Endothelial-Mesenchymal Transition

Published in:
European Heart Journal

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 27-08-2023
key event in vascular proliferative diseases by releasing cytokines and growth factors. This activation is mediated by Shh and PDGF-BB induced activation of Smo-dependent signalling and the selective inhibitor GDC-0449 may serve as a novel and promising therapeutic strategy to prevent neointima formation.

P700 | BENCH

The novel mineralocorticoid receptor antagonist Finerenone attenuates neointima formation after vascular injury

R.-J. Musmann1, J. Dutzmann1, J.-M. Daniel1, P. Kolkopf2, J. Bauersachs3, D.G. Seding1, H. Hannover Medical School, Hannover, Germany; 2Bayer Healthcare Pharmaceuticals, Global Drug Discovery, Cardiology Research, Wuppertal, Germany

Background: Ischemic cardiomyopathy as a result of coronary artery disease is the leading cause for heart failure. In consequence, the effect of novel heart failure therapeutics on vascular function and remodeling processes is of pivotal interest. Furthermore, a non-necrotic mineralocorticoid receptor antagonist, holds the promise to be safe and efficient in the treatment of patients with heart failure and/or chronic kidney disease. However, the effects on vascular function remain elusive.

Purpose: The aim of this study was to determine the functional effect of selective Mrg receptor agonists in vascular cells in vitro and the effect on vascular remodeling following acute vascular injury in vivo.

Methods and results: Finerenone dose-dependently and significantly reduced aldosterone-induced human coronary artery smooth muscle cell (HCA-SMC) proliferation as quantified by BrdU incorporation. Furthermore, Finerenone dose-dependently and significantly prevented aldosterone-induced apoptosis in human umbilical vein endothelial cells (HUVEC) as measured with a flow cytometry based FLICA-assay.

Conclusion: Finerenone treatment significantly attenuates HCASMC prolifereation and simultaneously prevents apoptosis of endothelial cells in vitro. This is reflected by a significantly reduced neointima formation and reduction of luminal stenosis as well as a trend towards an accelerated endothelial healing of the injured vessels. Thus, apart from its beneficial effects in heart failure therapy, Finerenone might provide favorable vascular effects through restoring vascular integrity and preventing adverse vascular remodeling.

Acknowledgement/Funding: This study is supported by Bayer Healthcare Pharmaceuticals, Wuppertal, Germany

P702 | BENCH

Endothelial-Mesenchymal Transition: mirR-101 as a new target to treat intimal hyperplasia

B. Vanchin1, M. Maleszewska2, B. Kiers2, L.A. Brouwer3, B. Van Der Pol4, A.C. Pereira5, M.C. Harmsen5, J.R.A.J. Moonen5, G. Krenning6 on behalf of Cardiovascular Regenerative Medicine Group (CAVAREM). 1University Medical Center Groningen. Cardiovascular Regenerative Medicine Group, Department of Pathology and Medical Biology, Groningen, Netherlands; 2Heart Institute of the University of Sao Paulo (InCor), Laboratory of Genetics and Molecular Cardiology, Sao Paulo, Brazil; 3Gentagel Heart Center UMCU, Department of Pediatric Cardiology, Groningen, Netherlands

Introduction: Endothelial-Mesenchymal Transition (EndMT) is a specific form of cellular dysfunction wherein endothelial cells acquire a mesenchymal phenotype and lose their endothelial functions. We, and others, recently described that EndMT contributes to intimal hyperplasia and atherosclerosis.

Methods and results: We used in silico analysis to identify mirRNAs that could evoke posttranscriptional silencing of Ezh2. In Lucerase reporter assays, mir-101 efficiently inhibited expression of the luceralse reporter by interacting with the 3’UTR of Ezh2. Using a uniform laminar flow setup, we revealed that MAPK7 induced mirR101 expression, which was blocked by the selective MAPK7 inhibitor BIX02189 (p<0.05). Furthermore, ectopic expression of mir-101 in endothelial cells reduced the expression of Ezh2.

Conclusion: Ezh2 is the catalytic subunit of the Polycomb Repressive Complex 2 that methylates lysine 27 on histone 3 (H3K27me3). H3K27me3 is a repressive chromatin mark that inhibits gene expression. Currently, it is elusive how the crosstalk between MAPK7 and Ezh2 is regulated in the endothelium and if the balance between MAPK7 and Ezh2 is disturbed during intimal hyperplasia.

Acknowledgement/Funding: Mongolian Government Scholarship (BV)

P703 | BEDSIDE

TNF-antagonists improve arterial stiffness in patients with rheumatoid arthritis: a meta-analysis

A. Gravos, C. Vlachopoulos, G. Georgiopoulous, P. Pietri, D. Terentes-Printzios, C. Georgakopoulous, K. Stamatepoulos, D. Tousoulis. Hippokration General Hospital, Athens, Greece

Background: Patients with rheumatoid arthritis (RA) have a higher arterial stiffness than their age-matched healthy counterparts and an increased inflammatory burden that might be associated with their increased cardiovascular risk. While tumor necrosis factor alpha (TNF)-antagonists have been found to reduce inflammatory markers in RA, it is debatable if they have favorable effects on surrogate markers of cardiovascular outcomes.

Purpose: We conducted a meta-analysis to assess the effect of TNF-antagonists on arterial stiffness, a predictor of cardiovascular events and mortality, in RA patients.

Methods: A search of PUBMED was conducted to identify studies into the ef-