose intolerance (26) and insulin resistance have been reported in calorie restriction, 

extreme fasting and anorexia nervosa, and may even cause, under these circumstances, 

diabetes mellitus type 2, notably in those subjects sensitive to its development (44). According 

to textbooks, insulin resistance during the third trimester of pregnancy is caused by the 

hormonal environment, among which HPL, progesterone, estrogens, prolactin and cortisol 

are mentioned. However, placental tumor necrosis factor alpha (TNF#) correlates best with 

measures of maternal insulin resistance (45, 46). Pregnancy is therefore sometimes referred to 

as a physiological state of systemic low grade inflammation (47). As a consequence of 

reduced insulin sensitivity, maternal circulating concentrations of energy-rich nutrients, 

such as glucose and fat, tend to increase, promoting their transport across the placenta. 
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Under non-pregnant conditions, this situation would resemble pathology, but is tolerable 

during the 9 months of a pregnancy, while the largest changes occur during the third 

trimester. 

 
Figure 4. Mechanistic connection between inflammation and insulin resistance.  

The NF" B and AP-1 Fos/June inflammatory pathways inhibit the PI3K/AKT signal transduction pathway for nutrient 

metabolism and the Ras/MAPK pathway for gene expression, both part of the insulin signaling. CAP, Cbl associated protein; 

Cbl, Proto-oncogene product; ER, endoplasmic reticulum;  FFAs, Free fatty acids; Gq#/11, heterotrimeric G protein; Ikkb, I 

kappa B kinase Beta; IRS, insulin receptor substrate; JNK, C-jun N-terminal kinase; NFkB, nuclear factor kappa B; NO, nitric 

oxide; Ras/MAPK; PI3K, phosphatidylinositol 3-kinase;  Ras-mitogen activated protein kinase; Shc, Src homology 2 

containing protein; SOCS, supressor of citokyne signaling; TLRs, Toll-like receptors. Adapted from de Luca and Olefsky (48) 

with permission from Elsevier. 

 

During infection and inflammation, the signals for metabolic adaptation become transmitted 

by pro-inflammatory cytokines. The resulting insulin resistance causes reallocation of energy 

(i.e. the aim of the process; see above), which illustrates that inflammation and metabolism 

are highly integrated (49-51). At the molecular level, the interaction takes place through the 

influences of the nuclear factor kappa B (NF" B) and the AP-1 Fos/June inflammatory 

pathways on the PI3K/Akt signal transduction pathway for nutrient metabolism and the 

Ras/MAPK pathway for gene expression, which are both part of the insulin signal 

transduction (48, 52). To put it simply: the activated inflammatory signal transduction 
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pathway causes inhibition of the postreceptor insulin signaling pathway, which becomes 

noticeable by what we know as insulin resistance (Figure 4). Insulin resistance especially 

refers to a grossly diminished reduction of the circulating glucose concentration by insulin. 

However, insulin has many functions, and thereby exerts different effects in the various 

organs carrying the insulin receptor. Consequently, the ‘resistance’ affects the many insulin 

signal transduction pathways at various degrees, and thereby works out differently with 

respect to the various insulin functions (1, 53). Some processes are impaired (i.e. are genuinely 

‘resistant’), while others remain intact and become excessively stimulated by the 

compensatory hyperinsulinemia. This compensatory increase of the circulating insulin levels 

aims at the prevention of a disturbed glucose homeostasis and thereby the onset of type 2 

diabetes mellitus. The persistence of compensatory hyperinsulinism is responsible for most, if 

not all, of the abnormalities that belong to the metabolic syndrome (1). 

 

In muscle and fat cells, insulin resistance induces a diminished glucose uptake and therefore 

a reduced storage of glucose as glycogen and triglycerides. In fat cells, it causes decreased 

uptake of circulating lipids, increased hydrolysis of stored triglycerides and their mobilization 

as free fatty acids and glycerol. In liver cells, insulin resistance induces the inability to 

suppress glucose production and secretion, in addition to decreased glycogen synthesis and 

storage. The hereby promoted reallocation of energy-rich substrates (glucose to the brain, 

fetus and immune system; fat to the fetus and the organs that became insulin resistant) and 

the compensatory hyperinsulinemia, are meant for short-term survival, and their persistence 

as a chronic state are at the basis of the ultimate changes that we recognize as the symptoms 

of the metabolic syndrome, including the changes in glucose and lipid homeostasis (3, 4) and 

the increasing blood pressure. For example, the concomitant hypertension has been 

explained by a disbalance between the effects of insulin on renal sodium reabsorption and 

NO-mediated vasodilatation, in which the latter effect, but not the first, becomes 

compromised by insulin resistance, causing salt sensitivity and hypertension (54). 

 

Reaven coined the term ‘metabolic syndrome’ and subsequently renamed it the ‘insulin 

resistance syndrome’ (1). However, it becomes increasingly clear that we could better refer to 

it as the ‘chronic systemic low-grade inflammation induced energy reallocation syndrome’. 

The reason for this broader name derives from the recognition that insulin resistance is only 

part of the many simultaneously occurring adaptations. To their currently known extent, 

these adaptations and consequences are composed of: i) reduced insulin sensitivity (glucose 

and lipid redistribution, hypertension), ii) increased sympathetic nervous system activity 

(stimulation of lipolysis, gluconeogenesis and glycogenolysis), iii) increased activity of the 

HPA-axis [hypothalamus-pituitary-adrenal gland (stress) axis, mild cortisol increase, 

gluconeogenesis, with cortisol resistance in the immune system], iv) decreased activity of the 

HPG-axis (hypothalamus-pituitary-gonadal gland axis; decreased androgens for 
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gluconeogenesis from muscle proteins, sarcopenia, androgen/estrogen disbalance, inhibition 

of sexual activity and reproduction), v) IGF-1 resistance (insulin-like growth factor-1; no 

investment in growth) and vi) the occurrence of ‘sickness behavior’ (energy-saving, sleep, 

anorexia, minimal activity of muscles, brain, and gut) (3).  

 

The HPT-axis (hypothalamic-pituitary-thyroid axis) has a central role in our energy 

management. The adaptation of thyroid function in subjects with the metabolic syndrome is 

yet unclear, possibly due to the many concerted changes, such as an altered thyroid hormone 

binding capacity, tissue uptake, conversion of T4 into T3, and tissue-specific receptor 

expression and function. For example, T4 may become converted into the highly active T3 

within the target cell and thereby, without visible changes of circulating hormone 

concentrations, bind to the intracellular thyroid hormone receptor (55). Whether intracellular 

T4 is converted into T3 or the inactive reverse T3 (rT3), or is used as a source of iodine to kill 

bacteria, depends on several factors, including cytokines, that determine the expression 

pattern of the three involved deiodinases (55-57). In euthyroid subjects, free T4 (FT4) is 

associated with insulin resistance, inversely related to total- and LDL-cholesterol, while also a 

positive relationship between TSH and triglycerides has been documented (58). The reported 

changes during metabolic syndrome (59), low-grade inflammation and insulin resistance (60) 

are inconsistent, but do bear great resemblance with subclinical hypothyroidism, with high-

normal or slightly elevated TSH, and normal FT4 concentrations (61, 62). Insulin resistance has 

recently been associated with an increased T3/rT3 ratio, which is a measure of peripheral 

thyroid hormone metabolism and suggests increased thyroid hormone activity (63). In 

contrast, during fasting, energy expenditure becomes downregulated, resulting in a normal 

or decreased TSH and decreased serum thyroid hormone concentrations (64). 

Downregulation of the HPT-axis with reductions of T3, T4 and TSH, and an increase of rT3 

(and thus a decrease of the T3/rT3 ratio) occurs progressively with the severity of the ‘non-

thyroidal illness syndrome’ (NTIS, also called the ‘Low T3 syndrome’ and ‘euthyroid sick 

syndrome’) (55) which is explained as an adaptation of the body to prevent  excessive (protein) 

catabolism as part of the acute phase response (56). 

 

All of the above mentioned adaptations of our metabolism are associated with changes in the 

serum lipoprotein profile, which are part of the metabolic syndrome. The purpose of these 

changes will be explored in more detail below. 

 

Changes in serum lipoproteins 

The quantitative and qualitative changes in the composition of serum lipoproteins resulting 

from an inflammatory trigger have, in addition to the reallocation of energy-rich nutrients 

(fatty acids to the insulin resistant organs), at least two other goals (5-10, 65). These are: i) the 
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modulation of the immune response by which we protect ourselves from the harmful effects 

of invading bacteria, viruses and parasites, and ii) the restoration of the hereby inflicted 

damage. However, if the subsequent changes in structure and function of lipoproteins persist, 

they contribute to the development of atherosclerosis (66). These long term complications 

have not exerted selection pressure during evolution and, consequently, no solution has 

come into existence via the habitual process of spontaneous mutation and natural selection. 
 

The inflammatory trigger during an infection with Gram-negative bacteria is initiated by 

lipopolysaccharides (LPS). Circulating lipoproteins aid in the clearance of this LPS. Hence, 

lipoproteins do not only have functions in transporting lipids to and from tissues, but also 

play important roles in limiting the inflammatory response (67). The ability of lipoproteins to 

bind LPS is proportional to the cholesterol content of the lipoprotein (68), but the 

phospholipids/cholesterol ratio of the lipoprotein is the principal determinant of the LPS-

binding capacity (69). The available phospholipid surface is thus of special importance and is, 

under normal circumstances, the largest for the circulating HDL. However, critically ill 

patients exhibit decreases of both esterified cholesterol and HDL (see below) and in those 

patients, LPS is mainly taken up in the phospholipid layers of LDL and VLDL. Binding of LPS 

to lipoproteins prevents activation of LPS-responsive cells and encourages LPS clearance via 

the liver to the bile. In line with this mechanism, it has been observed that a decrease in 

plasma lipoproteins in experimental models increases LPS-induced lethality (69). 

 

The protective role of LDL is already known for some time, and this process has probably 

been exploited during evolution. Currently, there are over one thousand LDL-receptor 

mutations, many of which lead to a reduced or absent hepatic uptake of LDL particles, and 

consequently, to an elevated serum LDL-cholesterol (70). The carriers of these mutations have 

‘familial hypercholesterolemia’ (FH; incidence about 1/400 in The Netherlands) or ‘defective 

apo-B100’ (FDB), if the mutation is located in the LDL-receptor ligand. They constitute 

autosomal dominant disorders with a high risk of premature atherosclerosis and mortality 

from CVD (71). The arising question is why evolution has preserved so many apparently 

detrimental mutations in the LDL-receptor. Research with data from the population registry 

office in The Netherlands showed that subjects with FH lived longer until 1800, which turned 

into a shorter lifespan than the general population after 1800 (72). Important support for an 

explanation came from studies with LDL-receptor knockout mice, and also with transgenic 

mice overexpressing apo-A1, the structural protein of HDL. These mutants have a high LDL- 

and HDL-cholesterol, respectively, are resistant to LPS-induced mortality, and have better 

survival of severe Gram-negative infection compared with the wild type (66, 73). In other 

words, FH might have become widespread during evolution due to the modulating effect of a 

high LDL (i.e. ‘a high cholesterol’) during Gram-negative infections, that were much more 

common in the past. This benefit might have become a risk following the introduction of a 
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typically Western lifestyle (see below), to which subjects with FH seem particularly sensitive 

(72). 

 
Figure 5. Changes in reverse cholesterol transport during the acute phase response. 

Lipopolysaccharides (LPS) and cytokines reduce the ABCA1 (ATP binding cassette transporter A1) and the cholesterol efflux 

from peripheral cells to HDL. LPS reduces the activities of various proteins involved in HDL metabolism, such as lecithin-

cholesterol acyltransferarse (LCAT), cholesterol ester transfer protein (CETP) and hepatic lipase (HL). LPS and cytokines also 

down-regulate hepatic scavenger receptor class B type 1 (SRB1), resulting in a decreased cholesterol ester (CE) uptake in 

the liver. FC, free cholesterol; LDL-R, LDL receptor; LRP, LDL receptor-related protein; PLTP, phospholipid transfer protein. 

Adapted from Khovidhunkit et al. (66) with permission from The American Society for Biochemistry and Molecular Biology. 

 

As mentioned above, among the lipoproteins, notably HDL has the capacity to bind LPS and 

thereby to prevent an LPS-induced activation of monocytes and the subsequent secretion of 

proinflammatory cytokines (5). However, during the ‘lipidemia of sepsis’, the HDL 

concentration decreases while also the HDL particles decrease in size (6). Their function 

changes as part of the acute phase response: the immunomodulatory properties vanish to a 

high extent and HDL even becomes proinflammatory. The apo-A1 and cholesterol esters are 

lost from the HDL particle, the activities of HDL-associated enzymes and exchange proteins 

decrease, and these proteins are, among others, replaced by serum amyloid A (SAA) (5, 6). Like 

CRP, SAA is produced in the liver as part of the acute phase response. SAA is 90% located in 

HDL, prevents the uptake of cholesterol by the liver and directs it to other cells such as 

macrophages (8, 66). Both the decreasing HDL-cholesterol and the concomitantly reduced 

‘cholesterol reverse transport’, promote the accumulation of cholesterol in the tissues, where 

it is needed for the synthesis of steroid hormones (e.g. cortisol) in the adrenal glands, the 

immune system and for the synthesis of cellular membranes that became damaged by the 

infection (66). Also the formation of small dense LDL (74) might be functional because these 
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particles are poorly cleared by the LDL-receptor, easily penetrate the subendothelial space 

and by their binding to the subendothelial matrix, take their cholesterol cargo to the sites of 

damage in a highly efficient manner. It appears that there are numerous mechanisms that 

jointly cause the active inhibition of the reverse cholesterol transport in response to an acute 

phase response (Figure 5) (66, 75). 

 

Summarizing thus far, we humans are extremely sensitive to glucose deficits, because our 

large brain functions mainly on glucose. During starvation, pregnancy and 

infection/inflammation, we become insulin resistant, along with many other adaptations. 

The goal is the reallocation of energy-rich substrates to spare glucose for the brain, the 

rapidly growing infant during the third trimester of pregnancy, and our activated immune 

system that also functions mainly on glucose. Under these conditions, the insulin resistant 

tissues are supplied with fatty acids. Other goals of the changes in the serum lipoprotein 

composition are their role in the modulation of the immune response by the clearance of LPS 

during infection/inflammation and the redirection of cholesterol to tissues for local damage 

repair. The metabolic adaptations caused by inflammation illustrate the intimate relationship 

between our immune system and metabolism. This relation is designed for the short term. In 

a chronic state it eventually causes the metabolic syndrome and its sequelae. We are 

ourselves the cause of the chronicity. Our current Western lifestyle contains many false 

inflammatory triggers and is also characterized by a lack of inflammation suppressing factors. 

These will be described in more detail below. 

 

Lifestyle-induced chronic systemic low grade inflammation  

An inflammatory reaction is the reflection of an activated immune system that aims to 

protect us from invading pathogens or reacts to a sterile infection. If an activated immune 

system is uncontrolled, the resulting secondary reactions have the ability to kill us. Rogers (76) 

expresses it as follows: ‘...inflammation may be useful when controlled, but deadly when it is 

not. For example, head trauma may kill hundreds of thousands of neurons, but the secondary 

inflammatory response to head trauma may kill millions of neurons or the patient’. It is clear 

that an inflammatory reaction that has started should subsequently be ended.  
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Table 1. Environmental factors that may cause chronic systemic low grade inflammation.  

 

 
Adapted from Egger and Dixon (77). 

 

There are many factors in our current Western lifestyle that jointly cause a state of chronic 

systemic low grade inflammation, which in turn leads to chronically compromised insulin 

sensitivity, compensatory hyperinsulinemia and, eventually, the diseases related to the 

metabolic syndrome. Lifestyle factors that cause inflammation can be subdivided into an 

unbalanced composition of the diet (usually referred to as ‘malnutrition’) (78-80) and non-

food related factors (77), which partly exert their influence via obesity (81) (Table 1). Among the 

pro-inflammatory factors in our current diet, we find: the consumption of saturated fatty 

acids (82) and industrially produced trans fatty acids (83, 84), a high $ 6/$ 3 fatty acid ratio (85-

87), a low intake of long-chain polyunsaturated fatty acids (LCP) of the $ 3 series (LCP$ 3) 

from fish (88, 89), a low status of vitamin D (90-92), vitamin K (93) and magnesium (94-96), 

the ‘endotoxemia’ of a high-fat low-fiber diet (97, 98), the consumption of carbohydrates with 

a high glycemic index and a diet with a high glycemic load (99, 100), a disbalance between the 

many micronutrients that make up our antioxidant/pro-oxidant network (101-103), and a low 

intake of fruit and vegetables (103, 104). The ‘dietary inflammation index’ of the University of 

North Carolina is composed of 42 anti- and proinflammatory food products and nutrients. In 

Lifestyle Exercise too little (inactivity) Lifestyle Exercise/physical activity/fitness
too much

Nutrition alcohol (excessive) Nutrition alcohol
excessive energy intake energy intake (restricted)
starvation
 'fast food'/ Western style diet Mediterranean diet
fat high-fat diet fat fish/fish oil

saturated fats mono-unsaturated fats
trans fatty acids olive oil
high ! 6/! 3 ratio low ! 6/! 3 ratio

fiber (low intake) fiber (high intake)
fructose nuts
glucose high glucose/GI foods low GI foods

glycemic load grapes/raisins
glycemic status dairy calcium 
sugar-sweetened drinks eggs

meat (domesticated) lean meats (wild)
salt soy protein

fruits/vegetables
cocoa/chocolate (dark)
herbs and spices
tea/green tea
capsaicin (pepper)
garlic
pepper

Obesity  'Healthy obesity'
Weight gain Weight loss
Smoking Smoking cessation
 'Unhealthy lifestyle' Intensive lifestyle change
Stress/anxiety/depression/burn out
Sleep deprivation

Age

Environment Socioeconomic status (low)
Perceived organizational injustice
Air pollution (indoor/outdoor)
Second-hand smoking
 'Sick building syndrome'
AtmosphericCO 2

Pro-Inflammatory Anti-Inflammatory
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this index, a magnesium deficit scores high in the list of pro-inflammatory stimuli (105). 

Magnesium has many functions, some of them, not surprisingly, related to our energy 

metabolism and immune system, e.g., it is the cation most intimately connected to ATP (95). 

Indirect diet-related factors are an abnormal composition of the bacterial flora in the mouth 

(106), gut (106, 107), and gingivae (108-110). Chronic stress (111, 112), (passive) smoking and 

environmental pollution (77), insufficient physical activity (113-118) and insufficient sleep 

(119-123) are also involved.  

 

All of the above listed lifestyle factors exhibit interaction and are therefore difficult to study in 

isolation. As an example, the bacterial flora may change secondary to the composition of our 

diet. An inflammatory reaction might be at the basis of the observed relation between the 

abnormal bacterial species in both our oral cavity and intestine and our serum HDL- and 

LDL-cholesterol (106). Saturated fats may cause an inflammatory reaction especially when 

they are combined with a carbohydrate-rich diet, notably carbohydrates with a high glycemic 

index, and especially in subjects with the insulin resistance syndrome (124-128). 

 

Mechanisms of lifestyle-induced inflammation  

Diets high in refined starches, sugar, saturated and trans fats, and low in LCP$ 3, natural 

antioxidants, and fiber from fruits and vegetables, have been shown to promote inflammation 

(82-84, 129-131) (Table 1). As most chronic (inflammatory) diseases have been linked to diet, 

modifying it could prevent, delay or even heal these diseases. Obviously. inflammation is an 

essential process for survival, but our immune system should be carefully controlled to limit 

the unavoidably associated collateral damage (132). For instance, wound healing and other 

immune challenges become controlled in our body by a process coined by Serhan et al. (133-

135) as resoleomics, using metabolites produced from the LCP arachidonic acid (AA), EPA and 

DHA (85, 133-136). However, our inflammatory and resolution genes operate nowadays in a 

completely different environment than the one to which they became adapted through 

mutation and natural selection. In most (if not all) chronic diseases typical of Western 

societies, the inflammatory response is not concluded because of suboptimal or 

supramaximal responses (137, 138).  

 

It has been estimated that 10% of all deaths in the Netherlands are attributable to unfavorable 

dietary composition and 5% to overweight. In this scenario, the major contributors to diet-

associated death were insufficient intakes of fish, vegetables and fruits, with less important 

roles for too high intakes of saturated and trans fatty acids (139). The consumption of fish, 

fruit and vegetables is considered too low in most Western countries (139-143). In the USA, 

low dietary $ 3 fatty acids and high dietary trans fatty acids may have accounted for up to 

84,000 and 82,000 deaths, respectively, in 2005, while a low intake of fruit and vegetables 
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might have been responsible for 58,000 deaths (144). The Dutch (145) and the American Heart 

Association (AHA) (146) dietary guidelines recommend to consume at least two servings of 

fish per week (particularly fatty fish), but in 1998, the average fish consumption in The 

Netherlands amounted to hardly 3 times per month (139). Only about 7% of the 9-13 year-old 

Dutch children eat fish twice or more per week and 10% never eat fish (147). In the USA, the 

estimated intake of fish in 2007 was about 0.7 kg per month, per person. More preoccupying 

is the fact that the USA is considered the third largest consumer of seafood in the world (148, 

149). Despite improvements of the fatty acid contents of food products, only 5% of the Dutch 

population follows a diet with the recommended fatty acid pattern (139). Eating fish once 

weekly was associated with a 15% lower risk of CVD death compared with a consumption of 

less than once per month (150), while each 20 g/day increase in fish consumption was related 

to a 7% lower risk of CVD mortality (151).  

 

The current Dutch recommendation for adults is 200 g fruits and 200 g vegetables per day 

(139), while in the USA, 4-5 servings of fruits and 4-5 servings of vegetables are recommended 

in a 2,000 kcal diet (152). Between 1988 and 1998, the consumption of fruit and vegetables in 

The Netherlands declined 15-20% and currently, less than 25% of the Dutch population follows 

the recommendations regarding the consumption of fruit, vegetables and dietary fiber (139). 

As an example, currently 99% and 95% of the 9-13 year old Dutch do not adhere to the advice 

of consuming 150 g/day vegetables and 200 g/day fruits, respectively (147).  Meta analyses of 

prospective studies indicated that <3 vs. >5 servings of fruits and vegetable per day 

correspond with a 17% reduction in coronary heart disease (153) and 26% reduction in stroke 

(154), while the relation of low intakes with mouth, pharynx, esophagus, lung, stomach, colon 

and rectum cancer is considered substantially convincing (155).  

 

In view of the numerous nutrients present in our food and their many mechanisms of action 

in the inflammatory response, we selected two nutrient classes, i.e. the LCP from fish (LCP$ 3; 

notably EPA and DHA), and the antioxidants in fruit and vegetables, to illustrate the many 

dietary components involved in our pro-inflammatory/anti-inflammatory balance. However, 

before embarking into these nutrient classes, it should be emphasized that our food is in 

reality composed of biological systems, such as meat, fish, vegetables and fruits, in which 

nutrients obey to the balance that comes along with living material. Therefore, focusing on 

specific, presently known mechanisms without sufficient knowledge of the many possible 

interactions between the numerous nutrients in our food should be regarded as a serious 

limitation. This is a reductionist approach, whereas system dynamics and holistic 

approximations would be more appropriate.   
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Fatty acids and inflammation  

The media are consistently reporting on advises to reduce fat consumption to avoid risks 

associated with obesity, CVD, diabetes and other chronic diseases and conditions. Among the 

macronutrients, fat does indeed contain the highest amount of energy per gram. However, 

from a thermodynamic point of view, a ‘calorie is a calorie’ (156), implying that any 

macronutrient consumed in disbalance with energy expenditure and thermogenesis might 

cause obesity. A recent in-depth study revealed that ‘a calorie is not a calorie’ in a metabolic 

sense, showing that isocaloric diets with different macronutrient compositions have different 

effects on resting and total energy expenditure with decreasing energy expenditures in the 

sequence low-fat diet<low-glycemic diet<very low-carbohydrate diet (157), and thereby 

suggesting that the diet with the highest protein and fat content gives rise to the lowest 

weight gain. However, whether the intake of fat per se and, as a matter of fact, any isolated 

nutrient (158), can be held responsible for the epidemics of obesity, remains controversial and 

counter intuitive (159-161). Moreover, it is becoming increasingly clear that about 10-25% of 

obese subjects have little CVD and type 2 diabetes mellitus risk (a condition coined ‘healthy 

obesity’) (162, 163), that lean physically unfit subjects have higher risk of CVD mortality than 

obese, but fit, subjects (164), and that it is the quality and not the quantity of fat that conveys a 

major health hazard (165). The type of dietary fat affects vital functions of the cell and its 

ability to resist disfunction e.g. by influencing the interaction with receptors, by determining 

basic membrane characteristics and by producing highly active lipid mediators (166, 167).  

 

Saturated fat intake has been associated with inflammation (168, 169). However, the widely 

promoted reduction of saturated fatty acids is increasingly criticized (170) and also the AHA 

advisory to replace saturated fatty acids in favor of linoleic acid (LA) to 5-10 en% (171). 

Insufficient intake of particular fatty acids is, on the other hand, likely to contribute to health 

hazards, including increased risk of infection (172), dysregulated chronobiological activity 

and impaired cognitive and sensory functions (especially in infants) (173). Among these 

important fatty acids are the LCP$ 3 derived from fish, of which EPA and DHA are the most 

important members. In 2003, the intake of EPA+DHA by adults in The Netherlands amounted 

to approximately 90 mg/day (women 84 mg/day and men 103 mg/day) (174), while the 

recommendation is 450 mg/day (175). This recommendation is based on an optimal effect in 

preventing CVD (anti-arrhythmic effect), but there is good evidence that higher intakes may 

convey additional favorable effects because of their anti-thrombotic properties and their 

ability to reduce blood pressure, heart rate and triglyceride levels (131). It was calculated that 

our Paleolithic ancestors living in the water-land ecosystem had daily intakes of 6-14 g 

EPA+DHA (176), which correspond with the intakes by traditionally living Greenland Eskimos 

(177), who, because of their low incidence of CVD, were at the basis of the research on the 

beneficial effects of fish oil that started in the seventies (178-180). 
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Both EPA and DHA must be in balance with AA, which is the major LCP$ 6 derived from 

meat, poultry, eggs (181-183) and also lean fish (184, 185). Each of these LCP may be 

synthesized by desaturation, chain elongation and chain shortening from the parent 

‘essential fatty acids’ LA (converted to AA) and alpha-linolenic acid (ALA) (converted to EPA 

and DHA) (186), even though the production of EPA, and notably DHA, occurs with difficulty 

in humans (187). Included among the symptoms of LA, LCP$ 3 and LCP$ 6 deficiencies are 

fatigue, dermatological problems, immune problems, weakness, gastrointestinal disorders, 

heart and circulatory problems, growth retardation, development or aggravation of breast and 

prostate cancer, rheumatoid arthritis, asthma, preeclampsia, depression, schizophrenia and 

ADHD (173, 188-190). 

 

LCP$ 3 are implicated in many diseases and conditions, including CVD, psychiatric diseases, 

pregnancy complications and suboptimal (neuro) development (86, 191-196). Moreover, a 

growing number of studies indicate the protective effects of dietary LCP$ 3 on mood 

symptoms, cognitive decline, depression (197, 198), Alzheimer’s disease (199) and, more 

generally, impaired quality of life both in the elderly (200, 201) and younger (202) populations. 

LCP$ 3 are involved in numerous processes including energy generation, growth, cell 

division, transfer of oxygen from the air to the bloodstream, hemoglobin synthesis, normal 

nerve impulse transmission and brain function. Many different mechanisms are operational: 

LCP$ 3 mediate potent anti-inflammatory and insulin sensitizing effects through their 

interaction with a membrane receptor named G-protein-coupled receptor 120 (GPR120) (203, 

204); they act at the gene expressional level by binding to nuclear receptors, such as the 

peroxisome proliferator activated receptors (PPARs) (205-207); and they modulate physical 

and metabolic properties of membranes through their incorporation into phospholipids and 

thereby impact on the formation of lipid rafts (134, 208, 209). Important common 

denominators in each of these interactions seem to be their anti-inflammatory and metabolic 

effects, again illustrating the intimate connection between the immune system and 

metabolism (50, 51).  

 

The modernization of food manufacturing, preservation processes and food choices have 

dramatically altered the balance between LCP$ 3 and LCP$ 6 in the Western diet, notably by 

increasing the intake of LA from refined vegetable oils and a concomitant decrease in the 

intake of LCP$ 3 from fish (210, 211). It is gaining acceptance that it is not the amount of fat 

but the balance between the different types of fatty acids that is important (211, 212). A high 

$ 6/$ 3 fatty acid ratio has been demonstrated to have an inflammatory effect (86, 212, 213), 

while a higher intake of LCP$ 3 in the form of EPA and DHA regulates the production of 

inflammatory and resolving cytokines and decreases LA levels in both plasma phospholipids 
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and cell membranes (183, 214). The conversions of LA and ALA to AA and to EPA+DHA, 

respectively, depend on the same enzymes in the desaturase and elongase cascade, with ! 6-

desaturase (FADS2) as a rate-limiting enzyme (215) that functions twice in the biosynthesis of 

DHA (216). Increased consumption of ALA gives rise to an increased ALA/LA ratio and 

EPA+DHA content in cell membranes that comes together with a reduction of the AA content 

(216, 217), and thereby influences the balance between inflammation and its subsequent 

resolution (Figure 6) (218-220). Conversely, a higher LA level in plasma phospholipids and cell 

membranes emerges as a major factor responsible for incomplete resoleomics reactions and 

the associated immune paralysis (214, 220, 221) (Figure 6), which is attributed to the 

competitive inhibition of LA in the conversion of ALA to EPA and DHA and also to the 

competition of LA in the incorporation of EPA and DHA into cellular phospholipids (183, 214, 

216).  

 

Figure 6. LCP! 6 and LCP! 3 postulated involvement in the inflammatory reaction in sepsis and 

its subsequent resolution. 

 

Sepsis causes a systemic inflammatory response giving rise to the ‘systemic inflammatory 

response syndrome’ (SIRS). The inflammatory response is followed by a compensatory anti-

inflammatory response, which results in the ‘e’ (CARS), characterized by a weakened host 

defense and augmented susceptibility to secondary infections. An inflammatory response 

should not only be initiated, but also stopped to limit collateral damage produced by the 

immune system and to prevent immune paralysis. LCP$ 6 (AA) are involved in the initiation 

of the inflammatory reaction, while LCP$ 3 (EPA and DHA) are involved in its resolution (see 

also Figure 7). a) A high LCP$ 6/LCP$ 3 ratio, e.g. low fish intake, intensifies the SIRS reaching 

a state of hyper-inflammation, while the CARS leads to a state of immune paralysis. b) A low 

LCP$ 6/LCP$ 3 ratio dampens both the SIRS and CARS, resulting in a more balanced immune 

response and preventing hyper-inflammation and immune-paralysis. SIRS, systemic 

inflammatory response syndrome; CARS, compensatory anti-inflammatory response 

syndrome. Adapted from Mayer et al. (220) with permission from Wolters Kluwer Health. 

 

LCP$ 3 and LCP$ 6 have distinct functions in the inflammatory reaction and its resolution. In 

the first phase of the inflammatory process, the pro-inflammatory eicosanoids leukotrienes-
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B4 (LTB4) and prostagladins-E2 and D2 (PGE2 and PGD2) (222, 223) are generated by 

macrophages from their precursor AA with the help of the lipid-oxidizing enzyme 

lipoxygenase-5 (LOX-5) and cyclo-oxygenase-2 (COX-2) (224-226). At the same time, PGE2 

and/or PGD2, although initially pro-inflammatory, determine the switch to the next phase: the 

resolution of the inflammation (227) via the so-called ‘eicosanoid-switch’. The production of 

the LOX-5 enzyme becomes limited, while anti-inflammatory lipoxins (LXs) are produced 

from AA through the activation of lipoxygenase-12 (LOX-12), lipoxygenase-15 (LOX-15) and 

acetylated COX-2 (228). At the site of inflammation, LOX-12 produced by platelets converts 

LTA4 to LXA4 and LXB4. Along with AA, both LOX-12 and -15 are involved in the biosynthesis 

of specialized bioactive lipid mediators, coined resolvins, (neuro)protectins (135) and 

maresins (229), which derive from EPA and DHA (Figure 7) (85, 134, 172). Several studies have 

illustrated the involvement of these lipid mediators in vascular inflammation and 

atherosclerosis (85, 228, 230, 231). They possess potent anti-inflammatory and pro-resolving 

actions that stimulate the resolution of acute inflammation by reducing and/or limiting the 

production of a large proportion of the pro-inflammatory cytokines produced by 

macrophages. Furthermore, LXA4, protectin D1 and resolvin D1 stimulate the phagocytic 

activity of macrophages toward apoptotic cells and inhibit inflammatory cell recruitment 

(232, 233) thereby protecting tissues from excessive damage by the oxidative stress that 

comes along with immune defense mechanisms and others. By their inhibitory actions on 

the recruitment of inflammatory cells, they allow the resolution phase to set in (234) and 

finish the inflammatory process with the return to homeostasis (136, 227).  

 

Accordingly, LCP$ 3 given at doses of hundreds of milligrams to grams per day, exhibits 

beneficial actions in many inflammatory diseases (88, 190, 194, 235, 236). For example, DHA 

has been shown to suppress NF" B activation and COX-2 expression in a macrophage cell line 

(168, 237). Different studies demonstrated the nutrigenetic modulation of the 12/15-LOX by 

providing endogenous anti-inflammatory signals and protection during the progression of 

atherogenesis (231, 238, 239), which seem to be totally annulled in the presence of Western 

diet induced hyperlipidemia. As some eicosanoids regulate the production of inflammatory 

cytokines (85, 134, 135) an LCP$ 3-induced decrease in pro-inflammatory eicosanoid 

production might affect the production of pro-inflammatory cytokines. Equally important is 

the observation that LCP$ 3 also modulate the activation of transcription factors involved in 

the expression of inflammatory genes (e.g. NF" B, phosphatidylinositol 3-kinase (PI3K)) (240). 

Hence, a high fish consumption, and especially fatty fish, rich in EPA and DHA, seems of 

crucial importance in the primary and secondary prevention of (Western) chronic diseases 

(241, 242), although it should be emphasized that fish is not a synonym of fish oil and also that 

insufficient fish consumption is certainly not the only factor involved in the pro-

inflammatory Western lifestyle (Table 1).  
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Figure 7. Biosynthesis of inflammatory and resolving lipid mediators.  

AA is released from membrane phospholipids by phospholipase A2 (PLA2) and metabolized by COXs or 5-LO to form 

inflammatory mediators, such as prostaglandins and leukotrienes. During the process of resolution, there is a ‘switch’ from 

the biosynthesis of inflammatory mediators to the formation of lipid derivatives with anti-inflammatory and pro-resolving 

properties, including lipoxins and 15-d-PGJ2. EPA and DHA are converted to potent anti-inflammatory and pro-resolving 

lipid mediators like resolvins (E1 and D1) and protectins. ASA, acetylsalicylic acid, CYP450, cytochrome P450, COX-1, cyclo-

oxygenasa-1, COX-2, cyclo-oxygenasa-2; 5-LO, 5-lipo-oxygenase; 12-LO, 12-lipo-oxygenase; 15-LO, 15-lipo-oxygenase; 

PGE2, prostagladin-E2; PGD2, prostaglandin-D2; LTs, leukotrienes; 15d-PGJ2,15-deoxy-delta-12,14-prostaglandin J2; 15-epi-

LXA4 , 15-epi-lipoxin A4 ; LXA4 , lipoxin A4. Adapted from González-Périz and Clària (243) with permission.  

 

Role of the antioxidant network  

The largest contributor to mortality and morbidity worldwide is age-related, non 

communicable disease, including cancer, CVD, neurodegenerative diseases and diabetes 

(244). Even though these are multi-factorial diseases with many pathophysiological 

mechanisms, a common finding is oxidation-induced damage through oxidative stress (245, 

246). Appropriate antioxidant intake has been proposed as a solution to counteract the 

deleterious effects of reactive oxygen species (ROS; e.g. hydrogen peroxide, hypochlorite 

anion, superoxide anion and hydroxyl radical), with substantial evidence upholding the 

contention that: a diet rich in natural antioxidants supports health (104, 246), is associated 

with lower oxidative stress and inflammation (77, 103, 140), and is therefore associated with 

lower risk of cancer, CVD, Alzheimer’s disease, cataracts, and some of the functional declines 

associated with aging (247-251).  
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Molecular oxygen is essential to aerobic life and, at the same time, an oxidizing agent, 

meaning that it can gain electrons from various sources that thereby become ‘oxidized’, while 

oxygen itself becomes ‘reduced’ (252, 253). In general terms, an antioxidant is ‘anything that 

can prevent or inhibit oxidation’ and these are therefore needed in all biological systems 

exposed to oxygen (252). The emergence of oxygenic photosynthesis and subsequent 

changes in atmospheric environment (254) forced organisms to develop protective 

mechanisms against oxygen’s toxic effects (255). Change is implicit to evolution and 

evolution results in adaptation to change (256). As a result, many enzymatic reactions central 

to anoxic metabolism were effectively replaced in aerobic organisms and antioxidant defense 

mechanisms evolved (257, 258). The continuous exposure to free radicals from a variety of 

sources led organisms to develop a series of systems (259) acting as a balanced and 

coordinated network where each one relies on the action of the others (260, 261).  

 

Oxidative stress occurs when there is a change in this balance in favor of ROS (262) that may 

occur under several circumstances, ranging from malnutrition to disease (263, 264). Damage 

by oxidation of lipids (262, 265, 266), nucleic acids and proteins changes the structure and 

function of key cellular constituents resulting in the activation of the NF" B pathway, 

promoting inflammation, mutation, cell damage and even death (252, 260, 267), and is 

thereby believed to underlie the deleterious changes in aging and age-related diseases (102, 

244). The prevention and/or inhibition of oxidation can be achieved by several types of 

specialized antioxidant mechanisms depicted in Table 2 (260). Our antioxidant system is 

composed of two networks (Figure 8), namely, the antioxidant network of non-enzymatic 

antioxidants that we obtain mostly via the diet (268), and the antioxidant enzymes that we 

synthesize ourselves and that carry metal ions for their appropriate functioning in ROS 

clearance. Members of the non-enzymatic antioxidants are e.g. ascorbic acid (vitamin C), 

alpha-tocopherol (vitamin E), carotenoids, and the polyphenols (269, 270). For instance, 

quercetin, one of the most common flavonoids in the human diet, and resveratrol, a well-

known stilbenoid present mostly in berries and the skin of red grapes, have demonstrated 

favorable effects on glucose metabolism by attenuating TNF#-mediated inflammation and 

insulin resistance in primary human adipocytes (271). Typical examples of the antioxidant 

enzymes are superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) 

(252).  
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Table 2. Types of antioxidant action. 

  Action  Examples  

Prevention  

 

Protein binding/inactivation of metal 

ions 

Transferrin, ferritin, 

ceruloplasmin, albumin 

 

Enzymatic  

Neutralization  

 

Specific channelling of ROS into 

harmless products 

 

SOD, catalase, glutathione 

peroxidase 

 

Scavenging  

 

 

 

Sacrificial interaction with ROS by 

expendable (recyclable or replaceble) 

substrates 

 

Ascorbic acid, alpha 

tocopherol, uric acid,  

glutathione 

 

Quenching  

 Absorption of electrons and/or energy 

#-tocopherol, %-carotene, 

astaxanthin 

ROS, reactive oxygen species; SOD, superoxide dismutase. Adapted from Benzie (260). 

 

While the prevention of oxidative stress by enhancing the antioxidant defense mechanisms 

may diminish the production of inflammatory mediators and thereby slow aging and lower 

risk of certain diseases (102, 245, 249), it should at the same time be appreciated that ROS also 

exert essential metabolic and immune functions. For example, oxidative phosphorylation is 

based on electron transport (272), which renders free radicals’ inevitable byproducts of 

mitochondrial metabolism (273). Mitochondrial oxidants may function as signaling molecules 

in the communication between the mitochondria and the cytosol (273), while TNF#-induced 

apoptosis may involve mitochondria-derived ROS (274). The innate immune system kills 

microbes by means of the respiratory burst (275). A certain level of ROS may also be essential 

to trigger antioxidant responses (276). Repeated exposure to sublethal stress has been 

proposed to result in enhanced stress resistance and increased survival rates, which in the 

dose-response curve is better known as hormesis (277). Intracellular ROS may stimulate gene 

expression of antioxidant and immunoreactive proteins (278), while SOD may become 

upregulated in chronic exercise through the binding of NF" B to the SOD promoter (279, 280).  

 

Consequently, certain antioxidants may inhibit mitochondrial biogenesis, interfere with the 

hormetic effects of ROS (281, 282) or have other adverse effects. Effective prevention of ROS 

formation and their removal may therefore upset energy metabolism, cell signaling pathways 

and the immune system, and thereby paradoxically increase the risk of chronic disease (283). 

Moreover, any antioxidant is also a potential pro-oxidant because in its scavenging action it 

gains an extra electron that can initiate a new radical reaction when transferred to an 

acceptor, either spontaneously or upon decomposition (284, 285). Possibly through its 
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prooxidant action or other mechanisms (286), meta-analyses of studies with %-carotene 

dosages above 20 mg/day have shown increased risk of lung cancer in the total population, 

smokers and asbestos workers; and of stomach cancer in smokers and asbestos workers (287). 

Analogously, oral antioxidants to limit muscle damage following exercise training may be 

detrimental to health and performance (288), while %-carotene, vitamin A and vitamin E 

supplements have been connected with higher risk of all-cause mortality (289), although the 

outcome of the latter meta-analysis has been contested (290). Moreover, not all antioxidants 

are created equal. Astaxanthin, a carotenoid from the land-water ecosystem, does not appear 

to exhibit pro-oxidant properties (291) when supplemented alone, even at high doses (292), 

and has been shown to decrease oxidative stress and inflammation in various circumstances 

(266, 293).  

 

Chronic inflammation results in the chronic generation of free radicals, which may cause 

collateral damage and stimulate signaling and transcription factors associated with chronic 

diseases (294, 295). The hypothesis that dietary antioxidants lower the risk of chronic diseases 

has been developed from epidemiological studies consistently showing that consumption of 

fruit and vegetables is strongly associated with a reduced risk of these diseases (104, 248, 250). 

Regular consumption of green tea (296) and red wine (103, 297), both rich in polyphenols, 

decreases DNA damage, and the same holds for the kiwifruit (298) and watercress (299), both 

harboring high amounts of carotenoids and vitamin C. On a calorie basis, fruits and 

vegetables are not only richer in many vitamins and minerals, when compared with cereals, 

meat or fish, but also in antioxidants (300). These may collectively be responsible of the 

aforementioned protection of fruits and vegetables in chronic diseases, including CVD (248) 

and cancer (249). Plants harbor similar defense mechanisms as animals for protection against 

ROS (301). Some of their antioxidants are part of their arsenal of ‘secondary metabolites’, 

defined as those organic compounds that are not directly involved in normal growth, 

development and reproduction, but in long term survival and fecundity (302). The plant 

secondary metabolites are largely involved in the chemical defense against herbivores, 

microbes, viruses and competing plants, in signaling and in nitrogen storage (303); and some 

(e.g. polyphenols, carotenoids) also serve functions in the protection against ROS. The 

underlying metabolic pathways towards secondary metabolites lead to a series of related 

compounds that are usually composed of few major metabolites and several minor 

components differing in the position of their functional groups (303). Animals consuming 

fruits and vegetables may employ these plant secondary metabolite networks for their own 

purposes, including maintenance of inflammatory/anti-inflammatory balance, cancer 

chemoprevention and protection against ROS (303). 
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Figure 8. Antioxidant defense mechanisms. 

An overview of the antioxidant system present in the human body. Various types of antioxidant systems have developed 

through time, reflecting different selection pressures. Different forms have developed for the same purpose, for example, 

SODs, peroxidases and GPx are important members of the antioxidant enzyme capacity group. Tocopherols and ascorbic 

acid, as representatives of the antioxidant network, are manufactured only in plants, but are needed by animals. Ascorbic 

acid is an essential antioxidant, but cannot be synthesized by homo sapiens. In humans, therefore, antioxidant defense 

against toxic oxygen intermediates comprises an intricate network which is heavily influenced by nutrition. GR, glutathione 

reductase; GSG, reduced glutathione; GSH-Px, glutathione peroxidase; GSSG, oxidized glutathione; GST, glutathione-S-

transferase; MSR, methionine sulphoxide reductase; PUFA, polyunsaturated fatty acids; S-AA, sulphur amino-acids; SH-

proteins, sulphydryl proteins; SOD, superoxide dismutase; Fe Cu, transition metal-catalysed oxidant damage to 

biomolecules. Adapted from Strain (304) with permission from Cambridge University Press. 

 

In view of the yet poorly understood complex antioxidant networks composed of many 

compounds, it seems improbable to find a single ‘magic bullet’ to prevent and treat chronic 

diseases associated with ROS. Protective effects of fruits and vegetables may originate from 

their numerous phytochemicals working in concert (305) and from many different 

mechanisms of action that are not solely related to ROS. A purified phytochemical may not 

have the same health benefit as that phytochemical present in whole foods or a mixture of 

foods (250, 306). In biological systems, toxins may become nutrients, while nutrients may 

become toxic in other situations (268), for example when disbalanced with other nutrients. 

Rather than translating our food into an assembly of nutrients where each has to prove its 
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health benefits by scientific means, the objective should be to embrace a eucaloric diet that 

provides the adequate amount of nutrients from whole foods to maintain our body 

homeostasis. ‘Adequacy’ may in this sense be translated into causing an optimal interaction 

between our diet (and our lifestyle in general) with our genome, that is: nurture in balance 

with nature. 

 

Evolutionary nutrition vs. randomized controlled trials 

Coherence between lifestyle factors, including the composition of our diet, is quite obvious 

from an evolutionary point of view. After all, there was first an environment, and from this 

environment originated a genome that was adapted to that environment: it is the substrate 

(environment) that selects the organism, not viceversa. This is exactly what Darwin meant 

with ‘conditions of existence’, as the most important driving force in evolution. In other 

words, our only slowly changing genome is indissolubly linked to a certain environment and 

lifestyle. However, we have changed this environment since the agricultural revolution and 

continue to do so with still increasing paste. The resulting conflict does not generate acute 

toxicity, but acts as an assassin in the long term. Probably, the conflict does not exert much 

selection pressure either, because its associated mortality occurs mainly after reproductive 

age.  

 

To solve the conflict, it is virtually impossible to study all of the introduced errors in our 

lifestyle (Table 1) in isolation, according to the reigning paradigm of EBM (307). EBM is widely 

confused with the results of RCTs and preferably the meta-analysis thereof (308, 309). This 

paradigm, originally designed for objective evaluation of medical treatments and drugs in 

particular, and named in nutrition research ‘Evidence Based Nutrition’ (EBN); is at present 

misused by food scientists and Health and Nutrition advisory boards. In contrast to drugs, this 

(expensive) RCT paradigm usually lends itself poorly for the study of single nutrients with 

meaningful outcomes (308). For each nutrient, we are dealing with poorly researched dose-

response relationships, multiple mechanisms of action, small effects causing pathology in the 

long-term, numerous interactions, ethical limitations regarding the choice of intervention 

and control groups, and the inability to patent its outcomes (309). The RCT criteria are 

moreover inconsistently applied in the current development of nutritional recommendations. 

For example, there is no RCT-supported evidence for the saturated fat hypothesis (170), and 

also not for the trans fatty acids, while such an approach is considered mandatory for the 

adjustment of the vitamin D nutritional standards (310-312). Incidentally, there was also no 

RCT prior to the introduction of trans fatty acids showing that they could be consumed 

without adverse effects on the long term. However, there is an RCT on the effects of smoking 

cessation, which showed an equal mortality among the quitters (313, 314). The meta-analyses 

of RCTs studying the influence of LCP on brain development are negative (315-318). However, 
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recommendations for their addition to infant formulas have been issued (196), probably 

because nobody wants to take chances with the brains of our offspring. By applying EBM in a 

rigorous manner and by merely taking a view from the ‘precautionary principle’ (i.e. zero risk 
5) this well meant concept has become a burden in the nutritional science, that calls for 

replacement by appropriate risk-cost-benefit analyses such as e.g. performed for vitamin D 

(319). 

 

Our diet is composed of millions of substances that are part of a biological network. In fact, 

we eat ‘biological systems’ like a banana, a fish or a piece of meat. There is a connection 

between the various nutrients in these systems. In other words,, there is a balance and an 

interaction that is part of a living organism. This balance can be found in the reconstruction 

of our Paleolithic diet, and various attempts for this reconstruction have already been made 

(28, 131, 320-322). Preliminary results of interventions with a Paleolithic diet are utterly 

positive (for a review see (323)). For example, in an indeed uncontrolled study with non-obese 

sedentary healthy subjects, an eucaloric Paleolithic diet resulted within 10 days in beneficial 

effects on three out of the four symptoms of the metabolic syndrome, i.e. blood pressure, 

dyslipidemia and glucose homeostasis. The fourth symptom, overweight/obesity, was 

deliberately not changed to prevent the attribution of any beneficial changes to weight loss 

(324). 

 

Nurture, not nature 

Less than 5% of our diseases can primarily be ascribed to heritable genetic factors (325, 326). 

‘Genome wide association studies’ (GWAS) will not make this figure change; not even if the 

number of patients and controls are further increased. As it could have been predicted from 

evolution, these GWAS identify only a few genes that are associated with typically Western 

diseases. Moreover, the so far identified genes merely convey low risks. In one of these 

disappointing GWAS, where 14,000 patients with seven major typically Western diseases and 

3.000 controls were studied, it was concluded that: ‘... for any given trait, there will be few (if 

any) large effects, a handful of modest effects and a substantial number of genes generating 

small or very small increases in disease risk‘ (327). The differences in genetic susceptibility to 

environmental factors is widely confused with a primary genetic origin of Western disease. 

Environmental factors may mimic genetic heritability, especially when the exposure has 

become widespread, As clearly explained by Rose (328): "If everyone smoked 20 cigarettes a 

day, then clinical, case-control and cohort studies alike would lead us to conclude that lung 

cancer was a genetic disease; and in one sense that would be true, since if everyone is 

                                                
 
5 The precautionary principle is a moral and political principle stating that , if an intervention or policy  
may cause serious or irreversible damage to society or the environment, the burden of proof lies with the  
proponents of the intervention or the measure if there is no scientific consensus on the future damage. The precautionary pri nciple is particularly applicable in health 
care and enviro nment; in both cases we deal with complex systems in which interventions result in unpredictable effects ( source: Wikipedia ). 
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exposed to the necessary agent, then the distribution of cases is wholly determined by 

individual susceptibility”. In other words: ‘disease susceptibility genes’ is a misnomer from an 

evolutionary point of view. 

 

Most of the currently demonstrated polymorphisms associated with typically Western 

diseases already existed when homo sapiens emerged about 160,000 years ago in East-Africa. 

After all, the largest inter-individual genetic variation can be found between individuals 

belonging to a single population (93-95% of the total genetic variation), and only little genetic 

variation is on the account of differences between populations belonging to a single race (2%) 

and between the 5 races (3-5%) (329). The allele that, according to current knowledge, is linked 

with the highest penetrance of type 2 diabetes mellitus in the general population (with 

Western lifestyle!) conveys 46% higher relative risk (RR=1.46) (330). In contrast, a woman with 

a body mass index (BMI) of 35+ kg/m2 has a one hundred-fold higher risk (RR=100) of diabetes 

mellitus type 2 (331), which translates into a 9,900% higher relative risk. ‘Genetic’ diseases with 

relative risks below 1.5 have no practical value in Public Health. They are only important to 

our understanding of the etiology of the concerning disease and for drug development (326), 

which is part of Health Care.   

 

Between 70 and 90% of the cases of type 2 diabetes mellitus, CVD and colon cancer can be 

prevented by paying more attention to nutrition, smoking, overweight and lack of physical 

activity (325). Hemminki et al. (326) stated that ‘if the Western population was to live in the 

same conditions as the populations of developing countries, the risk of cancer would 

decrease by 90%, provided that viral infections and mycotoxin exposures could be avoided’. 

The popular counter argument that people in developing countries have (on average!) shorter 

life spans is not valid. The reason that we (on average!) live longer in Western societies, is 

mainly due to the strong reduction of infectious diseases (particularly in childhood), famine 

and violence (332, 333), and also in part on the account of Health Care. However, together 

with our increasing life expectancy, there is a decrease in the number of years without 

chronic disease (334). 

 

Conclusions 

It has become clear that most, if not all, typically Western chronic illnesses find their primary 

cause in an unhealthy lifestyle and that systemic low grade inflammation is a common 

denominator. From an evolutionary point of view, the current conflict between environment 

and our Paleolithic genome traces back to our brain growth and the ensuing intimate 

relationship between inflammation and metabolism. The present disbalance between 

inflammatory and anti-inflammatory stimuli does not originate from a single cause and can 

consequently also not be solved by a single ‘magic bullet’. Resolution of the conflict between 
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environment and our ancient genome might be the only effective manner to arrive at 

‘healthy aging’ and to achieve this objective we might have to return to the lifestyle of the 

Paleolithic era according to the culture of the 21st century (16, 322). 
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Abstract 

Serhan and colleagues introduced the term “Resoleomics” in 1996 as the process of 

inflammation resolution. The major discovery of Serhan´s work is that onset to conclusion of 

an inflammation is a controlled process of the immune system (IS) and not simply the 

consequence of an extinguished or “exhausted” immune reaction. Resoleomics can be 

considered as the evolutionary mechanism of restoring homeostatic balances after injury, 

inflammation and infection. Under normal circumstances, Resoleomics should be able to 

conclude inflammatory responses. Considering the modern pandemic increase of chronic 

medical and psychiatric illnesses involving chronic inflammation, it has become apparent 

that Resoleomics is not fulfilling its potential resolving capacity. We suggest that recent 

drastic changes in lifestyle, including diet and psycho-emotional stress, are responsible for 

inflammation and for disturbances in Resoleomics. In addition, current interventions, like 

chronic use of anti-inflammatory medication, suppress Resoleomics. These new lifestyle 

factors, including the use of medication, should be considered health hazards, as they are 

capable of long-term or chronic activation of the central stress axes. The IS is designed to 

produce solutions for fast, intensive hazards, not to cope with long-term, chronic stimulation. 

The never-ending stress factors of recent lifestyle changes have pushed the IS and the central 

stress system into a constant state of activity, leading to chronically unresolved inflammation 

and increased vulnerability for chronic disease. Our hypothesis is that modern diet, increased 

psycho-emotional stress and chronic use of anti-inflammatory medication disrupt the 

natural process of inflammation resolution ie Resoleomics. 

 

Keywords 

Chronic inflammation, Central stress system, Nutrition, Resoleomics, Sympathetic-adrenal-

medulla axis, Hypothalamus-pituitary-adrenal axis, Anti-inflammatory medication, Insulin 

resistance, Polyunsaturated fatty acids, Glycemic index 
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Introduction 
The number of people suffering from chronic diseases such as cardiovascular diseases (CVD), 

diabetes, respiratory diseases, mental disorders, autoimmune diseases (AID) and cancers has 

increased dramatically over the last three decades. The increasing rates of these chronic 

systemic illnesses suggest that inflammation [1,2], caused by excessive and inappropriate 

innate immune system (IIS) activity, is unable to respond appropriately to danger signals that 

are new in the context of evolution. This leads to unresolved or chronic inflammatory 

activation in the body. 

Inflammation is designed to limit invasions and damage after injury, a process which has 

been essential for the survival of Homo sapiens in the absence of medication such as 

antibiotics. Recently, it has been discovered that onset to conclusion of an inflammation is a 

self-limiting and controlled process of the immune system (IS). This process of inflammation 

resolution is defined by Serhan as Resoleomics [3], a term which will be used throughout this 

article. 

Our genes and physiology, which are still almost identical to those of our hunter-gatherer 

ancestors of 100,000 years ago, preserve core regulation and recovery processes [4,5]. 

Nowadays our genes operate in an environment which is completely different to the one for 

which they were designed. 

Modern man is exposed to an environment which has changed enormously since the time of 

the industrial revolution. In recent decades there has been a tremendous acceleration in 

innovations which have changed our lives completely. As a consequence, more than 75 % of 

humans do not meet the minimum requirement of the estimated necessary daily physical 

activity [6], 72 % of modern food types is new in human evolution [7], psycho-emotional stress 

has increased and man is exposed to an overwhelming amount of information on a daily 

basis. All these factors combine to produce an environment full of modern danger signals 

which continuously activate the IIS and central stress axes. The question is whether the IIS 

and its natural inflammatory response, Resoleomics, can still function optimally in this 

modern, fast-changing environment, considering that the IIS is designed to produce short, 

intensive reactions to acute external danger [8,9]. It would seem that in the bodies of people 

who have adopted a Western lifestyle the inflammatory response is not concluded because of 

an initial excessive or subnormal onset of the response [10]. 

This article postulates how triggers from chronic altered diet and psycho-emotional stress 

negatively influence Resoleomics, thereby increasing susceptibility to the development of 

chronic, low-grade, inflammation-based diseases due to the constant activation of both the 

central stress axes and the IIS. In addition, an attempt is made to demonstrate the ways in 

which the use of anti-inflammatory medication could influence Resoleomics. 
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Resoleomics, a self-limiting process of inflammation 

Serhan and his colleagues [3] introduced the term Resoleomics to describe a self-limiting 

process of inflammation, executed and controlled by the innate immune system (IIS) and 

regulated by the sympathetic nervous system (SNS) and the hypothalamus-pituitary-adrenal 

(HPA) axis. This process controls inflammation using metabolites produced from arachidonic 

acid (AA), eicosapentaenoic acid (EPA) and docosahexenoic acid (DHA). Resoleomics operates 

locally when polymorphonuclear neutrophils (PMNs) are attracted by increased pro-

inflammatory cytokine and eicosanoids production during microbial invasion, wound 

healing or chemical injury. The function is to limit the inflammation response. The central 

control system of the inflammatory reaction is very complex. Local and central processes 

influence each other and both are responsible for an optimal resolving response (Figure 1). 

The local process can be divided into three phases [11] (Figure 2): 

Figure 1  Start and finish of a physiological inflammatory reaction in wound healing and 

situations of microbial challenge.  

Cellular damage and leakage of alarmins attract neutrophils to the damaged area (PMN’s). Sympathetic afferents activate 

the locus coeruleus (central nucleus of the sympathetic nervous system, SNS) and Noradrenaline (Norepinephrine, NE) is 

released. The released NE activates the adrenal medulla inducing the production of systemic catecholamins that supports 

the activation of the PMN. Damaged blood vessels are a source of an omega 3 rich edema (EPA and DHA). DHA and EPA 

inhibit LOX-5 directly and through conversion into resolvins and protectins. Both PGE2 and PGD2, produced by the 

breakdown of AA by COX-2 activity, will now override the strong chemotaxic effect of LTB4. The combined action of 

protectins, resolvins and lipoxins produced out of AA will put a hold on the pro-inflammatory activity of PMN’s, which is 

supported by the increased production of systemic cortisol. Cortisol further activates macrophages (M-Ph) to phagocytose 
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issue debris and quiet PMN by releasing substances such as LXA4, resolvin E1 (RvE1), prostanoid D1 (PD1), fibroblast growth 

factor (FGF), vascular endothelial growth factor (VEGF) and epithelial growth factor (EGF) at the same time. Further edema 

leakage will be stopped, whereas angiogenesis and production of connective tissue will take place, finishing the 

inflammatory reaction and starting the production of new tissue. 

 

Figure 2  Inflammation is a controlled process with an initiation, resolution and termination 

phase.  
After microbial invasion, lesion or chemical injury, the initiation phase starts with the production of pro-inflammatory 

mediators like LTB4 and PG2. These mediators increase inflammation until the Eicosanoid Switch, the end of the initiation 

phase, takes place. This occurs when the level of PGE2 plus PGD2 is equal to the LTB4 level. The resolution phase is 

entered, triggering the generation of anti-inflammatory mediators like LK, resolvins, protectins, maresins, PGD2 and PGF2a. 

When the total level of anti-inflammatory mediators exceeds the level of LTB4 the Stop Signal takes place. This is the last 

phase, the inflammation will be terminated by clearing the affected area [11]. The stress hormones produced by the 

systemic stress axes have a direct effect on the inflammation phases. A microbial invasion, lesion or injury sends off an 

alarm in the body, setting off the systemic stress system which produces NE as response and tunes the system to insulin 

and cortisol resistance [12]. The Eicosanoids Switch to resolution can only take place when NE is equal to the level of 

cortisol plus insulin and when cortisol sensitivity is recovered. The Stop Signal requires a low level of NE and normalized 

cortisol sensitivity. The termination phase is entered when the stress axes are switched off 
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1. Initiation phase 

2. Resolution phase 

3. Termination phase 

 

Initiation phase 

Pro-inflammatory eicosanoids, like leukotrienes B4 (LTB4) and prostaglandins (PGs) initiate 

the inflammatory response. PMNs generate LTB4 and PGE2 from precursor AA with the use 

of lipoxygenase-5 (LOX-5) and cyclo-oxygenase 2 (COX-2). Both eicosanoids enhance 

inflammation, LTB4 being the strongest chemotoxic compound of cytotoxic neutrophils. 

PGE2 and/or PGD2, although initially pro-inflammatory, determine the switch to the next 

phase, the resolution of the inflammation. 

 

Resolution phase 

This phase starts with the Eicosanoid Switch to resolution. When the PGE2 and/or PGD2 level 

is equal to the level of LTB4, the PMNs activate the switch from pro-inflammatory to anti-

inflammatory eicosanoids production by limiting the production of LOX-5. This switch is 

responsible for the production of anti-inflammatory lipoxins (LXs) from AA through 

activation of lipoxygenase ! 12 (LOX-12), lipoxygenase-15 (LOX-15) and acetylated COX-2 

[13,14]. This last mechanism has been found to be responsible for the production of more 

stable aspirin-triggered LXs (ATLs) with a longer half-value period [15]. Other resolving 

metabolites that support LXs are resolvins, (neuro)protectins and maresins produced from 

respectively EPA and DHA [11,16]. A second substantial increase of COX-2 activity will 

produce anti-inflammatory PGs (PGD2 and PGF2a) during this phase [17]. 

 

Termination phase 

This phase starts when the Stop Signal takes place. This happens when sufficient anti-

inflammatory mediators such as LXs are available to stop the pro-inflammatory process 

[13,14]. LXs are capable of inhibiting both PMN infiltration and the activity of cytotoxic cells of 

the ISS, inducing phagocytosis to clear debris by non-cytoxic macrophages and attenuating 

an accumulation of the pro-inflammatory transcription factors, ie nuclear factor-kappaB (NF-

kB) and activator protein 1 (AP-1) [18,19]. 
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Central stress axes and Resoleomics 

This section deals solely with the effect of the sympathetic, parasympathetic and the HPA axis 

on Resoleomics. The systemic stress system is closely linked to the IIS via the stress axes of 

our body. Anything that can activate the sympathetic-adrenal-medulla (SAM) and HPA axes 

will have its effect on the IIS [20] and therefore on Resoleomics. Seen in reverse, it is precisely 

the IIS that can trigger stress axes, inducing a systemic stress reaction in the body [21]. In the 

SNS, which initially activates the IIS, inhibition of the IIS is provided by the strong anti-

inflammatory neurotransmitter acetylcholine (ACh), produced by the parasympathetic 

nervous system [22]. 

 

The systemic stress reaction follows a two-wave pattern. Activation of the SAM axis is 

considered the first wave, giving rise to the excretion of brain norepinephrine (NE) by the 

Locus Coeruleus (LC). The descending pathway activates sympathetic motor neurons in the 

medulla oblongata, which stimulate the adrenal glands (through sympathetic efferent nerves). 

The adrenal gland will now excrete catecholamines, which activate and induce proliferation 

of ISS cells. NF-kB increases pro-inflammatory cytokines production, such as interleukin 1-

beta (IL1-! ), interleukin 6 (IL-6) and tumor necrosis factor (TNF). Both the IIS and Th1 of the 

adaptive IS contain receptors sensitive to catecholamines. Cerebral catecholamines affect the 

activity of spleen, thymus, bone marrow and lymphoid nodes [23]. NE has been shown to 

activate the IIS at the onset of inflammation, while long-term activation of the SNS induces 

IIS inhibition [24]. 

 

The second wave of the systemic stress reaction corresponds with the activation of the HPA 

axis, with glucocorticoids (GCs) as end product. Cortisol is capable of inhibiting the IIS 

through the upward regulation of inhibiting factor kappa B (IkB), while informing the 

immunological cortex through the migration of different immune cells to the brain [25,26]. 

Cortisol, the regulator of the IIS response, can guide the inflammation into resolution phase. 

Termination is instigated when cortisol “overrules” the NE effect on NF-kB signalling through 

genetic influence and reduction of transcription of the NF-kB sensitive pro-inflammatory 

gene, resulting in the finalization of the inflammatory response (Figure 2). 

 

This “termination” effect of cortisol is normally supported by a compensatory anti-

inflammatory response through activation of the vagal anti-inflammatory loop [27]. The 

resulting production of ACh inhibits the IS through the alpha-7-nicotin-Acetylcholinergic 

Receptor (" 7nAChR) [28] (Figure 1). 

 

The SNS (NE) increases the initial pro-inflammatory immune response in the initiation phase, 

whereas delayed cortisol response, induced by the HPA axis, inhibits the pro-inflammatory 
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response [29]. Integrity of the SAM axis with its NE response/ reaction is necessary for an 

adequate initial inflammatory response [30]. At the beginning of the initiation phase, there is 

resistance to both cortisol and insulin in order to allow for the activation of the IIS [12]. At the 

end of this phase, cortisol sensitivity and insulin sensitivity should be recovered to facilitate 

the Eicosanoid Switch to the resolution phase. 

 

Chronic stress exposure reduces the capacity to mount an acute stress response [31], resulting 

in an inadequate pro-inflammatory response. Chronic (psycho-emotional) stress situations 

can be responsible for the continuous production of catecholamines by the SAM axis. People 

suffering from “perpetual stress”, for example the parents of a child with cancer, showed 

chronic, increased levels of circulating pro-inflammatory cytokines [26]. This situation 

requires a high level of energy expenditure. The metabolic rate is increased to provide extra 

energy for the brain (arousal of all senses), the heart muscle and the locomotive system. The 

existing cells from the IIS are activated and will proliferate (relatively low energy expenditure), 

whereas proliferation of new immune cells (much more costly energy expenditure) will be 

blocked. Further consequences of chronic SAM activity are narrowing of the cell spectrum of 

the IIS and complete loss of activity of the Th1 section of the adaptive IS, leading to an 

insufficient capability to fight viruses, (pre)neoplastic cells and intracellularly presented 

pathogens [31]. 

 

An inflammatory response leading to solution depends on the sensitivity of glucocorticoid 

receptors (GR) and catecholamine receptors of the IIS [32]. Factors such as stress endured 

early in life, trauma and polymorphisms are possible risk factors for loss of GR and 

catecholamine sensitivity [33-35]. 

 

Suboptimal inflammatory response as a consequence of chronic stress prevents the 

Eicosanoid Switch from functioning, since the switch to the resolution phase requires 

recovered cortisol and insulin sensitivity. The initiation phase should have a maximum 

duration of 8 to 12 hrs. PMN number and activation levels should reach their maximum 

during this phase; longer duration caused by chronic stress could produce secondary damage 

to neighbouring tissues due to the strong cytotoxic effects of activated PMNs [11]. 

Supramaximal activation of PMNs could sensitize the adapted IS if contact time between self-

antigens and the IS is significantly increased [11,29]. 

 

The crosstalk between the IS and stress axes is further evidenced by the fact that acute 

production of high levels of catecholamines activate the IIS strongly [23], whereas 

eicosanoids produced from AA induce the production of local and systemic catecholamines 

[36]. Long-term activation may lead to catecholamine resistance and lack of eicosanoid 

production. This situation, combined with the aforementioned possibility of resistance to 
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insulin and cortisol, provokes a suboptimal inflammatory response and consequently the 

perpetuation and development of low-grade inflammation [26,37]. 

 

Nutritional factors and Resoleomics 

Several dietary factors influence the activity of the IIS and the function of a wide range of 

hormones, including cortisol, insulin and catecholamines. The dramatic changes in dietary 

composition since the agricultural revolution (some 10,000 years ago) and, to a greater extent, 

since the industrial revolution (some 200 years ago) have turned the intake of food into a 

common daily danger and therefore a cause of continuous systemic stress. Some of these 

changes include an increase in the omega 6/omega 3 fatty acid ratio, a high intake of 

saturated fatty acids (SFA) and refined carbohydrates, the introduction of industrially 

produced trans fatty acids, a lower intake of vitamins D and K, imbalanced intake of 

antioxidants, high intake of anti-nutrients (eg lectines, saponins) and an altered intake of 

dietary fibre [38]. 

 

The following section will discuss the impact of the changed ratio of polyunsaturated fatty 

acids (PUFAs) and the intake of food with a high glycemic load on Resoleomics. The pro-

inflammatory effects of anti-nutrients present in cereals [39], potatoes [40], legumes [41], and 

tomato have previously been extensively reviewed [7]. 

 

Role of PUFAs in inflammation 

The intake ratio of " -linoleic acid (LA) (omega 6), " -linolenic acid (ALA) (omega 3), 

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in the Western diet has 

changed dramatically compared to the estimated intake ratio of hunter-gatherer diets from 

2–3:1 to 10–20:1 in the contemporary diet [42,43]. All of these PUFAs are essential for normal 

Resoleomics response, as they function as precursors for the special small mediators 

responsible for the instigation and conclusion of the inflammatory response. One of the toxic 

changes in fatty acid composition of food corresponds to the increased intake of LA since the 

production of vegetable oils in 1913. Increased LA levels affect the inflammation process in 

three ways (Figure 3): 
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Figure 3  Summary of the effects of high LA intake on Resoleomics 
1. Increase of the omega 6 / omega 3 fatty acid ratio 

2. Altered AA level 

3. Increases of inflammatory compounds, leukotoxins (LK) production 

 

Increased omega 6 / omega 3 fatty acid ratio 

The inflammatory effect of a high omega 6/ omega 3 fatty acid ratio during inflammation has 

been demonstrated in recent human studies [44,45], in vitro studies [46,47] and animal studies 

[48,49]. The higher LA levels in phospholipids in plasma and cell membranes seem to be a 

major factor responsible for incomplete Resoleomics reactions. Higher intake of omega 3 

fatty acids in the form of DHA and EPA regulate the production of pro-inflammatory 

cytokines and decrease LA levels in phospholipids in plasma and cell membranes [46,48]. The 

conversion of LA and ALA into respectively AA, DHA and EPA depend on the same enzymes 

in the desaturase and elongase cascade, with #-6-desaturase as the rate-limiting enzyme 

(Figure 4) [50]. 
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Figure 4  Synthesis of unsaturated fatty acids in mammals by Desaturase and Elongase 

Human trials investigating the effects of omega 3 dietary supplements showed significant improvements of symptoms in 

patients suffering from diseases such as RA, inflammatory bowel disease, asthma, psoriasis, breast cancer and CVD. 

However, full remission of symptoms was not achieved [43,51]. Our conclusion is that an increased intake of omega 3 alone 

is not enough to restore Resoleomics; the intake of LA must be decreased as well. 

 

LA effect on AA level 

Higher AA levels in plasma result in more adequate inflammatory reactions, since AA is a 

precursor of pro- and anti-inflammatory substances within the self-limiting inflammatory 

process [52]. LA is the precursor for AA in the desaturase/ elongase conversion (Figure 4). 

Theoretically, LA could be the source of a sufficient level of endogenous AA. However, higher 

intake of LA does not deliver increased levels of AA in comparison to low intake [53,54]. To 

achieve the required AA level, AA should be present in the regular diet [45]. The combined 

situation of AA deficiency together with a reduced intake of omega 3 fatty acids such as DHA 

and EPA (necessary for the flip flop reaction of LOX-5 and the Eicosanoid Switch [3]), enable a 

perpetuation of the pro-inflammatory initiation phase and therefore of chronic 

inflammation. 
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Increased production of leukotoxin 

The third harmful effect of high LA intake is the possible production of so-called leukotoxins 

(LK). High LA levels are metabolized by CYP2C9 in the liver into biologically active oxidation 

products known as LK and leukotoxin diol (LTD). These metabolites promote oxidative stress 

responses and the activation of NFkB and AP-1, increasing the systemic release of pro-

inflammatory cytokines [55]. LK and LTD are toxic for T cells, and can kill these cells with 

pathways resembling necrosis and programmed cell death [56]. 

 

Role of high glycemic food in Inflammation 

An abundant intake of high glycemic food appears to be related to an increased susceptibility 

to the development of chronic inflammation, as has been demonstrated by several research 

groups [57-59]. The consequences of a high carbohydrate diet are complex and multiple. The 

pathways leading to disturbances of normal inflammation are: 

 

1. High glycemic food intake increases inflammation markers 

2. High glycemic food intake causes hyperglycemia and hyperinsulinemia leading to 

disturbed balances in insulin growth factor-1 (IGF-1) and androgens 

3. Chronic intake of high glycemic food causes hypoglycemia, which triggers central 

stress axes 

 

High Glycemic food increases inflammation markers 

Various clinical trials have shown that an abundant intake of high glycemic food increases 

inflammatory markers and markers of metabolic syndrome such as postprandial NFkB in 

mononuclear cells [57], high sensitive-C-Reactive Protein (hs-CRP)[58], interleukin (IL)-6, IL-

7, IL-18 [60], levels of free radicals [59], cholesterol, triglycerides [61] and even blood pressure 

[62]. Changes incurred by following a low glycemic diet include improved insulin sensitivity, 

lower blood pressure and total cholesterol, which are all key markers of the metabolic 

syndrome [58,60,61]. The high glucose-induced inflammatory response is accompanied by 

hyperinsulinemia and insulin resistance, characteristic for people suffering from obesity 

[57,59]. Increased hsCRP values, hyperinsulinemia and insulin resistance are strongly related 

to CVD risk [60]. Glycemic index (GI) and glycemic load (GL) have therefore been proposed as 

biomarkers and predictors for (chronic) inflammation [63]. 

 

Hyperglycemia and hyperinsulinemia 

Cordain demonstrated that high glycemic food is a potential risk factor for inflammation 

through disturbed signalling of mechanisms as a result of hyperglycemia and 

hyperinsulinemia [64] (Figure 5b). Long exposure to high glucose levels in blood, which leads 

to a slow recovery of the homeostasis, makes tissues vulnerable to disease [65]. High plasma 
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insulin can increase the production of IGF-1 and androgens. Both hormones are related to 

disorders such as polycystic ovarian syndrome (PCOS) [66], epithelial cell cancer (breast, 

prostate, colon) [67,68], acne [69], androgenic alopecia [70], and acanthosis nigricans [71]. 

Several pathways in this respect have been previously described in medical literature, but 

these go beyond the scope of this article. 

 

Figure 5  High glycemic food intake could cause inflammation and diseases as a result of 

hyperinsulinemia.  
The pathways in the shaded area have been extensively described by Cordain [64] (part B). Part A: The consequential 

reactive hyperglycemia is another deleterious pathway. Hyperglycemia is a danger signal, which activates the systemic 

stress system. Chronic activation will suppress the IIS, resulting in low grade inflammation and an increased vulnerability for 

excessive inflammation 

 

Hypoglycemia triggers the systemic stress system 

As previously mentioned, intake of a high glycemic diet can cause hyperglycemia and 

hyperinsulinemia. Hyperglycemia will push abundant glucose via insulin into muscle and 

adipocytes at the instigation of the inflammatory process. However, continuous intake of 

high glycemic food results in reactive hypoglycemia, ie an energy-deficient situation which 
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threatens the homeostasis of the body. As a consequence, the brain will maintain its own 

energy supply aimed at the survival of the organism (the selfish brain) [25]. To ensure 

sufficient energy supply, the brain activates its systemic stress system to induce 

gluconeogenesis (Figure 5a). Excreted catecholamines and cortisol will mobilize extra energy, 

which is allocated with priority to the brain and to the activated IS, at the expense of other 

body tissues [72]. 

 

On the basis of the above information and other referenced data, it seems plausible to state 

that aspects of the Western diet, of the modern industrialised environment and of their 

resultant lifestyles form a chronic danger to the body, triggering both the central stress axes 

and the IIS into a state of chronic activity. This state seems to be a direct cause of the 

development of low-grade inflammation and consequently of chronic inflammatory diseases 

(Figure 5a). 

 

Impact of current medication on Resoleomics 

The role of the IIS is to limit the damage of inflammation in acute situations. Anti-

inflammatory medication can be used to dampen the immune response. Nowadays, as a 

result of lifestyle changes, man is exposed to chronic inflammation and consequently to the 

chronic use of anti-inflammatory medication, much of which in fact suppresses 

Resoleomics. Current medication used to treat chronic inflammatory diseases does suppress 

the symptoms of inflammation, but complete remission of the disease is seldom realized [73]. 

Resoleomics is hindered and complete resolution of the inflammation does not take place. 

Modern chronic inflammatory diseases are treated by several groups of medication. In this 

article we focus on rheumatoid arthritis (RA) medication as an example. Four groups of anti-

inflammatory RA medication are taken into account: the prostaglandin inhibitors 

[Nonsteroidal anti-inflammatory drugs [NSAIDs: Aspirin (ASA) and COX-inhibitors], the 

Glucocorticoids (GCs), the Disease Modifying Drugs [DMARDs: Methotrexate (MTX) and 

Sulfasalazine (SSZ)] and the cytokine blockers [Biological agents: anti TNF-" lpha and IL-1 

blockers]. The mechanisms of action and possible effects on the IIS and Resoleomics are 

summarized from literature (see Table 1). Most current therapies target the IIS in an attempt to 

inhibit the production of pro-inflammatory chemical mediators (Table 1). However, an 

equally important target is the active induction of pro-resolution programs by stromal cells 

such as fibroblasts within the inflamed tissues [74]. Inhibition of MIF [75] and production of 

NO [76] are not addressed in this article. 
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Positive effect of ASA and GCs on Resoleomics  

Medical intervention should stimulate the endogenous pathways of resolution and two drugs 

already known to possess these qualities are central to contemporary med icine: 

glucocorticoids (GCs) [77] and aspirin (ASA) [106,107]. It is apparent that ASA and GCs have a 

positive effect on Resoleomics, while other medications prolong the initiation phase, 

tempering and/ or blocking the resolution and termination phase of R esoleomics in various 

ways (Table  1). The positive effect of ASA on Resoleomics can be ascribed to its ability to 

produce ASA - triggered lipoxins (ATLs) through acetylation (and not through an irreversible 

inhibition) of the COX - 2 enzymes [78]. These ATLs s how many pro - resolving properties, 

which are essential in the resolution and termination phase of the inflammation process 

[79,108]. Long - term intake of high doses of ASA blocks PGE2 production and initiates the 

resolution phase without affecting the biosy nthesis of other pro - resolving mediators [108]. 

Low and high doses of ASA increase the production of lipoxin A4 (LXA4) and 15 - epi - LXA4 in 

the rat brain, suggesting that ASA could protect against neuroinflammation [109]. However, 

because of its side effects , ASA is no longer the treatment of choice for RA. In high doses, 

inhibition of the COX - 1 enzyme by ASA is responsible for damage to the stomach lining.  

 

ASA and also GCs activate the ALX/FRP2 receptor, making them the ideal collaborator in the 

resolution process [77]. GCs- induced annexin - 1 protein (ANXA1) [110,111] as well as ASA-

induced ATLs act on the same ALX/FPR2 receptor and dampen PMN infiltration [77,80]. 

ANXA1 also inhibits the phospholipids A2 enzyme (PLA2). Reduced PLA2 activity appears to 

reduce  AA release from the cell membrane [32,112], which possibly leads to decreased levels of 

both PGs and LTs and to the delay of resolution. Besides their anti - inflammatory effects, GCs 

have a positive influence on resolution by enhancing macrophage migration  and 

phagocytosis [11,113].  

 

Adverse effects of medication on Resoleomics  

The use of anti - inflammatory medication without the capacity to induce (complete) 

resolution should be considered solution - toxic, ie hindering Resoleomics. NSAIDs are strong 

inhibitors of COX - 2 and less of COX - 1 enzymes [114]. Almost complete COX - 2 inhibition 

decreases the PGs synthesis, and consequently leads to a higher production of LTs via LOX - 5 

in PMNs [115]. PGE2 and PgD2 decrease the activity of LOX - 5, decreasing neutro phil activity 

and facilitating the end of the inflammatory phase and the instigation of resolution.  

 

Immune - suppressors such as SSZ (and less powerful GCs) almost completely block NF - kB 

transcription, leading to insufficient cytokine production and subopti mal inflammation [86]. 

Again the resolution process will not be completed, with perpetuation of inflammation as the 

logical consequence.  
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Perhaps the most deleterious drugs, interfering negatively with resolution, are TNF - alpha 

inhibitors such as anti TNF - alpha and MTX. MTX inhibits the proliferation of the IIS cells, 

decreasing the production and accumulation of adenosine within the IS cells [88,116]. These 

effects lead to rapid anti - inflammatory effects and symptom release. However, because of its 

side eff ects and incomplete resolution, this medication is qualified as solution - toxic. This 

conclusion is supported by many patients who have discontinued this treatment [73].  

 

Another group of possible solution - toxic drugs are biological agents with an inhibitin g effect 

on TNF - alpha and IL - 1. Biological agents together with DMARDS (Table  1) are strong anti -

inflammatory compounds, decreasing the production of pro - inflammatory cytokines. The 

absence or insufficient activity of pro - inflammatory cytokines decreases c ell communication 

and induction of COX - 2 in activated neutrophils. This can lead to less production of 

resolution substances such as PgE2, PgD2 and lipoxins [54,103]. Furthermore, DMARDs and 

biological agents appear to reduce the functioning and number of IIS cells, causing 

suboptimal inflammation and possibly inflammation perpetuation [104].  

 

Discussion  

Long - term activity of the IIS results in low - grade inflammation and chronic disease. Over the 

past years, ideas regarding the treatment of inflammation hav e started to change as evidence 

accumulates which shows that, although the targeting of infiltrating immune cells can control 

the inflammatory response, it does not lead to its complete resolution and a return to 

homeostasis, which is essential for healthy  tissue and good health in general.  

 

Hotamisligil describes how low - grade, chronic inflammation (Ômeta - inflammationÕ) induced 

by a nutritional and metabolic surplus, is accompanied by disturbed metabolic pathways and 

chronic metabolic disorders. He states that this inflammatory response differs from the 

classical inflammation response caused by injury [117]. However, others have shown that the 

classical response of the IIS dealing with injuries can be linked to activation of the central 

stress axes [26,28]. This article specifically discusses the relationship between the over -

activated systemic stress system and the self - limited process of inflammation, known as 

Resoleomics, executed and controlled by the innate immune system (IIS).  

 

Changes in lifestyle whi ch are new to our evolutionary process should be considered a major 

trigger in causing chronic activation of the IS and consequently of the central stress axes and 

vice versa, thereby leading to chronic diseases such as cardiovascular diseases (CVD), 

diabe tes, respiratory diseases, mental disorders, auto - immune diseases (AID) and cancers. 

This article evaluates two of the lifestyle changes which contribute to long - term activity of the 

ISS, namely, nutrition and continuous psycho - emotional stress. Other risk  factors such as 
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physical inactivity [6], genetic susceptibility [118], smoking, environmental toxicity and shift 

work [119] fall beyond the scope of this article but should not be ruled out.  

 

Nutrition is an important factor in understanding the developme nt of chronic inflammation. 

The current Western diet can disturb the resolution response in various ways (Figure  6). In the 

Ancestral human diet, foodstuffs with an increased risk of inflammation were virtually 

unknown, while nutrients able to activate the  IIS are now abundant in our diet [38,120]. 

CordainÕs research has focused on relating these anti - nutrients in food (eg lectines, 

saponines) to the development of chronic inflammation and autoimmune diseases (AID) 

[7,39]. Fortunately, it seems that the hum an body possesses a strong capacity to recover from 

illness. If our genes are exposed to their ÔoriginalÕ environment by intake of an ancestral 

human diet, their function can recover rapidly. Research has shown that obese persons 

improve their blood marker s after just 10  days following a paleolithic diet consisting of fish, 

lean meat, fruit, vegetables and nuts [121]. Similar results have been found in a study with 

aboriginals suffering from Diabetes II, who showed normalized blood markers after returning 

to their traditional lifestyle for seven weeks [122].  

 

Figure 6   Reflection of the working mechanism demonstrating how several nutritional factors 

could induce and inhibit inflammation  
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People suffering from chronic inflammatory disease demonstrate over - activated central stress 

axes, which then lead to catecholamines, cortisol and insulin resistance. McGowan et al [123] 

show the impact of childhood abuse on the epigenetic pattern of different genes including the 

gene for GR in the hippocampus. They f ound a decreased level of GR and an increased 

methylation pattern of the GR gene, giving rise to a situation of lower cortisol sensibility and 

altered HPA stress responses. This could make people more vulnerable to developing diseases. 

An altered sensitivi ty to cortisol has been linked to diseases such as rheumatoid arthritis (RA) 

[124], post- traumatic stress syndrome [125], chronic fatigue syndrome [126], inflammatory 

diseases and AID in general [127].  

 

The key priority in the treatment of people with chro nic inflammation is to induce the 

Eicosanoid Switch to the anti - inflammatory resolution phase. Long - lasting cortisol resistance 

and insulin resistance will definitely delay or block complete resolution. The combination of 

local factors (ie DHA deficiency, low levels of protectins) disturbing the process of complete 

resolution (ie Resoleomics) and the absence of adequate NE and cortisol signalling can be 

responsible for perpetuatual inflammation by delaying the resolution phase of the 

inflammatory response ( Figure  7). 

 

Figure 7  Chronic over -activation of the systemic stress system as a result of external stressors 

plays a central role in the development of chronic inflammatory diseases.  
Current intervention with anti - inflammatory medication suppresses Reso leomics and the IIS and so enhance the over -

activation of the systemic stress system  
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Current anti - inflammatory medication used in RA treatment is aimed at the suppression of 

the IIS and its inflammatory response and thus hinders Resoleomics. In addition, these 

medication interventions do not solve underlying catecholamine, cortisol and insulin 

resistance, and consequently making it impossible to achieve full recovery of the chronic 

inflammation. This suggests that chronic use of anti - inflammatory medicatio n in fact 

impedes the body from making a full recovery. Furthermore, the ongoing low - grade 

inflammation will continuously trigger the activity of the systemic stress system [28].  

 

Health care should focus on early detection of silent, ongoing and low - grade  inflammation in 

order to avoid the development of many chronic diseases. Further research is needed to 

validate a questionnaire which addresses early symptoms of chronic low - grade inflammation, 

ie avoidance of exercise, fatigue, emotional flatness, social  isolation, decreased libido, hyper or 

hyposomnia, obsessive behaviour or sensitivity to addiction [6,128].  

 

We have made an effort to demonstrate that the science of Resoleomics can help to find new 

ways to treat people suffering from diseases based on ch ronic inflammation. Since over -

activated central stress axes directly delay Resoleomics, and thereby delay the resolution of 

inflammation, treatment should focus on restoring the central stress system to its default, 

healthy homeostasis. Dietary changes, p sycho - emotional stress release and physical activity 

should always be included in treatment of all chronic inflammatory diseases.  
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Abbreviations  

AA, Arachidonic acid ; ACh , Acetylcholine ; AID , Autoimmune diseases ; ALA , ! - linolenic acid ; 

ALX/FPR2, Lipoxin A(4) receptor ; ANXA 1, Annexin 1 protein ; AP- 1, Activator protein 1 ; ASA, 

Aspirin ; ATLs, Stable aspirin - triggered lipoxin ; COX, Cyclo - oygenase ; CRP, High sensitive - C-  

Reactive Protein ; CVD, Cardiovascular diseases ; DHA , Docosahexaenoic acid ; DMARDs , 

Disease Modifying Drugs ; EPA, Eicosapentaenoic acid ; GI, Glycemic index ; GL, Glycemic load ; 

GCs, Glucocorticoids ; HPA , Hypothalamus - pituitary - adrenal ; IGF- 1, Insulin growth factor - 1; 

IS, Immune system ; IIS, Innate immune system ; IL , Interleukin ; LA, ! - linoleic a cid ; LC, Locus 

Coeruleus ; LOX, Lipoxygenase ; LK, Leukotoxins ; LTs, Leukotrienes ; LTD , Leukotoxin diol ; LXs, 

Lipoxins ; MTX , Methotrexate ; NE, Norepinephrine (ie noradrenaline) ; NF- kB, Nuclear factor -

KappaB; NSAIDs , Nonsteroidal anti - inflammatory drugs ; PCOS, Polycystic ovarian syndrome ; 

PGs/ PGE2/ PGD2/ PGF2a , Prostaglandins/ prostaglandin E2, D2, F2a ; PLA2, Phospholipase A2 

enzyme ; PMNs , Polymorphonuclear leukocytes ; PUFAs, Polyunsaturated fatty acids ; RA, 
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Sympathetic nervous system ; TNF, Tumour necrosis factor.  
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Abstract  

Chronic non - communicable diseases (NCDs) are the leading causes of work absence, 

disability and mortality worldwide. Most of these diseases are associated with low - grade 

inflammation. Here we hypothesize that stresses (defined as homeostatic disturbances) can 

induce low - grade inflammation by increasing the availability of water, sodium and energy -

rich substances to meet the increased metabolic demand induced by the stressor. One way of 

triggering low - grade inflammation is by increasing intestinal barrier pe rmeability through 

activation of various components of the stress system.  Although beneficial to meet the 

demands necessary during stress, increased intestinal barrier permeability also raises the 

possibility of the translocation of bacteria and their toxi ns across the intestinal lumen into the 

blood circulation. In combination with modern life - style factors, the increase in 

bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a 

low - grade inflammatory state. We support  this hypothesis with numerous studies finding 

associations with NCDs and markers of endotoxemia, suggesting that this process plays a 

pivotal and perhaps even a causal role in the development of low - grade inflammation and its 

related diseases.  

 

Introduct ion  

Inflammation is the response of the innate immune system triggered by stimuli like microbial 

pathogens and injury. Acute systemic inflammation such as in sepsis, trauma, burns, and 

surgery is characterized by a quick increase in plasma - levels (up to 10 0 fold) of pro -

inflammatory cytokines and acute phase proteins, while in low - grade inflammation there is a 

sustained but only two to three fold increase in circulation pro - inflammatory mediators (1). 

Chronic low - grade inflammation is characteristic for many non - communicable diseases 

(NCD) including diabetes type II, cardiovascular disorders, autoimmu ne diseases, chronic 

fatigue syndrome, depression and neurodegenerative pathologies, but until now the exact 

mechanism behind the elevated levels of inflammatory mediators found in these conditions is 

not well understood (2- 5). 

 

Inflammation can be induced by the binding of pathogen - associated molecular patterns 

(PAMP) to toll - like receptors (TLR), which are expressed on different cells types incl uding 

immune cells, adipocytes and endothelial cells. The most extensively studied PAMP is 

lipopolysaccharide  (LPS) or endotoxin (the terms LPS and endotoxin will be used 

interchangeably throughout the rest of the article), a major cell wall component of G ram -

negative bacteria, which is normally present in the human circulation in very low 

concentrations. It has been hypothesized that most of this circulating LPS is derived from the 

gut, since the gut - microbiota is the biggest source of Gram - negative bacter ia- derived LPS. 

However, LPS found in the circulation could also be derived from Gram - negative bacteria 
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residing in the oral cavity, respiratory and genitourinary tracts,  or can be food derived (6- 8). 

Under certain circumstances there can be an increase of endotoxin translocation across the 

intestinal barrier, leading to mildly increased concentrations in blood circulation. This process 

has been associated with several NCDs, l ike depression (9), chronic fatigue syndrome (10), 

chronic heart failure (11), type 2 diabetes (12), autism (13), non - alcoholic fatty liver disease 

(NAFLD) (14) and inflammatory bowel disease (IBD) (15), diseases that are all linked to chronic 

systemic low - grade inflammation, indicating that endotoxemia could be an important 

contributor in the development of these conditions.  

 

Here we hypothesize that stress - induction leads to a more permeable intestinal wall intended 

to facilitate an increase in the availability of water, sodium and energy - rich substances 

necessary to meet the increased metabol ic demand induced by the stressor. Modern life - style 

factors, such as long - term psychosocial stress and components of our ÒWesternÓ diet 

constantly challenge the stress - axis and further compromise intestinal barrier function, 

resulting in endotoxemia, low grade inflammation and its related diseases. We support our 

hypothesis by describing literature surrounding stress -  and immune system activation 

processes and their relation to gut barrier function and explain how lifestyle choices impact all 

these systems . In addition we present a vast amount of literature describing associations with 

NCDs and markers of endotoxemia. Overall we conclude that stress - induced disrupted barrier 

function in parallel with elevated circulating endotoxin levels may underlie diseas e onset and 

progression and should be considered much more than just a risk factor for chronic disease; it 

could be a cause.  

 

1. Bacterial toxins activate the immune system via TLR  

LPS, the major cell wall component of Gram - negative bacteria, is characterized  by its capacity 

to induce inflammation, fever, shock and death (1). Additionally in recent year s, other cell wall 

components of Gram - negative and - positive bacteria, have been recognized to have 

endotoxic properties (16), but these will not be further addressed in the rest of the paper. 

Endotoxins are released from bacteria during infection or as a consequence of bacterial lysis. 

Although  both whole bacteria and bacterial toxins can translocate transcellular or paracellular 

into the lymph, blood and mesenteric lymph nodes, it is still not precisely clear if the presence 

of endotoxin in the blood circulation (endotoxemia) also presents whol e bacteria translocation 

across the intestinal wall (17).  

 

Inflammation can be induced by the binding of LPS to TLR4. The lipid - A moiety of LPS 

interacts with the LPS - sensing machinery composed of TLR4, myeloid differential protein 2, 

CD14 and LPS- binding protein (LBP). LBP transports and delivers circulating aggregates of LPS 

to lipoproteins, resulting in hepatic clearance, or delivers LPS to CD14 (the membrane bound 
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or secreted, soluble form of this molecule), leading to TLR4 activation. TLR4 activ ation 

activates two transcription factors, activator protein (AP) - 1 and nuclear factor "B (NF- "B) (18, 

19), and stimulates the production of pro - inflammatory mediators such as prostaglandin 2 

(PgE2) (20), tumor necrosis factor (TNF) - ! , interleukin ( IL)- 1#, IL- 6, Interferon (IFN) - $ and the 

acute phase protein, C - reactive protein (CRP) (19). Simultaneously, an uncontrolled pro -

inflammatory reaction is prevented by the induction of TLR4, NF - "B and AP - 1 signaling 

inhibitors, which are probably involved in creating endotoxin tol erance (21). LPS tolerance is 

defined as a reduced responsiveness to a LPS challenge following a first encounter of 

endotoxin (22). It has been suggested that the dose of LPS exposure is important for 

determining the switch between LPS tolerance and priming. For example, in macrophages, 

h igh LPS concentrations induced a robust pro - inflammatory response in parallel with the 

activation of inhibitory feedback mechanisms. Lower concentrations of LPS, like those 

observed in NCDs, removed transcriptional suppressors on the promotors of pro -

infla mmatory genes and induced a mild but persistent expression of pro - inflammatory 

mediators (21, 23). 

 

2. Intestinal barrier function  

2.1. The paracellular pathway is important for water, mineral and nutrient 

uptake  

The intestinal barrier allows for the regul ated uptake of water, minerals and nutrients and 

protects the gut lumen from damage due to harmful substances. Components can cross the 

epithelial barrier by active transport and endocytosis (transcellular) or via the paracellular 

route. Because hydrophili c solutes are limited to cross lipid membranes of epithelial cells, the 

paracellular route is an important and major route for the transport of water, solutes and 

minerals across the intestinal barrier (24, 25). Active glucose, sodium and water uptake is 

mediated by the activity of sodium - dependent glucose co - transporters (SGLT) (26). The 

transcellular absorption of glucose and sodium and the resulting basolateral disposition of 

glucose and sodium by t hese transporters opens up the paracellular pathway structure and 

allowing the passive flow of water and small nutrients by creating an osmotic gradient (27).  

 

Intestinal permeability is a measure of the barri er function of the gut and relates to the 

paracellular space surrounding the brush border surface of the enterocytes and the junctional 

complexes (28). The junctional complex, containing tight junctions, adherens junctions and 

desmosomes is an important regulator of the paracellular pathway and allows the passage of 

water, solutes and ions, but under normal conditions provides a barrier to larger molecu les 

(28, 29). The claudin family of junctional transmembrane proteins have a substantial effect on 

paracellular permeability. While one group of sealing clau dins makes the paracellular barrier 

less permeable, the other group of claudins is known to increase paracellular permeability by 
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the formation of pores that increase permeability for small solutes (30, 31). The expression of 

claudin proteins varies between tissues, explaining the variances in permeability of tight 

junctions among t issues (27). The paracellular pathway can be divided into the pore and non -

pore pathway. The pore pathway is mainly controlled by the expression of claudins, while the 

non - pore pathway is more sensitive to cyto skeletal disruptions (30). Cytoskeletal 

rearrangements can be induced by phosphorylation of the regulatory myosin light chain 

(MLC), induced by MLC - kinase (MLCK). Phosphorylation of the MLC facilitates myosin  

binding to act in and therefore aids in cytoskeletal contractility. MLCK can be activated by 

cytokines such as TNF - ! , causing increases in tight junction permeability by actomyosin 

contraction and reorganization of the tight junction (32, 33). In addition, SGLT1 activation and 

associated increases in tight junction permeability are also paralleled with phosphorylation of 

MLC, indicating that MLCK is an important mediator in tight junction and paracell ular 

permeability regulation (25, 34) (Figure 1). 

 

Increased intestinal permeability has been associated with autoimmune diseases, such as type 

1 diabetes (35), rheumatoid arthritis, multiple sclerosis (36), and diseases related to chronic 

inflammation - like IBD (36, 37), asthma (38), chronic fatigue syndrome and depression (10, 39). 

It has been hypothesized that chronic intestinal hyper - permeability results in a pro -

inflammatory phenotype induced by the enhanced paracellular translocation of microbial 

(and dietary) antigens across the gut barrier  (40).  

 

3. Intestinal barrier function  

 

3.1. Stress increases permeability of the intestinal barrier  

Stressful stimuli activate the sympathetic nervous system (SNS) and hypothalamic - pituitary -

adrenal (HPA) - axis. Activation of both systems increases the availability of water, minerals and 

energy - rich substances in order to meet with the bodyÕs metabolic de mand (41, 42). The SNS 

responds instantly to physical and psychological stress by reallocating energy into different 

organs by neuronal regulation of heart rate, blood flow, release of catecholamines (adrenalin 

and noradrenalin) from the adrenal medulla (43) and stimulation of the renin - angiotensin -

aldosterone system (44), involved in retention of water and sodium from the kidneys. In 

addition to the kidneys, water and sodium reabsorption can also be achieved at the level of the 

intestine. The intestinal wall is innervated by adrenergic sympathetic n erve fibers that upon 

stimulation increase water and sodium absorption (45, 46), which is paralleled by increases in 

intestinal permeability. The SNS - induced increase in permeability is likely mediated by " 2-

adrenergic receptors expressed on epithelial cells (47). Activation of the " 2- adrenergic -

receptors stimulated SGLT1 - mediated glucose absorption from the gut (48, 49) and the 

resulting basol ateral disposition of glucose and sodium by these transporters opens up the 
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paracellular pathway (27) (Figure 1). Not surprisingly, blockage of the SNS by means of thoracic 

epi dural anesthesia resulted in the blockage of the endotoxin - induced increase in intestinal 

permeability in rats (50). 

 

Activation of the HPA - axis leads to the release of glucocorticoids that potentiate some of the 

actions of catecholamines.  Essential to this response are the neurons in the paraventricular 

nucleus of the hypothalamus expressing corticotropin - releasing hormone (CRH) and other 

co - secretagogues, such as arginine vasopressin and oxytocin, both involved in the regulation 

of water homeostasis. Arginine vasopressin and CRH trigger the immediate release of 

adrenocorticotropic hormone (ACTH) from the anterior pituitary, which in turn induces the 

release of glucocorticoids and to some extend mineralocorticoids from the adrenal cortex, 

stimulating gluconeogenesis and increasing sodium and water retention respectively (51, 52). 

Intestinal permeability is regulated by several components of the HPA - axis. 

 

In epithelial HT - 29 monolayers, exposure to CRH resulted in an increased response to LPS as 

reflected by a decrease in transepithelial resistance and a significant  increase in the 

expression of the pore forming protein, claudin 2 (27). Interestingly enough, these effects were 

mediated by an increase in TLR4 expression, an observation that could be repeated in mice 

treate d with the water - avoid stressor (53). TLR4 activation resulted in the activation of the 

transcription factor NF - "B, which has specific binding sites in the claudin 2 gene promoter 

(54), indic ating that in epithelial cells CRH affects both intestinal permeability and 

inflammatory pathways.  

 

In rats, exposure to restricted stress or swimming stress increased intestinal permeability 

throughout the whole intestinal tract as measured by the fractio nal secretion of the urinary 

recovery of sucrose (reflecting gastric permeability), the lactulose - mannitol ratio (as a marker 

for small intestinal permeability) and sucralose (reflecting both small intestinal and colonic 

permeability) (55). Other experimental animal stress models such as thermal injury or early 

maternal deprivation induced the development of gastric ulcers, altered gastrointestinal 

motility and ion secretion, and increased intestinal permeability (reviewed by Caso et al. 2008 

(56)). SGLT1 expression was markedly increased in the rat jejunum and ileum after 8 weeks of 

restraint stress. These findings were paralleled with an increase in intestinal lymphocytic 

infiltration and adrenal gland weight gain (26). The up - regulation of the SGLT1 is probably 

necessary to meet with the increased water, sodium and nutrient demand, induced by 

chronic  stress (42). 

 

The effect of acute stress on intestinal permeability was also investigated in humans (57). In 

healthy volunteers subjected to a public speech test, high cortisol - responders displaye d 
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increased intestinal permeability as measured by the lactulose - mannitol ratio. Exogenous 

CRH administration also increased intestinal permeability, yet the CRH - induced hyper -

permeability could be suppressed by the mast cell stabilizer disodium cromoglyca te. Mast cell 

stabilization before the public speech test also did not alter intestinal permeability, however, it 

should be noted that in this experiment a control group was not included. Nevertheless, these 

results identify CRH as an important factor in t he stress- induced alterations of the intestinal 

barrier function. These alterations seemed to be mediated by intestinal mast cells that upon 

activation secrete pro - inflammatory mediators like IFN - # and TNF - ! . A variety of pro -

inflammatory cytokines increas es epithelial and endothelial paracellular permeability by 

modulating the structure of the tight junction and by inducing cytoskeletal disruptions via 

activation of MLCK (32, 34, 58) (Figure 1). For example, IFN - # increased epithelial permeability 

of T84 monolayers to large molecules (10 kDa). Interestingly, the IFN - #- induced increase in 

permeability also up - regula ted the passage of FITC - labeled - endotoxin by ten - fold (59). 

 

4. Neuroendocrine -  immune interactions  

The complex neuroendocrine - immune intera ctions are evidenced by the fact that emotional 

stressors influence the immune response and that pure immunological stimuli impact on 

cognitive performance (60). Inflammatory mediato rs activate the HPA - axis with the purpose 

to provoke disease behavior and redirect energy - rich nutrients towards the immune system 

(61). Cytokines have been shown to increase nutrient availability to meet with the 

inflammation - dependent increased metabolic demand. For example, the cytokine Il - 1!  

increased whole body glucose metabolism on a central level (62) and cytokines like Il - 6, TNF-

! , Il- 1 and IFN independently evoke a HPA - axis response (63- 65). Immune mediators can 

communicate with the brain via several pathways. By stimulating afferent sensory nerve 

fibers, entering the brain via the circumventricular organs or by binding to cerebral blood 

vessel endothelium immune mediators effectively redirect energy - rich substrates towards the 

immune system (41, 42). 

 

Besides inflammatory cytokines, prostaglandins synthesized via the cyclooxygenase system 

play a central role in inflammation and HPA - axis activation. Zimomra et al. (65) demonstrated 

that in rats the initial activation of the HPA - axis by LPS is mediated by prostaglandins, like 

PgE2, while inflammatory cytokines maintain corticosterone levels at later time - points. In this 

study it was suggested that prostaglandins stimulated corticosterone release in a direct 

manner, since the peak in circulating corticosterone levels was observed long before the peak 

in circulating ACTH. This idea was confirmed by a study in rodents, showing that PgE2 

directly stimulated the release of glucocorticoids from the adrenal gland (66). In human 

adrenal cells expressing TLR2 and TLR4, LPS stimulation resulted in the release of cortisol. 

This effect was mediated by PgE2, since inh ibition of cyclooxygenase - 2 attenuated cortisol 
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release (67). 

As indicated, TLR4 activation stimulates the release of PgE2 by immune cells, adip ocytes, 

endothelial, epithelial and probably also adrenal cells (68), inducing the peripheral release of 

glucocorticoids from the adrenal gland (66). PgE2 also activates glucocorticoid production 

through activation of the HPA - axis at the level of the hypothalamus and the pituitary (69). 

Macrophages, homing in blood vessels in the cranium, are di rectly activated by danger signals 

such as LPS. Activation of these special macrophages induces the production of PgE2 which 

directly stimulates the paraventricular nucleus of the hypothalamus, leading to higher 

production of glucocorticoids which should p robably protect against possible inflammation 

of the brain (69). 

 

5. Acute stress increases pro - inflammatory pathways by 

increasing intestinal permeability  

Acute s tress modulates the immune response and changes immune cell distribution. These 

neuroendocrine effects on the immune system are mediated by stress - hormones released 

from the adrenal gland, by direct innervation of sympathetic nerve fibers into lymphoid 

organs and by stress hormone receptors expr essed on immune cells, like glucocorticoid 

receptors (GR) and ! -  and #- adrenergic receptors (70- 72). It has been suggested that by 

mobilizing immune cells, the stress response, also known as the Òfight - flight re actionÓ, 

prepares the immune system for oncoming challenges (70). 

 

In addition, acute stress increases circulating pro - inflammatory mediators (73- 75). In subjects 

exposed to acute stress, NF - $B was up - regulated in peripheral blood mono nuclear cells in 

parallel with elevated levels of circulating catecholamines and glucocorticoids (76). Until now 

it is not completely understood what causes this pro - inflammatory response. Gluco corticoids 

mostly have an inhibitory effect on inflammatory pathways and catecholamines a rather 

modulating than activating influence on the immune system (71, 72, 77), however, it has been 

shown that activation of the " - adrenergic receptor by noradrenalin (but not adrenalin) 

increased NF - $B binding to DNA in monocytes in vitro (76). A recent study in rodents showed 

that acute stress - induced neuro - inflammation could be prevented by a pre - stress treatment 

with antibiotics or an inhibitor of MLCK. In addition, these treatments prevented stress -

induced hyper - permeability and endotoxemia , indicating that it is not the stress - factor itself 

producing a pro - inflammatory response of the immune system, but the fact that stress 

increases barrier permeability and the translocation of endotoxin into the circulation. Pre -

stress probiotic treatment  with Lactobacillus farciminis  had similar effects, which could be 

explained by its ability to enhance intestinal barrier function (78). In agreement with these 

results, it could be hypothesized that the (short lasting) pro - inflammatory activit y in humans 
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observed during acute stress is initiated by a stress - induced increase in intestinal 

permeability, mediated by the SNS and components of the HPA - axis, and resulting in higher 

levels of translocating endotoxin interacting with TLR on immune cell s, adipocytes and 

epithelial cells. A schematic overview of the complex neuroendocrine - immune interactions 

and their relation to gut barrier function are displayed in Figure 2.  

 

6. Chronic stress dysregulates the HPA -axis and changes immune 

function  

Chronic psychological  stress is known to  dysregulate the immune system. These alterations 

are accompanied by low - grade inflammation, delayed wound healing and increased 

susceptibility to infectious diseases (79). Chronic stress leads to hypercortisolemia (77), long 

term permeability of barriers, endotoxemia and low - grade inflammation (our hypothesis and 

theory). Normally, the release of glucocorti coids puts a limit on the maximum activity of the 

immune system, however, chronic HPA - axis stimulation can result in glucocorticoid 

resistance at the level of the immune system, making it insensitive to its inhibitory and 

modulatory actions (2). This process is observed in several conditions (including conditions 

related to psychosocial stress), whereby immune cells from patients are less responsive to the 

inhibitory actions of glucocorticoids on cytokine re lease and cell proliferation after 

stimulation in vitro  (80- 83). In addition, chronic stress induces a shift in the production of 

type 1 cytokines towards type 2 cytokine production. It can be deducted that by this 

mechanism, the part of the immune system  involved in the clearance of extracellular bacteria 

and bacterial toxins (the type 2 response) is prevented from being suppressed, protection 

against ongoing microbial infiltration (endotoxemia) is guaranteed, while the type 1 response, 

involved in cleara nce of intracellular pathogens (like viruses) is inhibited (71, 84). 

 

7. Life style - related factors induce endotoxemia  

The fact that stress increases barrier permeability and thereby enhances the availability of 

w ater, sodium and nutrients, makes sense from an evolutionary perspective. However, the 

question arises if the accompanied translocation of bacteria and their toxins should also be 

considered beneficial for the host. We speculate that when the composition o f the microbiota 

is physiological, and barrier opening is short - lasting, acute stress will not produce low - grade 

inflammation. However, modern people suffer from new multi - factorial stressors, such as 

chronic psychosocial stress and the consumption of a ÒW estern dietÓ, which constantly 

challenges the stress - axis, alters microbiota composition and thereby compromises intestinal 

barrier function. This next section discusses how modern lifestyle factors impact the gut -

brain - immune - axis and promote endotoxemia,  low - grade inflammation and its related 

diseases.  
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7.1. Gut microbiota modulate stress -axis and influence gut barrier function  

Large differences in the composition of the gut - microbiota and an overall reduction in 

microbial diversity are observed in Western pop ulations when compared to traditional 

Hunter - gatherers or people from rural Africa (85, 86). These environment and diet - induced 

changes in gut microbiota have been connected to an increased susceptibility to chronic 

diseases, like IBD, obesity, type 1 and type 2 diabetes (87). The gut microbiota influences 

inflammatory (88) and metabolic processes (89) and has been shown to influence the 

development o f the HPA - axis and immune system (90, 91). For example, exposure to LPS 

during developmental periods can exaggerate the HPA - axis and immune response to stress 

(92, 93), but also the absence of bacteria can induce these effects. Animals ra ised in germ - free 

environments showed an exaggerated HPA - axis response, which was normalized by 

colonization with fecal matter from specifically germ free animals or by the administration of 

the Gram - positive Bifidobacterium infantis (94). Vice versa, exposur e to social stress changed 

the composition of the gut microbiota in mice (95, 96) and prena tal stress altered the 

microbiome in rhesus monkeys by reducing the overall numbers of the Gram - positive 

Bifidobacteria and Lactobacilli (97), indicating that chronic stress affected the compos ition of 

the gut microbiome. Stress influences gut motility, secretions, and mucin production, thereby 

altering the habitat of resident bacteria, promoting changes in the composition of the gut 

microbiome (98) and allowing the growth of pathogenic bacteria (99). 

 

Increasing evidence supports an important role for microbiota on the homeostasis of the 

intestinal barrier. Certain strains of the Gram - positive Lactobacilli  decreased intestinal 

permeability in several animal and human disease models (78, 100). Bifidobacterium infantis  

reduced intestinal permeability (as assessed by 70 - kDa fluorescein isothiocyanate Ðdextran 

transmucosal flux) and ameliorated symptoms in a neonatal necrotizing enterocolitis mouse 

model (101). Further evidence indicating the influence of the gut - microbiota on intestinal 

permeability was presented in detoxifying alcoholic - dependent subjects: Lower levels of 

Ruminococcaceae  and higher abundance of Lachnospiracea e (Dorea ) and Blautia  were 

associated with increased intestinal permeability (102). In addition, higher levels of certain 

pathogenic bacteria can increase intestinal permeability by disrupting the epithelial barrier 

and triggering cell death and inflammation. These bacteria have the ability to bind and/or 

translocate through endothelial and microfold cells and have been shown to secrete toxins or 

other effector molecules via specialized secretion systems. Alth ough the exact mechanisms 

are not well described, most pathogenic gut bacteria including Escherichia coli , Helicobacter 

pylori , Staphylococcus aureus , Cholera Pseudomanas fluorescens , Pseudomanas eruginosa, 

Yersinia enterocolitica , Campylobacter jejuni and  Salmonella typhimurium  alter paracellular 

permeability by disassembling tight junctions and generating cytoskeleton changes by 

increasing inflammation (reviewed by Barreau et al. (103)). As an example, a strain of 
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Escherichia coli , normally present in the human gut, induced focal leaks in colonic epithelial 

monolayers and in rat distal colon by using ! - hemolysin, allowing for their paracellular 

translocation across the epithelial layer (104). 

 

7.2. High -caloric and high - fat diets induce inflammation and increase 

circulating endotoxin levels  

Compared to ealthy individu als, patients suffering from obesity have higher circulating 

endotoxin levels together with greater levels of circulating pro - inflammatory cytokines and 

insulin resistance (105). Food intake can produce postprandial immune activation and elevate 

endot oxin levels when a meal is high in calories (106) or has a high fat content (6, 107- 109). 

 

Rodents fed a 4 - week high - fat diet (72% fat) showed a constant elevation in circulating 

endotoxin levels, while in control animals endotoxin levels only increased during feeding 

hours. Furthermore, a  high - fat diet produced fasting glycaemia, insulin resistance, general 

weight gain and weight gain of the liver and visceral and subcutaneous adipose tissue. In 

addition, adipose tissue F4/80 - positive cells (indicating the infiltration of macrophages), 

mar kers of inflammation and liver triglyceride content were increased. Interestingly, almost 

similar effects were observed  in mice subcutaneously infused with LPS (resulting in similar 

circulating LPS levels as observed in the high - fat fed mice). These effect s were mediated by 

TLR4, since mice lacking CD14, which is important for the recognition of LPS to this receptor, 

showed a delayed response to a high - fat diet or LPS injections (107). 

 

In healthy humans a 910 calories high - fat and high carbohydrate meal resulted in increased 

circulating endotoxin levels and elevated levels of LBP in parallel with higher inflammatory 

markers and increased protein expression of TLR2 and TLR4 in isolated le ukocytes. A meal 

high in fruits and fibre did not induce these effects (108). Plasma endotoxin levels, pro -

inflammatory markers and leukocyte TLR4 expression increased after the intake of cream (300 

calories), while the intake of 300 calories of glucose resulted only in a pro - inflammatory 

response and the intake of orange juice and water showed none of these effects (110). In 

healthy individuals, plasma endotoxin levels increased about 50% after the intake of a high - fat 

meal (900 calories) (6) and 4 weeks consumption of a Western - style diet raised plasma 

endotoxin activity levels by 71% (111). 

 

How exactly the intake of a high - caloric meal increases circulating endotoxin levels is still 

unclear but has been explained by several mechanisms (reviewed by Kelly et al., 2012 (112). 

One of these suggested mechanisms is that the introduction of a high - fat diet modulates the 

expression of genes involved in the barrier function in epithelial cells, thereby directly 

compromising the  integrity of the tight junction (113). Another explanation could be that a 
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high - caloric/high - fat meal induces high levels of insulin an d leptin, hormones that directly 

activate the SNS (114, 115). Moreover insulin e nhances SGLT1 mediated glucose absorption 

(116). Activation of the SGLT1 and the SNS leads to increased permeability of the gut barrier, 

which may induce the observed post - prandial endotoxemia (our hypothesis and theory).  

 

7.3. Gliadin compromises the integrity of tight junctions  

The intake of wheat and other cereal grains has been implicated in the development of 

inflammation - related diseases, by inducing inflammation and increasing intestinal 

permeability (40). Gliadin, a component of gluten, has been demonstrated to increase 

permeability in human Caco - 2 intestinal epithelial cells by reorganizing actin filaments and 

altering expression of junctional complex p roteins (117). Several studies by the group of 

Fasano et al. show that the binding of gliadin to the chemokine receptor CXCR3 on epithelial 

IEC- 6 and Caco2 cells releases zonulin, a protein that directly compromises the integrity of 

the jun ctional complex (118, 119). 

 

7.4. Alcohol consumption increases intestinal permeability  

Alcohol consumption is an important risk factor for disease and is one of the major causes of 

chronic liver disease. Increased intestinal permeability has been observed during chronic 

alcohol consumption. In an  animal model of chronic alcoholic liver disease, alcohol feeding 

for 8 weeks increased intestinal permeability (120). In humans, alcohol dependence induced 

changes in the gut microbiota composition that were associated with increased intestinal 

permeability (102). Furthermore, increased intestinal permeability and higher circulating 

endotoxin levels were observed in patients with chronic alcohol abuse (121- 123). 

 

7.5. Exercise induced heat -stress increases intestinal permeability  

Exercise increases body temperature, reduces intestinal blood flow (reallocated to the muscles 

and cardiac system) and increases intestinal permeability by activating the SNS and HPA - axis. 

Already in 1992, Oktedalen et al. (124) showed that marathon runners displayed a significant 

increase in intestinal permeability. In addition, studies have indicated that strenuous exercise 

induced higher circulating endotoxin levels and activated the immune system (125- 128). 

Further evidence of exercise -  and heat - induced increased intestinal permeability, leading to 

gastrointestinal complaints in people engaging in phy sical activity, has been recently 

reviewed (129). 
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8 Endotoxemia is associated with diseases related to chronic 

inflammation  

Multiple human studies have emerged that find associations with NCDs and markers of 

endotoxemia. Even aging, associated  with higher sympathetic nerve activity (130) and higher 

circulating infl ammatory mediators like Il - 6, has been linked to higher  plasma concentration 

of LPS and LBP (131). In further support of our theory, in this section an overview is given of 

human studies finding changes in levels of endotoxin or endotoxin - related markers in NCDs 

(Table 1). 

 

8.1. Metabolic syndrome  

Metabolic syndrome is accompanied by an increased risk for NAFLD, obesity, type 2 diabetes 

and cardiovascular diseases. All of these conditions are related to and even predicted by an 

increased sympathetic activity (132) and a dysregulated HPA - axis (133). Higher circulating 

endotoxin and LBP levels are associated with risk factors of the metabolic syndrome, like 

insulin resistance , obesity, dyslipidemia and chronic inflammation (134- 137). Patients 

suffering from NAFLD exhibited significantly higher serum endotoxin levels in contrast to 

healthy controls (14). Farhardi et al. (138) indicated th at elevated plasma endotoxin levels in 

these patients were related to an impaired intestinal barrier function, because, only in the 

patient group was the intake of a permeability stressor (aspirin) shown to increase the 0 Ð24 h 

urinary excretion of sucralos e (a marker of whole - gut permeability). Furthermore, augmented 

plasma LBP levels in concert with increased plasma levels of TNF - !  were observed in obese 

NAFLD patients compared to healthy controls (139). 

 

Elevated circulating levels of endotoxin and LBP were detected in type 2 diabetics (12, 135, 

140- 142). Compared to healthy controls, obese individuals and t ype 2 diabetics showed higher 

endotoxin levels after the intake of a high - fat meal. Increased endotoxin levels were observed 

in all challenged individuals, yet higher endotoxin levels were seen in individuals suffering 

from metabolic illnesses, suggesting an increased intestinal permeability in these patients 

(143). This was further indicated by a recent study showing that increased serum levels of 

endotoxin, Il - 6 and TNF - !  are found in type 2 diabetic patients compared to healthy  

individuals. The level of endotoxin was positively related to zonulin, a marker for intestinal 

permeability (12). 

 

A large cohort of patients with coronary artery disease identified increased serum LBP levels 

to be associated with total and cardiovascular mortality (144). Moreover, circulating LBP levels 

were associated with carotid intima media thickness (a marker of atherosclerosis), obesity, 

insulin resistance and high sensitive CRP (145). 
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Patients suffering from chronic heart failure with aggravated renal function showed increased 

circulating endotoxin levels and an impairment of the intestinal barrier (11). Wiedermann et al. 

(146), showed that subjects  with the highest levels of circulating endotoxin (90th percentile) 

had a 3- fold increased risk of incident atherosclerosis. Higher serum endotoxin and pro -

inflammatory cytokine concentrations were seen in patients with edematous chronic heart 

disease comp ared to stable patients and healthy controls. Intriguingly, after short - term 

diuretic treatment, circulating endotoxin concentrations decreased in edematous patients 

(147). Diuretic treatment (like angiotensin - converting enzyme (ACE) inhibitors) ameliorated 

intestinal inflammation, perhaps by impacting on intestinal permeability through interference 

with the renin - angiotensin - aldosterone system. Several components of this system (renin, 

ACE and angiotensin II) have been shown to stimulate pro - inflammatory pathways (44, 148). 

 

8.2. IBD 

Ulcerative colitis and CrohnÕs disease are intestinal inflammatory disorders, also known as 

IBD, which have been causally linked to chronic psychological stress (149), altered immune 

function, changes in the gut microbiota, increased intestinal permeability and endotoxemia 

(150). For example, increased plasma endotoxin and LBP  levels were measured in both patient 

groups, but were more pronounced in patients with  active disease compared to inactive 

disease and  were associated with disease severity (151). In addition, detectable plasma 

endotoxin levels and higher plasma levels of LBP were more frequently observed in IBD 

patients compared to controls (15, 152) and were correlated with disease severity and 

circulating TNF - !  levels (153). 

 

8.3. Psychiatric diseases  

Over the last decade, the role of the gut - brain axis has emerged as an important mediator in 

the development of psychiatric and mood disorders (154). Moreover, higher endotoxin levels 

and intestinal barrier dysfunction are observe d in several of these conditions. For example, 

ParkinsonÕs patients exhibited increased total intestinal permeability and a more intense 

staining for Escherichia coli  LPS and oxidative stress markers in intestinal sigmoid mucosa 

samples. However, in these patients endotoxin levels resembled control samples and serum 

LBP concentrations were lower compared to healthy individuals (155). Higher serum 

endotoxin levels are associated with severe autism, sporadic amyotrophic lateral sclerosis and 

AlzheimerÕs disease (13, 156). Furthermore, increased IgA and IgM responses against LPS of 

commensal bacteria were seen in chronic fat igue syndrome (10) and depression (9). 

Intriguingly, chronic oral infection of periodontitis was associated with AlzheimerÕs disease 

where higher antibody levels against oral pathogens were observed years before the onset of 

symptoms in people suffering from AlzheimerÕs disease (157), suggesting there was an 
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increased translocation of  bacteria and/or bacterial toxins from the mouth into the 

bloodstream.  

 

 
Table 1. Associations found between markers of endotoxemia and disease.  

  



166 
!
 

9 Conclusion  

Chronic low - grade inflammation is an eminent feature of NCDs. In addition, many studies 

report in creased circulating endotoxin levels and increased gut permeability in patients 

suffering from these conditions. As reviewed in this paper, stress - induced increases in 

intestinal permeability, in combination with modern life - style factors, raise the possib ility of 

translocation of bacteria and/or their toxins across the more permeable gut barrier. The 

resulting, long lasting, endotoxemia should be considered much more than just a risk factor 

for chronic disease; it could be a cause. Notwithstanding the fact  that the exact origin and 

sequence of events involved in development of NCDs remain to be unsolved, evidence 

indicates that a disrupted barrier function in parallel with elevated circulating endotoxin levels 

may underlie disease onset and progression. For  this reason, applying therapies aimed at 

restoring intestinal barrier function, lifestyle changes and stress management should be 

considered as an important strategy in preventing and attenuating the pro - inflammatory state 

observed in NCDs.  
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Figure 1. MLC phosphorylation increases intestinal permeability.  

Activation of the SNS stimulates intestinal permeability by increasing the activity of SGLT1 on epithelial cells. Activation of 

SGLT1 is paralleled by MLC phosphorylation by MLCK, inducing actomyosin contraction and reorganization of the tight 

junction. The resulting increase in paracellular permeability raises the possibility of translocation of bacteria and/or thei r 

toxins across the more permeable gut barr ier. Pro- inflammatory cytokines produced by activated immune cells residing in 

the lamina propria further increase intestinal permeability by activating MLCK. JC, junctional complex.  
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Figure 2. The complex neuroendocrine - immune interactions and their relation to gut barrier 

function.   

Stressors, including inflammatory mediators, activate the SNS and HPA - axis. Activation of the HPA- axis stimulates the 

neurons in the paraventricular nucleus of the hypothalamus to secrete CRH and AVP that trigger the rele ase of ACTH from 

the anterior pituitary, resulting in the secretion of corticosteroids from the adrenal cortex. CRH has been shown to affect 

intestinal permeability. SNS activation results in the release of catecholamines from the adrenal medulla. The inte stinal wall 

is innervated by adrenergic sympathetic nerve fibers that upon stimulation increase water, sodium and glucose absorption, 

paralleled by increased intestinal permeability. The resulting increase in translocation of endotoxin across the intestina l 

barrier can stimulate immune cells in the underlying lamina propria to secrete pro - inflammatory cytokines and 

prostaglandins like PgE2. Inflammatory mediators communicate with the brain by stimulating afferent sensory nerve fibers, 

by entering the brain via the circumventricular organs or by binding to cerebral blood vessel endothelium. Continuous 

stress- induced impairment of the intestinal barrier creates a  vicious circle whereby inflammatory cytokines will persistently 

activate the SNS and HPA- axis resulting in barrier disruption, increased endotoxin translocation and a pro - inflammatory 

state. 
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Abstract  

Wheat is one of the most consumed cereal grains worldwide and makes up a substantial part 

of the human diet. Although government supported dietary guidelines in Europe and the 

U.S.A advise individuals to eat adequate amounts of (whole) grain products per day, cereal 

grains contain Òanti - nutrientsÓ, such as wheat gluten and wheat lectin, that in humans can 

elicit dysfunction and disease. In this review we discuss evidence from in vitr o, in vivo  and 

human intervention studies that describe how the consumption of wheat, but also other 

cereal grains, can contribute to the manifestation of chronic inflammation and auto - immune 

diseases by increasing intestinal permeability and initiating a pro - inflammatory immune 

response.  
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1. Introduction  

Inflammation is the response of the innate immune system triggered by noxious stimuli, 

microbial pathogens and injury. When a trigger remains or when immune cells are 

continuously activated an inflammatory response may become self - sustainable and chronic. 

Chronic inflammation has been associated with many medical and psychia tric disorders, 

including cardiovascular disease, metabolic syndrome, cancer, auto - immune diseases, 

schizophrenia and depression  [1,2,3]. Furthe rmore, it is usually associated with elevated levels 

of pro - inflammatory cytokines and acute phase proteins, such as interferons (IFNs), 

interleukin (Il) - 1, Il- 6, tumor necrosis factor - !  (TNF- ! ), and C- reactive protein (CRP). While 

clear peripheral sources  for this chronic inflammation are apparent in some conditions (i.e. fat 

production of cytokines in the metabolic syndrome), in other disorders, such as major 

depression, the inflammatory source is not completely understood. Genetic vulnerability, 

psycholo gical stress and poor dietary patterns have all been repeatedly implicated as being of 

significant importance in the development of an inflammatory phenotype  [3,4,5]. Dietary 

factors associated with inflammation include a shift towards a higher n - 6:n - 3 fatty acid 

ratio  [5] and a high intake of simple sugars  [6]. Other substances in our daily food, like those 

found in wheat and other cereal grains, are also capable of activati ng pro - inflammatory 

pathways.  

 

2. Wheat grain, gluten and disease  

2.1. Wheat allergy and intolerance  

The ingestion of wheat products has been reported to be responsible for IgE - mediated allergic 

reactions. Wheat - dependent exercise - induced anaphylaxis is a syndrome in which the 

ingestion  of a product containing wheat followed by physical exercise can result in an 

anaphylactic response. Several proteins present in wheat, most notably gluten proteins have 

been shown to react with IgE in patients  [7]. Other allergic responses that appear to be related 

to a range of wheat proteins include Bakers asthma, rhinitis and c ontact urticaria  [7,8]. 

 

More common than wheat allergies are conditions involving wheat intolerance, including 

coeliac disease (CD), which is estimated to affect 1% of the population of Western Europe, and 

dermatitis herpetiformis, which has an incidence between about 2 - fold and 5 - fold lower than 

CD [9]. The close association between type 1 diabetes and CD  [10] and the observation that 

auto - immune diseases seem to be more prevalent in coeliac patients and their relatives  [11] 

associate the intake of wheat with several other conditions.  
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2.2. Wheat grain and gluten  

Gluten is the main structural protein complex of wheat consisting of glutenins and gliadins. 

When wheat flour is mixed with water to form dough, the gluten proteins form a continuous 

network which provides the cohesiveness and viscoelasticity that allows dough to be 

processed into bread, noodl es and other foods. The protein contents of wheat varies between 

7- 22% with gluten constituting about 80% of the total protein of the seed  [9]. Glutenins are the 

fraction of  wheat proteins that are soluble in dilute acids and are polymers of individual 

proteins. Prolamins are the alcohol soluble proteins of cereal grains and are specifically 

named gliadins in wheat. Gliadins are monomeric proteins and are classified into thre e 

groups: these are ! / #- gliadins, $- gliadins and %- gliadins  [7]. 

 

2.3. Gluten, gli adin and CD  

Gliadin epitopes from wheat gluten and related prolamins from other gluten - containing 

cereal grains, including rye and barley, can trigger CD in genetically susceptible people.  The 

symptoms of this disease are mucosal inflammation, small intestine villous atrophy, increased 

intestinal permeability and malabsorption of macro -  and micronutrients. CD, a chronic 

inflammatory disorder mediated by T - cells, is preceded by changes in intestinal permeability 

and pro - inflammatory activity of the inn ate immune system. Gliadin immunomodulatory 

peptides can be recognized by specific T - cells, a process that can be enhanced by the 

deamidation of gliadin epitopes by tissue transglutaminases that convert particular glutamine 

residues into glutamic acid resu lting in a higher affinity for HLA - DQ2 or DQ8 expressed on 

antigen presenting cells (APC)  [10]. Serum antibodies, among which are antibod ies against 

tissue transglutaminases, are also found in CD. The HLA - DQ2 or HLA - DQ8 is expressed in 

99.4% of the patients suffering from CD  [10], but interestingly enough there is a group HLA -

DQ2/DQ8 negative patients suffering from gastrointestinal symptoms that respond well to a 

gluten - free diet. This group of Ògluten - sensitiveÓ patients does not have the CD serology and 

histopathology, bu t does present the same symptoms and shows improvements when 

following a gluten - free diet  [12,13]. 

 

2.4. Gliadin an d immunity  

There are at least 50 gliadin epitopes that exert immunomodulatory, cytotoxic and gut 

permeating activities that can be partially traced back to different domains of ! - gliadin. Where 

some immunomodulatory gliadin peptides activate specific T - cel ls, others are able to induce a 

pro - inflammatory innate immune response  [10]. Stimulation of immune cells by gliadin is not 

only restrict ed to CD patients; the incubation of peripheral blood mononuclear cells (PBMC) 

from healthy HLA - DQ2 positive controls and CD patients with gliadin peptides stimulated the 

production of IL - 23, IL- 1!  and TNF - !  in all donors tested. Still the production of cytokines was 

significantly higher in PBMC derived from CD patients  [14]. Similar results were obtained by 
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Lammers et al. [15] showing that gliadin induced an inflammatory immune response in both 

CD patients and h ealthy controls, yet IL - 6, Il - 13 and IFN - $ were expressed at significantly 

higher levels in CD patients. IL - 8 production was only expressed in a subset of healthy and CD 

individuals after stimulation with a specific gliadin peptide and appeared to dependen t on the 

CXCR3 chemokine receptor only in CD patients. Sapone et al. [16] showed that in a subset of 

CD patients, but not in gluten - sensitive patients (with 36% of the studied individuals in this 

group being HLA - DQ2/DQ8 positive), there is an increased IL - 17 mRNA expression in the 

small - intestinal mucosa compared to healthy controls. The same group showed that in a 

subset of gluten sensitive patients (with 50% of the studied individuals being HLA - DQ2/DQ8 

positive) there is a prevailing stimulation of cells of the innate immune system, wh ile in CD 

both the innate and adaptive immune system are involved  [13]. 

 

2.5. Gliadin and intestinal permeability  

In order for gliadin to interact with cells of the immun e system it has to overcome the 

intestinal barrier. Gliadin peptides cross the epithelial layer by transcytosis or paracellular 

transport. Paracellular transport occurs when intestinal permeability is increased, a feature 

that is characteristic for CD  [17]. It is indicated by several studies that increased intestinal 

permeability precedes the onset of CD and is not just a consequence of chronic intestinal 

inflammation  [18,19]. Gliadin has been demonstrated to increase permeability in human  

Caco - 2 intestinal epithelial cells by reorganizing actin filaments and alter expression of 

junctional complex proteins  [20]. Several studies by the group of Fasano et al. show that the 

binding of gliadin to the chemokine receptor CXCR 3 on epithelial IEC - 6 and Caco2 cells 

releases zonulin, a protein that directly compromises the integrity of the junctional 

complex  [21,22]. Although zonulin levels were more up - regulated in CD patients, zonulin was 

activated by gliadin in all intestinal biopsies from both CD and non - CD patients  [21,22], 

suggesting that gliadin can increase intestin al permeability also in non - CD patients, yet 

increased intestinal permeability was not observed in a group of gluten - sensitive patients  [13]. 

 

3. Increased intestinal permeability  

3.1. Increased intestinal permeability is associated with disease  

Chronically increased intestinal permeability (or lea ky gut syndrome) allows for the increased 

translocation of both microbial and dietary antigens to the periphery which can then interact 

with cells of the immune system. Shared amino acid motifs among exogenous peptides (HLA -

derived peptides and self tissue ) may produce cross reactivity through immunological 

mimicry, thereby disturbing immune tolerance in genetically susceptible individuals  [23]. Not 

surprisingly, increased intestinal permeability has been associated with auto - immune 

diseases, such as type 1 diabetes  [24], rheumatoid arthritis, multiple sclerosis  [18], but also with 
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diseases related to chronic inflammation like inflamm atory bowel disease  [18,25], asthma  [26], 

chr onic fatigue syndrome and depression. The latter two conditions see patients with 

significantly greater values of serum IgA and IgM to LPS of gram - negative enterobacteria 

compared to controls, implying intestinal permeability is increased in these 

patients  [27,28,29]. 

 

3.2. Intestinal barrier function and inflammation   

The intestinal barrier allows the uptake of nutrients and protects from damage of harmful 

substances from the gut lumen. Macromolecules that can be immunogenic like proteins, large 

peptides but also bacteria and lectins can be endocytosed or phagocytosed by en terocytes 

forming the epithelial layer of the gut. Absorbed proteins generally will be entering the 

lysosomal route and will be degraded to small peptides. Normally, only small amounts of 

antigen pass the barrier by transcytosis and interact with the innat e and adaptive immune 

system situated in the lamina propria. Highly specialized epithelial microfold (M) cells 

function as active transporters of dietary and microbial antigens from the gut lumen to the 

immune system where either a pro - inflammatory or tole rogenic immune response can be 

generated. The paracellular route is regulated by the junctional complex that allows the 

passage of water, solutes and ions, but under normal conditions provides a barrier to larger 

peptides and protein - sized molecules. When the barrier function is disrupted there is an 

increased passage of dietary and microbial antigens interacting with cells of the immune 

system  [25,30] (Figure 1).  

 

3.3. The role of zonulin signaling on intestinal permeability  

Intestinal permeability is a measure of the barrier function of the gut which relates to the 

paracellular space surrounding the brush border surface of the enterocytes and the junctional 

complexes consisting of tight junctions, adherent junctions, desmosomes and gap 

junctions  [31]. The junctional complexes are regulated in response to physiological  and 

immunological stimuli, like stress, cytokines, dietary antigens and microbial products  [31]. As 

mentioned before, zonulin, a protein identified as prehaptoglobulin - 2 (the precursor of 

haptoglobin - 2) is also a regulator of intestinal permeability. Haptoglobin - 2, toget her with 

haptoglobin - 1, is one of the two gene variants of the multifunctional protein haptoglobin and 

is associated with an increased risk for CD (homozygotes and heterozygotes) and severe 

malabsorption (homozygotes)  [32,33]. The haptoglobulin - 2/zonulin allele has a frequency of 

about 0.6 in Europe and the U.S.A, but varies throughout the world depending on racial 

origin  [34].  
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Figure 1. Increased intestinal permea bility allows for the passage of microbial and dietary 

antigens across the epithelial layer into the lamina propria where these antigens can be taken up 

by APC and presented to T -cells. JC, junctional complex.  

 

3.4. High zonulin levels are observed in auto - immu ne and inflammatory 

diseases 

Zonulin signalling is proposed to cause rearrangements of actin filaments and induces the 

displacement of proteins from the junctional complex, thereby increasing 

permeability  [18,32,35]. Gliadin peptides initiate intestinal permeability through the release of 

zonul in, thereby enabling paracellular translocation of gliadin and other dietary and microbial 

antigens, which by interacting with the immune system give rise to inflammation. In this 

manner a vicious cycle is created in which, as a consequence of the persiste nt presence of 

pro - inflammatory mediators, intestinal permeability will increase even further. High zonulin 

levels (together with increased intestinal permeability) have been observed in auto - immune 

and inflammatory diseases like CD, multiple sclerosis, as thma and inflammatory bowel 

disease and the haptoglobin polymorphism is associated with rheumatoid arthritis, 

ankylosing spondylitis, schizophrenia and certain types of cancer  [32]. 

The zonulin inhibitor Larozotide acetate was tested in an inpatient, double - blind randomized 

placebo controlled trial. The group of CD patients in the placebo group that were exposed to 
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gluten showed a 70% increase in intes tinal permeability, while no changes were seen in the 

group exposed to Larazotide acetate. Also gastrointestinal symptoms were significant more 

frequent in the placebo group  [32]. These results suggest that in CD patients, when intestinal 

barrier function is restored, autoimmunity will disappear while the trigger (gluten) is still there. 

Besides gliadin from wheat gluten, the lectin wheat germ agglutin in (WGA) has also been 

shown to stimulate cells of the immune system and increase intestinal permeability, as we will 

now further discuss.  

 

4.  WGA 

4.1. Dietary WGA  

Lectins are present in a variety of plants, especially in seeds, where they serve as defense 

mechan isms against other plants and fungi. Because of their ability to bind to virtually all cell 

types and cause damage to several organs, lectins are widely recognized as anti - nutrients 

within food  [36]. Most lectins are resistant to heat and the effects of digestive  enzymes and are 

able to bind to several tissues and organs in vitro  and in vivo  (reviewed by Freed 1991  [37]). The 

administration of the lectin WGA to experiment al animals caused hyperplastic and 

hypertrophic growth of the small intestine, hypertrophic growth of the pancreas and thymus 

atrophy  [36]. Lectin activity has been demonstrated in wheat, rye, barley, oats, corn and rice, 

however the best studied of the cereal gr ain lectins is WGA  [38].  

 

The highest WGA concentrations are found in wheat germ (up to 0.5 g/kg  [39]). Although 

unprocessed wheat germ, like muesli, contains far higher amounts of active WGA than do 

processed wheat  germ products, WGA activity is still apparent in several processed breakfast 

cereals as assessed by hemagglutination and bacterial agglutination assays  [40,41]. A summary 

of the amount of active WGA in commonly consumed wheat derived products is listed in 

Table 1.  

 

4.2. WGA binds to cell surface glycoconjugates  

WGA binds to N - glycolylneuraminic acid (Neu5Ac) , the sialic acid predominantly found in 

humans  [42], allowing it to adhere to cell surfaces like the epithelial layer of the gut. The 

surface of many prokaryotic and eukaryotic cells are covered w ith a dense coating of 

glycoconjugates, also named glycocalyx. Sialic acids are a wide family of nine - carbon sugars 

that are typically found at the terminal positions of many surface exposed glycoconjugates 

and function for self recognition in the vertebra te immune system, but they can also be used 

as binding target for pathogenic extrinsic receptors and molecular toxins  [43,44,45]. WGA 

binding to Neu5Ac of the glycocalyx of human cells (and pathogens expressing Neu5Ac) 

allows for cell entry and could disturb immune tolerance by evoking a pro - inflammatory 

immune response (discussed below).  
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4.3. WGA and immunity  

WGA induces inflammatory responses by immune cells. For example, WGA has been shown 

to trigger histamine secretion and granule extrusion from non - stimulated rat peritoneal mast 

cells  [46], induce NADP - oxidase activity in human neutrophils  [47] and stimulate the release 

of the cytokines IL - 4 and IL - 13 from human basophils  [48]. In human PBMC, WGA induced 

the production of IL - 2, while simultaneously inhibiting the proliferation of activated 

lymphocytes  [49]. WGA stimulated the secretion of IL - 12, in a T and B - cell independent 

manner in murine spleen cells. IL - 12, in turn, activated the secretion of IFN - $ by T or natural 

ki ller cells  [50]. In murine peritoneal macrophages WGA induced the production of the pro -

inflammatory cytokines TNF - ! , IL- 1#, IL- 12 and IFN - $ [51]. Similar results have been observed 

in isolated human PBMC, given that nanomolar concentrations of WGA stimulated the release 

of several pro - inflammator y cytokines. In the same study a significant increase in the 

intracellular accumulation of IL - 1# was measured in monocytes after WGA exposure  [52]. 

These results indicate that when delivered in vitro  WGA is capable of directly stimulating 

monocytes and macrophages, ce lls that have the ability to initiate and maintain inflammatory 

responses. Monocytic cells have been shown to engulf WGA via receptor - mediated 

endocytosis or by binding to non - receptor glycoproteins  [53]. 

 

Human data showing the influence of WGA intake on inflammatory markers are lacking, 

however, antibodies to WGA have been detected in the serum of healthy individuals  [54]. 

Significantly higher antibody levels to WGA were measured in patients with CD compared to 

patients with other intestinal disorders. These antibodies did not cross - react with gluten 

antigens and could therefore play an important role in the pat hogenesis of this disease  [55]. 
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Table 1. Amount of active WGA in wheat derived products  

Wheat derived products  WGA µg/g ( ±SD)  Reference source  

Wheat germ  300 (±35) Vincenzi et al., 2000  [56] 

Wheat germ  100 -  500  Peumans and Van Damme, 1996 

 [39] 

Semolina a 4.0 (±1.0) Ð 10.7 (±1.5)  Matucci  et al., 2004  [57] 

Flour a  4.3 (±0.7) Ð 4.4 (±1.0)   

Wholemeal flour a 29.5 (±2.5) Ð 50 (±5.5)   

Pastaa  !  0.4 (±0.2) Ð 3.2 

(±0,2) 

 

Pasta  cooked a !  0.3 (±0.2)  

Wholemeal pasta (enriched 

with wheat germ)  

40 (±2.7)    

Wholemeal pasta (enriched 

with wheat germ) cooked  

Not detectable   

Wholemeal pasta a  0 Ð 5.7 (±0.2)  

Wholemeal pasta cooked a Not detectable   

Breakfast cereals a  13 -  53  Ortega - Barria et al., 1994  [41] 

a  Values are obtained from more than one product and from different manufacturers.  

 

4.4. WGA and intestinal permeability  

After ingestion, WGA is capable of crossing the intestinal barrier. In animal models, WGA has 

been shown to reach the basolateral membrane and walls of the small blood vessels in the 

subepithelium of the small intestine  [36]. WGA can be phagocytosed by binding to membrane 

non - receptor glycoproteins, a process that has been observed in Caco - 2 cells  [58]. WGA can 

also be endocytosed by antigen sampling M - cells  [59,60] or by enterocytes via binding to 

epidermal growth factor receptors  [61]. Another possible route for lectin entry into the 

periphery is by paracellular  transport, a process that can be further aggravated by the binding 

of gliadin to the chemokine receptor CXR3 on enterocytes . 

 

WGA itself has been found to affect enterocyte permeability. Investigations by Dalla Pellegrina 

et al. [52] showed in vitro  that exposure to micromolar concentrations of WGA impairs the 

integrity of the intestinal epithelial layer, allowing passage of small molecules, like lectins. At 

the basolateral side of the epithelium, WGA concentrations in the nanomolar range induced 

the secretion of pro - inflammatory cytokines by immune cells  [52]. This may further affect the 

integrity of the epithelial layer, heightening the potential for a positive feedback loop between 

WGA, epithelial cells and immune cells. When combined, these mechanisms are li kely able to 

significantly increase the percentage of consumed WGA that can cross the epithelial layer 
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compared to the low percentage of WGA crossing by means of transcytosis (0.1%) alone  [52]. 

This suggests that together with gliadin, WGA can increase intestinal p ermeability, resulting 

in an increase of translocating microbial and dietary antigens interacting with cel ls of the 

immune system.  

 

5. Animal data on cereal grain intake  

There are two rodent models of spontaneous type 1 diabetes: the non - obese- diabetic (NOD) 

mouse and the diabetes - prone BioBreeding (BBdp) rat. In these animals a cereal - based diet 

containing wheat induced the development of type 1 diabetes, while animals fed a 

hypoallergenic diet (gluten free) or a hypoallergenic diet supplemented with casein s howed a 

decreased incidence and a delayed onset of this disease. BBdp rats fed a cereal - based diet 

showed increased intestinal permeability and a significant increase in the percentage of IFN - $ 

producing Th1 lymphocytes in the mesenteric lymph nodes in the gut  [30]. Compared t o 

animals fed a hypoallergenic diet, NOD mice fed a wheat - based diet expressed higher mRNA 

levels of the pro - inflammatory cytokines IFN - $ and TNF - !  and the inflammatory marker 

inducible NO synthase in the small intestine. While these diet - induced changes i n gut - wall 

inflammatory activity did not translate to increased cytokine mRNA in Peyers patches, 

structures that contribute to immune regulation to exogenous antigens, it is possible that the 

gut - signal may promote systemic inflammation via other mechanism s, such as activating 

intraepithelial lymphocytes and mesenteric lymph node cells  [62]. These in vivo  results show 

that in two rodent models of  spontaneous type 1 diabetes a cereal containing diet induces the 

(early) onset of disease and increases markers of inflammation. In addition, Chignola et al. [63] 

have shown in rats that a WGA - depleted diet was associated with reduced responsiveness of 

lymphocytes from primary and secondary lymphoid organs after in vitro  stimulation and 

attenuated spontaneous proliferation when compared to lymphocytes from rats fed a WGA -

containing diet, indicating the stimulatory effect of WGA on cells of the immune system.  

 

6.  Human studies on cereal grain intake and inflammation  

6.1. Human epidemiological dat a on cereal grain intake and inflammation  

Observational prospective and cross - sectional studies show that the intake of whole grain 

products is associated with reduced risks for developing type 2 diabetes, cardiovascular 

diseases, obesity and some types of  cancer  [64]. Inflammation is associated with these 

conditions and some studies have shown that associations between the intake of whole grains 

and decreased i nflammatory markers (CRP, Il - 6) are found  [65]. Intervention studies, however, 

do not demonstrate a clear effect of the intake of whole grains on 

inflammation  [66,67,68,69,70,71] and it could therefore be that other c omponents in the diet 

modulate the immune response.  
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It has been shown that the intake of whole grains is associated with healthier dietary factors 

and a healthier lifestyle in general. In a Scandinavian cross sectional study, the intake of whole 

grains was directly associated with the length of education, the intake of vegetables, fruits, 

dairy products, fish, shellfish, coffee, tea and margarine and inversely associated with 

smoking, BMI and the intake of red meat, white bread, alcohol, cakes and biscui ts [72]. Good 

quality epidemiological studies attempt to control for these confounding factors, but with the 

consequence that associations are attenuated or becom e insignificant.  

 

6.2. Human intervention trials on cereal grain intake and inflammation  

To really estimate the causal relationship of cereal grain intake and inflammation, 

intervention trials provide us with better evidence. Wolever et al. [71] showed th at a diet with a 

low glycemic index (containing whole grains) compared to high (containing refined grain 

products), resulted in sustained reductions in postprandial glucose and CRP levels on the 

long - term in patients with type 2 diabetes treated with diet alone. A refined grain is a whole 

grain that has been stripped of its outer shell (fiber) and its germ, leaving only the endosperm, 

resulting in lower levels of macro -  and micronutrients and a higher dietary glycemic index for 

refined grains compared to wh ole grains. Refined wheat products contain less WGA, but still 

contain a substantial amount of gluten. It should be noted that whole grains contain 

phytochemicals, like polyphenols, that can exert anti - inflammatory effects which could 

possibly offset any p otentially pro - inflammatory effects of gluten and lectins  [73]. 

 

 The substitution of whole grain (mainly based on milled wheat) for refined grains products in 

the daily diet of healthy moderately overweight adults for 6 weeks did not affect insulin 

sensitivity or markers of lipid peroxidation and inflammation  [66]. Consistent with these 

finding are the results of Brownlee et al. [67], who showed that infrequent whole - grain 

consumers, when increasing whole grain consumption (including whole wheat products),  

responded with no improvements of the studied biomarkers of cardiovascular h ealth, 

including insulin sensitivity, plasma lipid profile and markers of inflammation. The 

substitution of refined cereal grains and white bread with 3 portions of whole wheat food or 1 

portions of whole wheat food combined with 2 servings of oats signifi cantly decreased the 

systolic blood pressure and pulse pressure in middle - aged, healthy, overweight men and 

women, yet none of the interventions significantly affected systemic markers of 

inflammation  [70]. In obese adults suffering from metabolic syndrome ther e were 

significantly greater decreases in CRP and the percentage of body fat in the abdominal region 

in participants consuming whole grains compared to those consuming refined grains. It must 

be noted that both diets were hypocaloric (reduced by 500 kcal/d ) [69]. Most of the 

intervention studies mentioned above attempted to inc rease whole - grain intake and were 
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using refined grain diets as controls , thereby making it very difficult to draw any conclusions 

on the independent role of cereal grain s in disease and inflammation.  

 

6.3. Health effects of the paleolithic diet  

There are few st udies that investigate the influence of a paleolithic type diet comprising lean 

meat, fruits, vegetables and nuts, and excluding food types, such as dairy, legumes and cereal 

grains, on health. In domestic pigs the paleolithic diet conferred higher insulin  sensitivity, 

lower CRP and lower blood pressure when compared to a cereal based diet  [74]. In healthy 

sedentary humans the short - term consumption of a paleolithic type diet improved blood 

pressure and glucose tolerance, decreased insulin secretion, increased insulin sensitivity and 

improved lipid profiles  [75]. Glucose tolerance also improved in patients suffering from a 

combination of ischemic heart disease and either glucose intolerance or type 2 diabetes that 

were advised to follow a paleolithic diet. Control subjects who were advised to follow a 

Mediterranean - like diet based on whole grains, low - fat dairy products, fish, fruits and 

vegetables did not significantly improve their glucose tolerance despite decreases in weight  

and waist circumference  [76]. Similar positive results on glycemic control were obtained in 

diabetic patients when the paleolithic diet was compared with the diabetes diet. Participants 

were on each diet for 3 months where the paleol ithic diet resulted in a lower BMI, weight and 

waist circumference, higher mean HDL, lower mean levels of hemoglobin A1c, triacylglycerol 

and diastolic blood pressure, yet levels of CRP were not significantly different  [77]. Although 

the paleolithic diet studies ar e small, these results suggest that, together with other dietary 

changes, the withdrawal of cereal grains from the diet has a positive effect on health. 

Nevertheless, because these studies are confounded by the presence or absence of other 

dietary substanc es and by differences in energy and macronutrient intake, factors that could 

all affect markers of inflammation, it is difficult to make a concise statement on the impact of 

cereal g rains on these health outcomes.  

 

6.4. Rechallenge trial of effects of dietary g luten  

One human intervention study specifically focused on the effects of dietary gluten on 

inflammation. Biesiekierski  et al. [12] undertook a do uble - blind randomized, placebo -

controlled rechallenge trial to investigate the influence of gluten in individuals with irritable 

bowel syndrome but without clinical features of CD, who reached satisfactory levels of 

symptom control with a gluten - free diet.  After screening the participants, about 50% of the 

individuals in both the gluten and placebo group were HLA - DQ2 and/or HLA - DQ8 positive. 

Participants received either gluten or placebo together with a gluten - free diet for 6 weeks. 

End - points in the study were symptom assessments and biomarkers of inflammation and 

intestinal permeability. The patients receiving gluten reported significantly more symptoms 

compared to the placebo group. The most striking outcome of this study was that for all the 
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endpoints me asured there were no differences in individuals with or without HLA - DQ2/DQ8, 

indicating that the intake of gluten can cause symptoms also in individuals without this 

specific HLA - profile. No differences in biomarkers for inflammation and intestinal 

permeab ility were found between both groups, however, inflammatory mediators have been 

implicated in the development of symptoms in patients with irritable bowel syndrome  [78]. It 

could therefore be that the markers used to measure inflammation and intestinal permeability 

wer e not sensitive enough to detect subtle changes on the tissue level.  

 

7. Conclusion  

In the present review we describe how the daily consumption of wheat products and other 

related cereal grains could contribute to the manifestation of chronic inflammation and auto -

immune diseases. Both in vitro and  in vivo  studies demonstrate that gliadin  and WGA can 

both increase intestinal permeability and activate the immune system. The effects of gliadin 

on intestinal permeability and the immune system have also been confirmed in humans. 

Other cereal grains containing related prolamins and lectins have  not been so extensively 

studied and therefore more research investigating their impact on intestinal permeability and 

inflammation is required. It would be interesting to further elucidate the role of other 

prolamins on zonulin release and intestinal perm eability.  

 

In CD and gluten - sensitive individuals adverse reactions to the intake of wheat, rye and barley 

are  clinically apparent, however, it is important to gain better insights on the effects of the 

consumption of these cereal grains in other groups of patients and in healthy individuals. It 

would be of high interest to investigate the effects of the withdrawal of cereal grain products 

from the diet on inflammatory markers and intestinal permeability in healthy subjects and 

patients suffering from inf lammation - related diseases and measure the same parameters in a 

rechallenge trial. Ideally, in such an intervention study, the diet must be completely controlled 

and combined with the appropriate substitution of foods in the cereal grain - deprived diet so 

that small dietary variations and alterations in energy intake can be avoided and cannot 

potentially influence inflammatory markers.  

  

 Until now, human epidemiological and intervention studies investigating the health - effects 

of whole grain intake were con founded by other dietary and lifestyle factors and therefore well 

designed intervention studies investigating the effects of cereal grains and their individual 

components on intestinal permeability and inflammation are warranted.  
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Abstract  

Various positively selected adaptations to new nutrients have been identified. Lactase 

persistence is among the best known, conferring the ability for  drinking milk at post weaning 

age. An augmented number of amylase gene ( AMY1) copies, giving rise to higher salivary 

amylase activity, has been implicated in the consumption of starch - rich foods. Higher AMY1 

copy numbers have been demonstrated in populati ons with recent histories of starchy - rich 

diets. It is however questionable whether the resulting polymorphisms have exerted positive 

selection only by providing easily available sources of macro and miconutrients.  Humans 

have explored new environments mor e than any other animal. Novel environments challenge 

the host, but especially its immune system with new climatic conditions, food and especially 

pathogens. With the advent of the agricultural revolution and the concurrent domestication of 

cattle came new  pathogens. We contend that specific new food ingredients (e.g. gluten) and 

novel pathogens drove selection for lactase persistence and higher AMY gene copy numbers. 

Both adaptations provide ample glucose for activating the sodium glucose - dependent co -

tran sporter 1 (SGLT1), which is the principal glucose, sodium and water transporter in the 

gastro - intestinal tract. Their rapid uptake confers protection against potentially lethal 

dehydration, hyponatraemia and ultimately multiple organ failure. Oral rehydrat ion therapy 

aims at SGLT1 activity and is the current treatment of choice for chronic diarrhoea and 

vomiting. We hypothesize that lifelong lactase activity and rapid starch digestion should be 

looked at as the evolutionary covalent of oral rehydration ther apy.  
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Introduction  

Adaption to new environmental challenges aims at phenotypic adjustments either by 

epigenetic (rapid, but labile) and genetic (slow, but robust) changes through processes such as 

epimutation and de novo  mutation, the latter e.g. by varia tion of gene copy number (GCN) (1, 

2). Many environmental factors have shaped the human genome, including climate, diet and 

microbial load (3). Although the first two certainly excreted selective pressure on humans, the 

main selective pressure seems to der ive from pathogens because of their high lethality (4). 

Fumagalli et al. (4) identified a surprisingly high number of more than one hundred genes 

carrying signatures of a pathogenic environment and presenting as an increase in allele 

frequency (GCN). Conve rsely, for dietary regimes and climatic conditions, no gene shows a 

similar correlation between an environmental factor and GCN (4). Other authors have shown 

that climate and diet do act as selective pressure factors in humans (5, 6), but the majority of 

the literature indicates that it are pathogens and the pathogenic load that should be 

considered as the principal environmental factors causing selective pressure in humans (7,8).  

 

Two recent changes in the human diet i.e. the inclusion of dairy products a nd the increased 

intake of starch, have been related with genetic adaptations, i.e. lactase (also known as lactase-

phlorizin hydrolase; LPH ) persistence  (9) and salivary amylase (AMY1) GCN (10), respectively. 

Both adaptations are ascribed to toxicosis  as the possible causes of the observed high positive 

selection pressure of these alleles, but there have to our knowledge as yet been no suggestions 

that they might confer protection against an increased pathogenic load since the rise of 

agriculture. Path ogens such as Mycobacterium tuberculosis, Rotavirus, E. coli, Mycoplasma 

pneumoniae and fungi producing highly toxic mycotoxins, together with gluten as a novel 

food ingredient, may cause devastating effects in humans through pathways ending up in 

dehydrat ion, hyponatraemia and lack of energy, ending up in multiple organ failure (MOF). 

We suggest ( our hypotheses ) that improved lactose and starch digestion through lactase 

persistence and augmented AMY1 - GCN provided a survival advantage by facilitating the 

activity of the immune system and the most important glucose, water and sodium transporter 

in the gut and thereby conferred protection against infections and infection - driven 

dehydration, hyponatremia and multiple organ failure.  
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1. Lactase persistence , existing hypotheses  

1.1. The UVB-vitamin D -calcium - rickets hypothesis  

Swallow et al. (9) related the higher  and longer  intake of milk and milk products to lactase 

persistence after infant age through the emergence of polymorphisms in the regulation of the 

lactase ge ne (11, 12). The hypothesis was subsequently supported by others (13). Several 

explanations have been given for the positive selection of these polymorphisms leading to 

lifelong lactase persistence. One of them highlights the advantage of the improved calc ium 

intake if lactose could be digested (14). The low UV - B levels at high latitudes are associated 

with an increased risk of developing rickets and osteomalacia due to the lack of cutaneous 

vitamin D production during the long winter period. In the gut, th e vitamin D hormone, 1,25 -

dihydroxyvitamin D, stimulates the expression of proteins involved in the absorption of 

calcium, which is itself an essential mineral required for bone health, signal transduction and 

others. Milk born calcium may also help to pre vent rickets by impairing the breakdown of 

vitamin D in the liver (15).  

 

Rickets narrow the female birth channel and thereby increases the chance of mortality of both 

mother and child during labour (16). The only successful preventive measure is by caesarean 

section, which has been part of human anthropology probably since mill ennia (17) and seems 

to have saved thousands of people also in recent times (16). However, Itan and Swallow (11), 

using a flexible demic computer simulation model to explore the spread of lactase persistence, 

challenged the vitamin D - rickets model by showi ng the absence of  a relationship between 

lactase persistence and the requirement of more vitamin D in people living at Northern 

latitudes.  

 

The vitamin D - calcium - rickets hypothesis based on the low ultraviolet - B (UVB) radiation at 

high latitudes does not hold in the light of the very low prevalence of lactase persistence 

among other individuals living in northern regions such as those living in Siberia or the 

Amerindians living in the north of America (18, 12). Lactase persistence reaches the highest 

preva lence in countries around the Baltic -  and North Sea (19, 17), which coincides with 

extreme dermal depigmentation, unique for this part of the world population (20). It is widely 

accepted that depigmentation is a consequence of living at high latitude and l ack of vitamin D 

producing UVB radiation. UVB radiation (280 - 340 nm) is necessary for the conversion of pre -

vitamin D3 into vitamin D, which prevents the development of rickets. Pale skin obviously 

captures more sunlight because of the reduced absorption b y melanocytes (21).  

 

Although there is a trend for lighter skin colour with increasing latitude, no other population 

exhibits the extreme dermal depigmentation encountered in Europeans living in the circum 

Baltic/North Sea region, even not populations living at higher latitude s, which suggests an 
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additional geographic selection pressure. It is possible that populations in the North of Europe 

experienced another threat to their calcium homeostasis due to the spread of agriculture in 

general, and in particular because of the cons umption of wheat and barley.  

 

1.2. The influence of cereals  

Cordain et al. (20) stated that ÔWhole cereals are rachitogenic because their high fibre content 

impairs the entero - hepatic circulation of vitamin D, leading to increased faecal elimination of 

25- hydr oxyvitamin D 3, thereby progressively lowering plasma 25 - hydroxyvitamin D 3 

concentrations in humansÕ. Moreover, whole grains are poor sources of calcium, and their 

high phytate content reduces calcium bioavailability and thereby additionally contributes to 

their rachitogenicity. The region around the Baltic/North Seas is one of the few high - latitude 

regions in the world where cereal grains can be successfully grown without intensive modern 

agricultural procedures. Usually, at high latitudes, extreme temperat ures render the growing 

season too fleeting for cereal crops to effectively compete with animal foods as a staple. 

Because the warm Gulf Stream flows into the North and Baltic Seas and because of the 

nearness to a maritime heat sink, temperatures in the su rrounding landscapes were 

sufficiently high to allow Neolithic farmers to successfully grow cereals as staples, primarily 

wheat and barley (20).  

 

1.3. Our hypotheses: Lactase and the immune system  

To our knowledge, there has been no suggestion of a relation be tween lactase persistence and 

the immune system in which lactase confers protection against potentially lethal pathogens. 

Apart from the digestion of lactose, lactase is important for the intestinal absorption of 

quercetin. By the hydrolysis of the natural ly occurring quercetin - glucosides, quercetin 

absorption may increase drastically in the presence of lactase (22). Quercetin is one of the 

most abundant flavonols in edible plants (USDA database 2011) and is considered vital to 

maintain immune function (23) . Epidemiological studies indicate that higher compared to 

lower quercetin intake is associated with reduced risk for ischemic heart disease, type 2 

diabetes mellitus, asthma, and various types of cancer including lung cancer, colorectal 

cancer, prostate c ancer (24) and has widespread antimicrobial effects against vi ruses, bacteria 

and fungi (25).  

 

As stated in the introduction, pathogens have exerted strong selective pressure in human 

evolution (4). One of the most lethal infectious diseases in humans is and has been 

pneumonia (26). Every year 65,000 people in the USA die because of influenza and 

pneumonia (27). Pneumococcal load has been a strong selective pressure factor shaping the 

human immune system and genome (28). Another microbe producing pneumonia  atypical in 

humans and pneumonia in cattle is Mycoplasma mycoides (29). Mycoplasma pneumoniae in 
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cattle and probably humans became important with the rise of domestication of cattle, 

including cows and goats, some 10,000 years ago (30). Domestication of c attle was the starting 

point of introducing milk and milk products into the human diet and also the time point when 

the polymorphism for lactase persistence typical for Europeans arose (12). Even now farmers 

seem to be at surprisingly high risk (10 to 50 t imes more than expected) for the development 

of pneumonitis ( 31).  

 

Quercetin has effective antibiotic effects against bacteria producing pneumonia but only at 

high doses (32). These might be provided by lactase (32) suggesting benefits in immune 

function by lifelong lactase - facilitated quercetin absorption. We suggest that positive 

selection of lactase persistence is related with increased protection against potentially lethal 

pneumonia - causing pathogens.  

 

1.4. Conclusions so far  

Taken together, lactase persist ence is a very recent polymorphism and its positive selective 

pressure has been extremely strong (33). It is hard to conceive that such a high selective 

pressure was caused by diseases with low lethality such as osteomalacia, and osteoporosis, or 

because o f the adaptation to a novel food with nevertheless high caloric and micronutrient 

contents. On the other hand, rickets and pathogenic load are strong selective pressure factors. 

Pathogenic load has been the leading roller coaster of human evolution and it is therefore 

conceivable that subjects with lactase persistence are better protected against the mentioned 

pathogens. This hypothesis is easily testable by measuring the difference in infection 

susceptibility between lactase persistent and non - persistent i ndividuals.  
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2. Salivary AMY1 gene copy number  

2.1. AMY1 copy number and starch consumption  

In 2007 Perry et al. (10) published a seminal paper relating the number of amylase ( AMY1) gene 

copies to the amount of dietary starch. They found that the number of the s alivary amylase 

gene copies correlates positively with salivary amylase protein levels and that individuals from 

populations with high - starch diets have, on the average, more AMY1 gene copies than those 

with traditionally low - starch diets. Since the public ation of Perry et al., several hypotheses 

have been proposed to explain positive selection of augmented AMY1 - GCN. More AMY1 

copies and amylase protein could Ôbuffer against the fitness - reducing effects of intestinal 

disease and toxicosisÕ (10), although th ey did not specify what environmental factor(s) would 

cause intestinal disease.  

 

2.2. Existing hypotheses  

One hypothesis relates salivary amylase activity to satiety (34). This effect could buffer against 

overeating, although higher amylase levels during stressful situations may produce the 

opposite. For instance,  emotional overeating in response to psychosocial stress is a 

behavioural trait related to childhood obesity and psychosocial stress factors increase salivary 

amylase production (35). Our society is characterized by food abundance, overeating 

increases the risk of obesity, and obesity is a risk factor for diabetes mellitus type 2, 

cardiovascular diseases (CVD) and others (36). A buffering effect against overeating could 

therefore decrease the incid ence of CVD and related disorders. CVD and related disorders 

affect a wide range of people, CVD are still the major causes of mortality worldwide (37) and 

mortality is an important driving force in evolution by exerting selective pressure (38). It could 

th erefore theoretically be possible that augmented AMY1 - GCN developed through selective 

pressure of early mortality caused by increased obesity and CVD.  

 

The above hypothesis, however, does not hold in the light of the estimated time of augmented 

AMY1- GCN occurrence and also not when considering that the capacity of overeating 

probably saved people from starvation at times when food was not available (39). The 

estimated time of appearance of augmented AMY1 - GCN is around 200,000 years ago, 

although this estimate needs confirmation by the generation of AMY1 sequences from 

multiple humans (10). Obesity and CVD are widely considered modern diseases that arose 

very recently (40), while CVD mortality is highest among elderly people (41). At the time of the 

occurrence of the increase of AMY1 - GCN, humans hardly reached an average age of 35 years, 

while even 200 years ago the average lifespan was only 30 - 40 years (42) . It is therefore 

questionable whether obesity, CVD and mortality caused by overeating would have exerted 

the necessary high selective pressure on ancient populations in which the positive selection 

for augmented AMY1 - GCN occurred.  
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A second hypothesis re lates higher AMY1 - GCN and increased amylase protein in saliva with 

certain sensory properties of starchy foods (43). Taste and viscosity could perhaps be detected 

earlier in individuals with higher AMY1 - GCN, although the benefit of this trait is unclear (3 5, 

43), making this hypothesis weak while  lacking sufficient scientific strength to suggest 

positive selection.  

 

Recently it has been shown by Mandel et al. (44) that, following the intake of starch - rich foods, 

individuals with high endogenous salivary a mylase activity regulate glucose homeostasis 

better than individuals with lower salivary amylase activity (44) . They state that efficient starch 

digestion could have had Òimmense benefitsÓ and relate this benefit with protection against 

toxicosis and lower  gastrointestinal malaise. This is exactly in line with our hypothesis which 

states that through more efficient starch digestion people were and are protected against 

multiple organ failure, dehydration and hyponatremia by upregulating the activity of SGLT 1 

(see our hypotheses)  

 

It seems clear that no conceivable mono - hypothesis has as yet been generated for the 

augmentation of AMY1 - GCN in human populations with high starch intakes. Adaptation to 

changes in food intake without evolutionary advantages, such as mortality before or during 

reproductive age or significantly reduced fitness, is unlikely to provide a sufficiently strong 

platform to explain accelerated positive selection. Before stressing our hypothesis, two other 

factors speak against the hypothesi s that certain human populations have adapted to a 

nutrient, merely because it was incorporated in the diet.  

 

2.3. AMY1 expression relates to stress and pancreatic amylase activity is huge  

If humans adapted to starch rich food through increased expression of t he amylase protein 

(related with higher AMY1 - GCN), then why would amylase protein production be highest 

when salivary glands are (co)activated by the sympathetic nervous system (45)? It is widely 

recognized that the sympathetic nervous is the first wave of  the acute stress responses. This 

would imply that starch intake produces stress, while stress is a reaction to danger (46). The 

logical consequence is that starch - rich food is dangerous: something living on  starch - rich 

food is dangerous, or something with in starch - rich food protects the starch - producing plant 

against something dangerous and the resulting compounds might be toxic to humans. The 

second factor that speaks against a merely nutrient intake driven genetic adaptation refers to 

the starch digestiv e activity of pancreatic amylase. As early as 1995 it was shown that 

pancreatic alpha - amylase extensively covers the digestive needs of starch intake (47). 

Pancreatic postprandial amylase enzyme output varies from 50 U/min to 2,000 U/min (69) 

with amylase having a digesting efficiency of 96% (48).  
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The significant difference in AMY1 - GCN between populations with low and high starch 

intakes and between humans and our nearest evolutionary counterpart, the chimpanzee, is 

likely related to factors in or on star ch - rich foods. High alpha - amylase facilitates breakdown 

of starch, liberating various monosaccharides, including glucose. The latter is present in roots 

and tubers eaten by the people belonging to the high AMY1 - GCN tribes in Africa (49). Recent 

research wi th the Hadza, the last authentic hunter - gatherer population in Tanzania, shows 

that tubers and roots are an important part of daily food, varying from 18 - 38 en% of total 

caloric intake through the year (50).  It is nevertheless their non - preferred food (50 ) and 

should be considered part of the fallback nutritional sources. Fallback nutritional sources 

normally provide energy when food is scarce. Given the importance of fallback food, it might 

be beneficial to optimize starch digestion efficiency. However, e ven if starch rich foods would 

exceed 38 en% of total intake, it would make no sense to increase salivary amylase level. 

Salivary and pancreatic amylase in combination with four other starch - digesting enzymes in 

the small gut would cover the starch digesti on needs extensively (51).  

 

2.4. AMY1 and the immune system: domestic dog adaptations as introduction 

to our hypothesis  

It was recently found that domestic dogs exhibit several genetic changes suggesting 

adaptation to the intake of starch (52). The three genes  showing intense selective pressure 

related with starch digestion in this study, are AMY2B, MGAM and SGLT1, which are 

responsible for the production of respectively amylase, maltase - glucoamylase and the 

sodium - dependent glucose co - transporter 1 (SGLT1).  The difference in gene copy number, 

enzyme production and enzyme activity in dogs is highly significant compared with their 

most closely related counterpart, the wolf (52). The authors concluded that dogs have adapted 

to starch intake during domestication, suggesting that a change of ecological niche was the 

driving force behind that domestication and the novel niche could have induced scavenging 

behaviour in waste dumps. However, waste dumps do not only contain starch, but also other 

food wastes like meat, while all waste products come together with microbes, including 

Escherichia coli, Salmonella (both meat born microbes) and fungi such as Aspergillus growing 

on foul starch (53). These pathogens produce severe symptoms like vomiting, entero -

hemorrhagic ente ritis, renal damage and failure, and death in humans, but especially among 

children, although adults are not spared (54).  

 

The three genetic changes found in domesticated dogs and related with starch digestion, also 

have important effects on metabolism, s ystemic homeostasis and especially the immune 

system. We contend that the effects on the immune system have been the genuine 

background for the very high selective pressure on the above - mentioned genes in dogs and 



217 
!
 

that the same could hold for the AMY1 - GCN in humans.  

 

2.5. Evolutionary selective pressure aspects of the consumption of starch - rich 

foods; our hypotheses  

2.5.1. Toxins in starch - rich foods  

Starch - rich foods (SRF) contain, like most plants, a series of proteins and anti - nutrients with 

certain toxic effects. The mostly consumed SRF in non - African populations are cereals and 

legumes, whereas African tribes eat substantial amounts of tubers and roots, although cereals 

such as corn are rapidly replacing these ancient food sources (55). Whole grain cereals and 

legumes contain both toxic and non - toxic compounds and all of these substances contribute 

to the possible net toxic (nettox) effect of these  SRF. It is important to consider only 

constituents present in whole  grains as possible selective factor, because refined cereal 

products entered our diet only very recently. Candidate substances are gluten and its main 

component gliadin, certain digestive  enzyme inhibitors such as amylase - inhibitors in wheat 

and lectins. A review was recently published on the potentially toxic impact of grains on 

human health (56).  

 

2.5.2. Did gluten - toxicity exert sufficient selective pressure to cause augmented AMY1 -GCN? 

Gluten can cause a wide range of disorders, varying from celiac disease (57), autoimmune 

disorders (58), increased intestinal permeability syndrome (59) and types 1 and 2 diabetes 

mellitus (60) and gluten burden is not restricted to glut en intolerant indiv iduals (61). 

 

All of these disorders usually evolve with gastro - intestinal problems and often diarrhoea (62) 

The majority of mentioned disorders are negatively correlated with fertility and reproductive 

success (63). Diarrhoea can cause severe dehydration and sodium deficiency and both lead to 

increased mortality in both genders and at any age, but they affect children the most. Thus, at 

least theoretically, it seems possible that gluten intake affected reproduction and mortality by 

dehydration and severe s odium deficiency, causing selective pressure on cereal - eating 

populations. Improved digestion of starch might increase glucose levels in the gut, facilitating 

water, sodium and glucose transport by the sodium - dependent - glucose co transporter 

(SGLT1) and thereby protect against lethal dehydration, hyponatraemia and multiple organ 

failure because of energy deficiency, supporting our basic hypothesis and knowing that 

higher  glucose levels in the gut activate SGLT1, whereas normal  levels do not (64). 

Identifica tion of gluten as a trigger of severe gastro - intestinal complaints, including 

uncontrollable diarrhoea, vomiting and abdominal pain, occurred after World War II, when 

the Dutch paediatrician Willem - Karel Dicke noticed that the war - related shortage of bread  in 

The Netherlands caused a significant drop in death rate among children affected by celiac 

diseaseÑ from greater than 35% to essentially zero. He also reported that once wheat was again 
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available after the war, mortality soared to previous levels. Follow ing up on DickeÕs 

observation, other scientists looked at the different components of wheat, discovering that the 

major protein in that grain, gluten, was the culprit (65).  

 

Celiac disease is the best - known disorder related with gluten intake and is cause d by a 

combined impact of environmental factors on perhaps more than one hundred genes (66). 

Several genes seem to play major  roles in subjects who are susceptible to celiac disease. They 

include genes for the production of human lymphocyte antigen (HLA) m olecules and non -

HLA genes for the production of interleukins and their receptors (66). The whole group of 

genes relates to the immune system and therefore it could well be that these genes originally 

protected against pathogens and that celiac disease onl y occurred after the incorporation of 

cereals into the human diet. In this direction, it has recently been shown that several 

interleukin/interleukin receptor genes involved in the pathogenesis of celiac disease have 

been subjected to pathogen - driven selec tive pressure. Specifically, celiac disease alleles of 

IL18RAP, IL18R1, IL23 , IL18R1 and the intergenic region between IL2 and IL21 display higher 

frequencies in populations exposed to high microbial/viral loads, suggesting that these 

variants play a role in the response to these organisms (67). People with these genotypes are 

probably better protected against pathogens, but at the exp ense of celiac and other 

autoimmune diseases,  

 

Gluten intolerance further produces secondary lactose intolerance, because of its damaging 

effect on enterocytes, which form the outermost layer of the gut (68). The combined effects of 

damage inflicted by th e immunological response against gluten and the secondary lactose 

intolerance only increases the possibility of developing severe intestinal trouble including the 

typical lactose malabsorption symptoms, abdominal pain, diarrhoea, nausea, bloating, and/or 

f latulence (69).  

 

The only plausible explanation for the positive selection or the preservation of genes that 

confer higher susceptibility to toxic - gluten, has to be related with something even more 

dangerous. People living in a highly infectious environmen t maintained or developed the 

need for increased immune reactivity against pathogens (4). When they incorporated gluten 

rich foods into their diets, the consequences of diarrhoea and vomiting could and 

undoubtedly have killed a countless number of people, demanding another 

phenotypical/genotypical adaptation to survive this novel selective pressure factor and this 

risk only increases when facing secondary lactose intolerance. And for this, why not employ 

another nutrient present in the same food to overcome  the deleterious effect of the toxic part 

of this altogether important energy - providing nutritional source? Increased breakdown of 

starch in gluten - sensitive people would provide sufficient glucose to activate SGLT1 and 
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facilitate glucose, sodium and water  transport and thereby prevent the severe burden of 

gluten intake. Increased amylase production through higher AMY1 - GCN could serve this 

purpose.  

 

The previously mentioned study of Axelsson et al. (52) shows that domesticated dogs carry an 

increased number  of pancreatic amylase genes (AMY2B) and a special SGLT1 haplotype with 

structural (better function but not more enzyme) benefits compared with wolves. Dogs suffer 

from food allergies, just as humans, with almost identical symptomatology, including 

gastroe nteritis - caused vomiting and diarrhoea, while canine gastroenteritis seems related 

with intestinal bacterial overgrowth with E. coli as main pathogen (70) and gluten intolerance.  

It has even been shown that gliadin, the main protein in gluten, produces th e most severe 

allergic response in dogs (71), while dogs are used to investigate the pathways leading to 

clinical celiac disease because of the spontaneous development of celiac disease when fed 

with gluten - rich foods (72). This provides evidence for a par allel evolution of humans and 

domesticated dogs through increased starch digestion by amylase and improved glucose 

transport, protecting the host against possible toxicosis by a novel nutrient, such as gluten. 

and/or certain pathogens, such as enterotoxic E. coli. Higher AMY1 - GCN and amylase 

expression can serve this purpose perfectly and it were both Perry et al. (10) in their first 

publication on augmented AMY1 - GCN and Mandel et al. in 2012 (44) who already pointed at 

the possible beneficial effects of au gmented AMY1 - GCN for the protection against intestinal 

toxicity.  

 

2.5.3. Can starch itself be sufficiently toxic to produce important selective pressure?  

Starch  is the storable form of energy produced by all green plants.  

A part of dietary starch escapes digest ion by all enzymes, reaching the colon as resistant 

starch, ranging from approximately 1% following the consumption of white rice and 6% after 

eating beans (73). Incompletely digested starch has significant impact on the gut microflora in 

cattle and humans . Cows fed cereals can have a 1,000 times higher level of Escherichia coli in 

their gut and gut E. coli corresponds with higher detectable E. coli levels in their meat (74). 

Escherichia coli O157:H7, one of its most toxic mutants, can live undetected in th e gut of food 

animals and can be spread to humans directly and indirectly. E. coli is a normal inhabitant of 

the gastrointestinal tract  of mammals. Most E. coli strains do not cause disease, but can release 

lipopolysaccharide complexes from their cell walls (including lipid A) upon disintegration. 

These endotoxins can cause fever, and even death, but mostly if E. coli translocates from the 

gut into the blood. Traditional models of E. coli pathogenesis were based on the ability of 

certain strains to atta ch to mucosal surfaces, but the invasion process itself was poorly 

understood.  
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Cattle born pathogens are considered zoonoses (transferable to humans) and they include E. 

coli, but also Salmonella, Campylobacter and Clostridium dificile (75). Salmonella ca n be 

highly toxic as evidenced by various severe Salmonella outbreaks through ancient and recent 

history (76). Salmonella grows, just like E. coli on meat, and Salmonella/E. Coli infected meat 

and poultry are still considered the most important sources of food born illness (76). Survival 

of the pathogenic form of these microbes is facilitated by the intake of resistant starch that 

escapes total digestion in cattle (74). Recent research shows that this also holds for humans 

and that pathogenic growth of gut damaging microbes is substantially enhanced by 

maltodextrin, a derivate of incomplete digested starch (77).  

 

It seems obvious that the combination of direct exposure to food born pathogens (E. Coli, 

Salmonella) and the nourishing effect of digestion - resistant starch has benefitted the growth 

of these microbes and thereby caused severe gastro - intestinal disorders in humans 

consuming infected meat and starch rich food. Macronutrient uptake is greatly dependent on 

gut surface, passage time and hydrolysis. Com plete digestion of starch could have prevented 

bacterial overgrowth of pathogenic bacteria, offered protection against possibly severe 

gastroenteritis and even death. Augmented AMY1 - GCN could have served this purpose, by 

causing a more rapid and thereby mo re complete digestion and uptake in combination with 

the other starch - digesting sacharidases.  

 

2.5.4. Fungi growing on starch rich food; a largely ignored global health issue at present and 

definitely in the past  

Starch provides the major food source for a wide range of fungi, including Fusarium species, 

Aspergillus flavus, Penicillum viridicatum and Acremonium coenophialum (78), whereas 

another fungus, Claviceps purpurea, parasites on starch rich cereals such as b arley, rye and 

wheat (79). All of these fungi produce various types of highly toxic mycotoxins, including 

aflatoxins, tricothecenes, fumonisins, T - 2 toxin, zearalenone, deoxynivalenol and ochratocin 

A (80). Among these, Claviceps purpurea is a special fung us, because it has historically often 

been looked at as a part of the cereal plant although it produces the most severe mycotoxins 

named ergopeptines, including ergometrine (81).  

 

When present in foods in sufficiently high quantities, mycotoxins can produ ce symptoms 

ranging from acute liver or kidney deterioration, severe gastroenteritis, vomiting, anorexia, 

reduced weight gain, neuroendocrine changes, immunological effects, diarrhoea, 

leukocytosis, haemorrhage or circulatory shock , and acute death, to chr onic liver cancer, 

mutagenic, and teratogenic effects, skin irritation, immunosuppression, birth defects, 

neurotoxicity, and ÔslowÕ death  (82, 83).  
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Acute mycotoxicosis belongs to the most devastating infections, affecting human being as 

evidenced by seve ral recent outbreaks including the one in Kenya in 2004, that affected 317 

individuals, killed 125, and was caused by the ingestion of aflatoxin - infected maize (84). 

Another fatal outbreak in 1974 killed 100 persons in India because of the consumption of 

aflatoxin - infected corn (83). Not only cereals are a rich source of mycotoxins. Other starch 

rich foods such as dried fruits (83,), beans, peanuts (83) and underground bulbs (84) are also 

frequently affected by fungi, producing different types and amounts o f mycotoxins. The 

actual economic burden of affected crops is enormous, because of the difficulties to control 

fungal growth on SRF (85) and the estimated economic losses are $1.4 billion every year only 

in the USA (83). In the European Union, regulations limit the amount of total aflatoxins to 4 

ng/g, whereas guidelines in a few developing countries and the US limit total aflatoxins to no 

more than 20 ng/g in foodstuffs intended for human consumption (86). In Nigeria, the 

National Agency for Food, Drug Adm inistration and Control has set 20 ng/g as the maximum 

permissible limit for total aflatoxin in foodstuff (86).   

 

Even though preventive methods are very well defined, mycotoxins keep affecting 25% of 

world crops (87). When people started eating SRF thousa nds of years ago, logical reasoning 

informs us that those crops must have been affected by fungal infections and that the 

consumers are likely to have suffered from acute and/or chronic mycotoxicosis. The group of 

Lesley investigated how mycotoxin growth a nd fatal doses of mycotoxins could be prevented 

in non - industrialized countries, which were basically all countries of the world 10 - 30,000 

years ago (88).  

 

These methods are nowadays likely to be well known in the majority of SRF eating 

populations, but it  is unlikely that ancient populations knew how to deal with fungal growth 

on SRF, while even if they did, it does not imply that they avoided consumption of the affected 

foods. ÔEven today situations of relative scarcity of food often forces consumers in m any 

regions to distressing decisions, such as Ôto eat contaminated grain today and worry about the 

consequences tomorrow (or some other time in the future) or starve today and perhaps not 

even have a tomorrowÕ as stated by Bandyopadhyay  (89). This behaviou r is not a unique 

ÔcharacteristicÕ of modern humans, it is the way most individuals think and have thought 

when starving to death.  

 

Several data suggest that people have suffered from more or less fatal mycotoxicosis for 

hundreds of generations and mycoto xin intoxication has without doubt killed thousands of 

people. The mortality rate ranges from 10 - 60% of the infected people and embryos and 

children are among the most affected individuals (90). Important proof for the devastating 

effects of mycotoxins com es from data related with ergotism. Ergotamine and other 
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ergopeptines from the fungus Claviceps purpurea are highly toxic to humans and can cause 

different types of ÔergotismÕ. Convulsive, gangrenous and entero/hyperthermic ergotism 

cause respectively epil eptic convulsions, confusion and death (convulsive), vasoconstriction, 

cold/hot feeling, abortion and gangrene (gangrenous) and nausea, vomiting, diarrhoea, 

increased metabolic rate and excessive salivation (entero/hyperthermic, 80). Convincing 

historical data for the existence of epidemics of mycotoxicosis are as old as 600 BC, when 

people in Assyria suffered from ÔmadnessÕ caused by Ôthe noxious pustule in the ear of grainÕ 

(91) and this seems to be the same disease that affected many parts of Europe in t he tenth 

century referred to as St. AnthonyÕs or Holy fire, and is considered to have been caused by the 

consumption of rye contaminated with ergot alkaloids from Claviceps purpurea. Further 

accounts suggest that other contaminated grains have been respons ible for major outbreaks 

of disease (e.g., the Ten Plagues of Egypt, 83).  

 

Mycotoxins can produce chronic diarrhoea and vomiting. At the same time they highly 

influence the functionality of SGLT1 and GLUT5. Very low doses of mycotoxins inhibit 

nutrient tra nsport in the gut, especially affecting SGLT1 (50% inhibition with a 10  µmol/L 

solution in vitro ) and the fructose transporter GLUT5 (42% inhibition, 92). Later studies in 

animals confirmed these findings (93). Mycotoxins produced by Aspergillus further in hibit 

alpha - amylase activity, which has been evidenced several times in vivo , although mostly in 

chickens (94). The combination of these targets and their effects can be considered the perfect 

cocktail to die because of dehydration, hyponatraemia and MOF.  

 

Aspergillus and its toxins are definitely highly toxic and have killed thousands of individuals, 

including children and adolescents (95).  

The described pathways, by which mycotoxins can have affected human health and even 

mortality rate, could, and probably have, served as important selective pressure factors for the 

observed augmentation of oral AMY1 - GCN in populations with high starch intakes. Complete 

starch digestion would have provided enough glucose to augment SGLT1 activity, improving 

the tran sport of glucose, water and sodium, preventing dehydration, multiple organ failure 

and possibly lethal hyponatraemia in infected individuals.  

 

Of all the pathogens described in this paper and considered as possible cause of selective 

pressure on the number  of AMY1 gene copies, fungi producing mycotoxins seem to be the 

most appropriate candidates.  

 

2.6. Conclusions so far  

The entrance of SRF in the human diet introduced several positive and negative factors. 

Gluten in  SRF can be highly toxic and the incomplete d igestion of resistant starch in  SRF 
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provides an optimal substrate for the growth of possibly lethal pathogens including food 

borne toxic E. coli strains and Salmonella. Dehydration, hyponatraemia and MOF are the most 

damaging effect of gluten - toxicity and food borne pathogens due to chronic diarrhoea and 

vomiting. The same holds for fungi living on  SRF, producing highly toxic mycotoxins that can 

be fatal. Higher salivary alpha - amylase activity through augented AMY1 - GCN can increase 

glucose level in  the gut,  facilitating water, sodium and glucose uptake and protect against the 

above mentioned effects. The observation that people with higher AMY1 - GCN have lower 

blood glucose levels after starch intake supports the latter conclusion, suggesting that this 

polymo rphism has been positively selected for higher glucose level in  the gut.  
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3. Rotavirus, lactose intolerance and AMY1 -GCN 

Rotavirus is one of the most important causes of gastro - enteritis, malnutrition, and diarrhoea 

in young children and animals. Rotavirus  can be extremely dangerous, evidenced by the fact 

that more than 550,000 children die every year from this infectious disease (96).  Rotavirus 

induces diarrhoea and rotavirus - diarrhoea can be lethal because of reduced uptake of sodium 

and subsequent syste mic hyponatraemia through a direct inhibiting effect of rotavirus on the 

SGLT1 mechanism (97). Rotavirus further induces lactose intolerance by inhibiting lactase 

production (98) and dairy intake in people suffering from rotavirus diarrhoea seems to 

augmen t the diarrhoea duration (99). As mentioned before, rotavirus is extremely dangerous 

for children and newborn and is the mayor death cause in children younger than 5 years old 

(96). Newborns produce lactase to break down the lactose in their motherÕs own m ilk, 

converting it into glucose and galactose, providing energy and enough glucose to transport 

water, sodium and glucose through activation of SGLT1. Newborns hardly produce 

endogenous amylase up to 6 months and even after 2 years still show some dependen cy on 

breast - milk amylase to support normal starch breakdown (100).  Nothing in breast - milk needs 

amylase to become digested, so why would breast - milk contain substantial amylase activity?  

 

It has been proposed that breast - milk amylase could serve as a co mpensation for low salivary 

and pancreatic amylase activities in newborns and aid in the digestion of complex 

carbohydrates from the time that complementary foods are introduced in close proximity to 

breastfeeding (101). We suggest that the substantial amy lase level in breast - milk has become 

needed to digest complex starch rich food, at times that pathogens, but especially rotavirus, 

cause diarrhea through their combined disturbance of lactase activity, damage to enterocytes 

and inhibition of sodium transpo rt (102).  

 

Rotavirus might be considered an important selective pressure factor (103). It has probably 

entered the human environment as a zoonose from domestic animals (104). The majority of 

individuals dying from rotavirus infections live in developing countries; co untries where 

domestic animals and novel zoonoses are relatively new. We suggest that augmented AMY1 -

GCN has been selected for the protection against lactose intolerance in the newborn caused 

by pathogens in general but more specifically by Rotavirus. High  amylase level in breast - milk 

facilitates starch digesting in newborns that suffer from Rotavirus - induced lactose -

intolerance. Improved starch break down increases glucose level in the newborn gut, activates 

SGLT1 and guarantees a minimum of sodium, water and glucose transport into the 

bloodstream and thereby protects against possibly lethal hyponatraemia, dehydration and 

MOF. This is exactly the rationale behind oral rehydration in individuals suffering from 

Rotavirus diarrhoea (105). Rotavirus is nowadays  hardly fatal in North European countries. 

Augmentation of AMY1 - GCN could be at the basis of the lack of virulence of Rotavirus in this 
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part of the world, whereas Rotavirus in Africa is still a major cause of childhood and overall 

mortality (99, 105).  
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4. Discussion  of our hypotheses  and final conclusions  

Table 1 shows an overview of the different environmental factors that might have caused 

selection for lactase persistence and augmented AMY1 - GCN. We suggest that these factors are 

not mutually exclusive, b ut should be viewed upon as complementary and logical in the scene 

of evolutionary biology. Lactase persistence and augmented AMY1 - GCN are two genetic 

adaptations showing intense positive selection (lactase persistence > AMY1 - GCN) in humans. 

Lactose and st arch have deleterious effects on human health when digesting is incomplete 

and this occurs when lactase and amylase do not reach sufficiently high activities. Lactose 

intolerance (not treated in this review) itself can be detrimental to human health, throu gh 

causing symptoms like irritable bowel syndrome, watery stool and excessive flatus (106). 

Lactose intolerance can nevertheless hardly have served as the only factor in the observed 

highly positive selection of lactase persistence, because of the lack of sufficient influence on 

mortality (107), while lactose intolerance also does not seem to affect fertility (108). A recent 

publication (109) also challenges the rather simple Ôfresh milk intakeÕ hypothesis as the driving 

force behind lactase persistence. .  

 

Incomplete starch digestion also affects human health, but without bacterial overgrowth of for 

instance Escherichia coli, symptoms would be troubling, but mortality rate and reproduction 

are less affected. Looking at both genetic adaptations in a broader perspective suggests that 

they might protect against the severe deleterious effects of several pathogens and the 

damaging effects of gluten. Pathogens like Rotavirus affect lactose digestion directly, whereas 

incomplete starch digestion facilitates the gro wth of possibly lethal cholera like E. Coli strains. 

Humans have explored new environments more than any other animal and novel 

environments challenge the immune system with new climatological conditions, food and, 

most of all, pathogens.  

 

The last big re volution in the human evolutionary history has been the development of 

agriculture: somewhat like 10 thousand years ago someone started to exploit the observation 

that a plant growths from a seed and agriculture started. With agriculture came the 

domestica tion of cattle and with cattle came new pathogens. The evidence we have given in 

this article supports our hypotheses that it are these factors that have driven the highly 

positive selection of lactase persistence and augmented AMY1 - GCN: both adaptations p rovide 

enough glucose to activate SGLT1, which is the most important glucose, sodium and water 

transporter in the gastro - intestinal tract. The increased capacity of water, sodium and glucose 

transport from the gut into the blood stream, has probably saved thousand of individuals 

infected with pathogenic E. Coli, Rotavirus and TB, but most of all from highly lethal fungi 

living on starch rich food. The adaptations also protected them against the highly damaging 

effects of gluten intake. We therefore contend that lactase persistence and augmented AMY -
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GCN are not merely adaptations to nutrients in novel foods; they were needed to protect 

humans against novel pathogens that arose with agriculture and the domestication of cattle. 

Food born pathogens, living on me at and starch rich foods are still serious threats to human 

health and it is therefore necessary to further investigate how we can limit the presence of 

possibly lethal pathogens in human and animal foods.  
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Table 1. Overview of the proposed mechanisms for  the strong positive selection of lactase 

persistence and augmented AMY1 -GCN. 

 

Selective pressure 

factor  

Evolutionary 

target  

Consequences  Contemporary 

solution  

Evolutionary 

adaptation  

Benefit  

Milk  Lactose 

intolerance  

Diarrhoea, Rickets.  

Energy and 

calcium  deficiency,  

Lactose free dairy 

products  

Vitamin D  

Calcium  

Lactase 

persistence  

Availability of important 

macro -  and 

micronutrients including 

vitamin D and Calcium  

Starch  Incomplete 

digestion  

Intestinal malaise.  

Energy deficiency  

 Higher salivary 

amylase 

production 

and activity by 

higher AMY1 -

GCN 

Availability of important 

macro -  and 

micronutrients  

Mycoplasma  

Pneumonia  (MP)  

Immune 

system  

Pneumonitis death  Antibiotics  Lactase 

persistence  

Availability of quercetin 

and increased defence 

against MP  

Gluten in  SRF Gut barrier  

SGLT1 

 

IIPS, chronic 

diarrhoea, 

vomiting, loss of 

fertility, death  

Gluten free cereals  Higher salivary 

amylase 

production 

and activity by 

higher AMY1 -

GCN 

Higher gut glucose and 

activation of SGLT1. 

Protection against 

dehydration, 

hyponatr aemia and MOF  

Starch  Incomplete 

digestion  

E. coli overgrowth 

syndrome. 

Diarrhoea, bladder 

infection  

Antibiotics  

Oral rehydration  

 

Higher salivary 

amylase 

production 

and activity by 

higher AMY1 -

GCN 

Higher gut glucose, 

activation of SGLT1. 

Protection against 

dehydration, 

hyponatraemia and MOF. 

Availability of mannose; 

effective against E. coli 

infections  

Agriculture and food 

born pathogens 

(zoonoses), 

especially Fungi , 

but also E. Coli, 

Salmonella, 

Campylobacter, 

Clostridium  

Immune 

system. 

SGLT1 

Mycotoxins. 

Diarrhoea, 

vomiting, 

gangrene, abortion, 

epilepsy, infant 

death by DH, HN 

and/or MOF  

Antibiotics  

Oral rehydration  

Antifungal treatment  

Higher salivary 

amylase 

production 

and activity by 

higher AMY1 -

GCN 

Higher gut glucose, 

activation of SGLT1. 

Protection against 

dehydration, 

hyponatraemia and MOF.  

Rotavirus  Lactase gene  

Immune 

system  

Lactose 

intolerance, lethal 

diarrhoea mostly in 

newborn  

Oral rehydration  

Alternative feeding  

Higher salivary 

amylase 

production 

and activity by 

higher AMY1 -

GCN 

Inc reased amylase in 

breast milk, improving 

digestion of SRF when 

the newborn developed 

lactose intolerance and 

needed complex food to 

survive  
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