Impact of medical microbiology
Dik, Jan-Willem

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Appendix I: Bibliography
AT. [Urinary tract chemotherapeutic Nitrofuration - Organ damaging and outdated.] *Arznei Telegramm.* 1993. 11;128.

Bettiol E and Harbarth S Development of new antibiotics: taking off finally?. Swiss Medical Weekly. 2015. 145;

Faber MS, Heckenbach K, Velasco E and Eckmanns T Antibiotics for the common cold: expectations of Germany’s general population. Eurosurveillance. 2010. 15;(35):

Hakkaart-van Roijen L, Tan SS and Bouwmans CAM Handleiding voor kostenonderzoek, methoden en standaard kostprijzen voor economische evaluaties in de gezondheidszorg. 2010. CVZ. Diemen.

Hoffmann F and Bachmann CJ [Differences in sociodemographic characteristics, health, and health service use of children and adolescents according to their health insurance funds]. *Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz.* 2014. 57;(4): 455-63.

Kaan JA [Experiences with practical microbiology in Germany; what happens when the clinical microbiologist is put at a distance. An interview with W.E. Silvis, clinical microbiologist in Twente.]. *Nederlands Tijdschrift Voor Medische Microbiologie*. 2015. 23;(3): 95-100.

Plantinga NL and Bonten MJ Selective decontamination and antibiotic resistance in ICUs. Critical Care. 2015. 19;259.

Society for Healthcare Epidemiology of America, Infectious Diseases Society of America and Pediatric Infectious Diseases Society Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). *Infection Control and Hospital Epidemiology*. 2012. 33;(4): 322-7.

SWAB De kwaliteit van het antibioticabeleid in Nederland. 2012.

van den Bosch CM, Geerlings SE, Natsch S, Prins JM and Hulscher ME Quality indicators to measure appropriate antibiotic use in hospitalized adults. *Clinical Infectious Diseases.* 2015. 60;(2): 281-91.

van der Bij AK, Kardamandidis K, Frakking FN, Bonten MJ and Signaleringsoverleg Ziekenhuisinfecties en Antimicrobiële Resistentie [Nosocomial outbreaks and resistant microorganisms]. *Nederlands Tijdschrift Voor Geneeskunde*. 2015. 159;

van der Linden MW, van Suijlekom-Smit LWA, Schellevis FG and van der Wouden JC [Second nationwide study on diseases and procedures at general practitioners]. 2005.172-32. NIVEL. Utrecht.

van Leeuwenhoeck A Observations, communicated to the publisher by Mr. Antony van Leeuwenhoeck, in a Dutch letter of the 9th of Octob. 1676. Here English’d: Concerning little animals by him observed in rain- well- sea- and snow water; as also water wherein pepper had lain infused. *Philosophical Transactions*. 1677. 12;821-31.

Appendix II: English summary
Healthcare expenditures are an important topic. As a country we aim at maintaining one of the best healthcare systems in the world, where everyone can be provided with the best quality of care. Such a system has considerable costs and with a growing elderly population, it is expected that these costs will rise further in the future. One can spend each Euro only once. Thus is important to do so with the highest return. In other words, the relationship between costs and desired outcome should be as optimal as possible. This way one is ensured of efficient spending. It is thus of utmost importance to know what the effects of treatments and interventions are. How is the budget of a hospital department spent for example? What are the effects of a treatment? In politics, at insurance companies, but also at healthcare providers such as hospitals such questions are asked more and more. The research of this thesis covers these questions regarding the Department of Medical Microbiology and Infection Prevention (MMB) of the University Medical Center Groningen (UMCG), the Netherlands.

A hospital’s Department of Medical Microbiology is in place to make sure that several questions that patients (and physicians) have are answered. What is the cause of an infection? How should the infection be treated? How is spread of infections prevented? To answer these questions, clinical microbiologists, infectious disease specialists, infection prevention nurses and many laboratory analysts are day in day out busy with culturing and detecting microorganisms, interpreting results of these cultures, giving treatment advice based on these results and preventing spread of microorganisms within the hospital. This thesis covers mainly the treatment and prevention of bacterial infections. Treatment of bacteria is becoming more and more difficult, because they are becoming more and more resistant against the treatment that physicians prescribe, antimicrobials, or more specifically in this thesis, antibiotics.

Widespread resistance against antimicrobials exists already for decades in clinical medicine, basically as long as antimicrobials are used in a healthcare setting. This is partly caused by inappropriate use. Initially, there were always new classes of antibiotics found and developed that could be used if old ones were not efficient anymore due to resistance. However, during the last twenty years, no new classes were found, just some new antibiotics within the existing classes. It can be expected that also for the coming years, no new classes will be discovered. This means we have to make do with what we have available right now. However, clinically available antibiotics are less and less effective. To make sure that they do not completely lose clinical effectiveness, it is important to curb resistance development. One way to do so is to ensure that all antimicrobial treatment given to patients is with appropriate drugs, dosage and duration. Treating too long, with too low doses or with the wrong antibiotic should be prevented as much as possible. The Department of Medical Microbiology plays an important role in appropriate infection management.
Firstly, it is important to know what kind of patients are cared for in one’s hospital. Do they carry resistant bacteria with them? Are they from another country with a different epidemiology? How much antibiotics are prescribed within the region surrounding the hospital? This last point is important because this is a contributor and indicator for resistance (development). The research therefore started with a study looking at this. How much antibiotics are prescribed in the north of the Netherlands. But also, how much is prescribed in the bordering region of northwestern Germany. These are all patients that eventually might end up in the UMCG. The study showed that there are big differences between the Netherlands and Germany. Especially for the use of oral second-generation cephalosporins, an antibiotic class that should be used with limitation, prescriptions are much more common in Germany. Even though we are comparable, neighboring countries.

If one knows the patients living in the healthcare region of the hospital, you can adjust policies and treatment to these people. It is important that the whole process of treatment is properly documented: performing appropriate diagnostics, prescribing the appropriate therapy and having proper infection prevention in place. The UMCG calls this the “AID Stewardship Model”, comprising Antimicrobial Stewardship, Infection Prevention Stewardship and Diagnostic Stewardship. It is based on the principle of Antimicrobial Stewardship, which is currently implemented and rolled-out worldwide in healthcare institutions. The goal is to provide optimal antimicrobial therapy. We argue that this is not enough, but that optimal diagnostics and infection prevention are also essential. Without diagnostics it is impossible to provide appropriate therapy and without infection prevention microorganisms can spread uncontrollably. This thesis follows from here on this model, covering evaluations of all these three subjects.

An Antimicrobial Stewardship Program has as focus the improvement of antimicrobial therapy to provide the optimal antibiotic, dosage and duration. You can reach this goal by different means, depending on the country, the setting, the healthcare institution, the patient groups, etc. With different interventions and multiple ways of evaluation it is important to first consider these factors. Next, one should establish the kind of intervention, the outcome measures and the way of measuring these. It is also important to know what has been published already. Financial evaluations are of a questionable quality so far, making comparison nearly impossible. Keeping this in mind, we evaluated the UMCG ASP. A program that evaluates antimicrobial therapy after two days to see if adjustments can be made based on diagnostic results. The program was implemented at the urology ward and after one year patients were compared to patients from the same ward before implementation of the ASP. This was done on a clinical and financial level. Results were positive in all aspects investigated. Patients used less antibiotics, especially intravenously, and less complex patients could be sent home earlier. Financial benefits outweighed costs six times.
An Infection Prevention Stewardship Program (ISP) focuses on the prevention of infections due to spread within a hospital. Furthermore, it is important, in cases of spread (such as an outbreak), to ensure swift control. However, if there is an outbreak, it is not clear how much this the hospital costs. This was evaluated and the conclusion was, that per patient per day there are extra costs of €519, a considerable figure. This shows that not just the clinical consequences are major, but also the financial ones. It is also highly likely, that it is financially beneficial to spend extra to prevent outbreaks. In the second ISP study we showed indeed that this is the case. Over a time period of eight years a lot of extra money was invested in infection prevention in the UMCG, e.g. for extra disposable clothing, disinfection alcohol, and more surveillance cultures. Even though there were more patients entering the UCMG carrying outbreak-causing bacteria, we detected no rise in the number of outbreak patients. It seems, that the extra spending for infection prevention pays off by having less outbreak patients (and their associated costs).

Finally, the Diagnostic Stewardship Program (DSP) had been addressed. Here, we looked at one of the most performed diagnostic test in Clinical Microbiology: blood cultures. These cultures are prescribed for almost all patients receiving antibiotics and the results can be used to optimize therapy. For a group of nearly 3000 patients who received antibiotics at start of their admission it was evaluated whether blood cultures were performed. This was the case in only 48% of the patients. Alarmingly low, but unfortunately comparable with other studies in Europe. We analyzed which factors were associated with the drawing of blood for cultures, as well as which factors were associated with the length of stay of the two patient groups. Performing blood cultures was associated with other diagnostics (such as CRP), suggesting a bundle approach. Patients with blood cultures had a significantly shorter length of stay and having blood cultures was positively associated with this. These data should trigger more elaborate (prospective) studies looking at the effects of microbiological diagnostics.

We can conclude that the Department of Medical Microbiology has a highly positive financial impact on a hospital-wide level. Interventions performed to improve antimicrobial therapy, infection prevention and diagnostics all ensure better treatment of patients, improved patient safety and eventually lower costs. This in turn creates room for increased efficiency and revenues. The recommendation of this thesis therefore is to firmly embed costs for Medical Microbiology and Infection Prevention and not to see these costs as easily-accessible short-term targets for budget cuts. A solution for embedding would be to distribute costs and benefits of infection prevention hospital-wide through an insurance model. Such a model should provide a financial incentive for individual departments to improve infection management and at the same time provide more clarity for all stakeholders regarding distribution of budgets. Ultimately, prevention is the key to lower costs in the future, and
improved quality of care by an optimal, high quality process-oriented approach will be highly cost-effective.
Appendix III: Nederlandse samenvatting
Kosten in de zorg zijn een belangrijk onderwerp. Als land willen we het beste zorgstelsel ter wereld, waarin iedereen geholpen kan worden met de beste kwaliteit zorg. Hieraan zitten echter kosten verbonden en zeker met de ouder wordende bevolking is de verwachting dat zorgkosten de komende decennia nog aanzienlijk zullen stijgen. Elke euro in de zorg kun je maar één keer uitgeven en het is daarom belangrijk dat je deze euro zo uitgeeft, dat je hiervoor het meeste terug krijgt. Met andere woorden, de verhouding tussen de kosten en de gewenste uitkomst moet zo optimaal mogelijk zijn. Op die manier zorg je dat er zo efficiënt mogelijk wordt omgegaan met de beschikbare middelen. Het is dus van groot belang om te weten wat de effecten zijn van behandelingen en interventies. Wat gebeurt het met het geld van een afdeling in een ziekenhuis bijvoorbeeld? Wat is het effect van een behandeling? Dit soort vragen worden steeds vaker gesteld. In de politiek, bij zorgverzekeraars, maar ook bij zorgverleners zoals de ziekenhuizen. Het onderzoek dat behandeld wordt in deze thesis heeft deze vragen gepoogd te beantwoorden voor de Afdeling Medische Microbiologie en Infectiepreventie (MMB) van het Universitair Medisch Centrum Groningen (UMCG).

Een Afdeling Medische Microbiologie in een ziekenhuis is er om te zorgen dat een aantal vragen van patiënten (en hun behandelaars) te beantwoorden. Wat is de oorzaak van een infectie? Hoe moet je deze infectie behandelen? Hoe voorkom je dat besmettingen plaatsvinden in het ziekenhuis? Om deze vragen te kunnen beantwoorden zijn medisch microbiologen, infectiologen, deskundigen infectiepreventie en heel veel analisten elke dag bezig met het kweken van micro-organismen, het interpreteren van uitslagen van deze kweken, het geven van behandeladvies op basis hiervan en het voorkomen van verspreiding van micro-organismen binnen het ziekenhuis. Deze thesis behandeld met name de behandeling en preventie van bacteriële infecties. De behandeling van infecties veroorzaakt door bacteriën is steeds vaker, steeds moeilijker. Dit komt omdat bacteriën steeds vaker resistent zijn voor de behandeling die ziekenhuizen voorschrijven, antimicrobiële middelen oftwel antibiotica.

Wijdverbreide resistentie tegen antimicrobiële middelen komt al decennia lang voor, al zolang er antimicrobiële middelen gebruikt worden in de gezondheidszorg. Dit wordt mede veroorzaakt door verkeerd gebruik van deze middelen. Er werden echter ook altijd weer nieuwe klassen antibiotica gevonden die gebruikt konden worden als de oude niet meer efficiënt waren door opgekomen resistentie. De laatste twintig jaar zijn er echter geen nieuwe klassen meer gevonden, enkel nog nieuwe antibiotica binnen de al bekende klassen. Het is de verwachting dat ook de komende jaren er geen nieuwe klassen antibiotica gevonden gaan worden. Dit betekent dat we het moeten doen met wat we nu hebben. En wat we nu hebben is steeds vaker niet meer effectief. Om te voorkomen dat er straks geen enkel middel meer effectief is, moet er worden gezorgd dat de ontwikkeling van resistentie zo veel mogelijk terug gedrongen wordt. Dit kan onder meer door te zorgen dat de gegeven antibiotica aan patiënten correct is, in de juiste dosis en voor de juiste duur. Te veel, te weinig of het verkeerde type
moet zo veel mogelijk vermeden worden. De Afdeling Medische Microbiologie speelt hierin een belangrijke rol.

Allereerst is het belangrijk om te weten wat voor patiënten er in je ziekenhuis liggen. Dragen deze al resistentie bacteriën bij zich? Komen ze uit het buitenland met een andere epidemiologie? Wordt er veel of weinig antibiotica voorgeschreven in de regio rondom het ziekenhuis? Dit laatste is belangrijk, omdat dit een oorzaak, en dus ook indicator is voor resistentie (ontwikkeling). Het onderzoek begint daarom met een studie die hier naar kijkt. Hoe veel antibiotica wordt er voorgeschreven in Noord-Nederland. Maar tevens ook hoe veel wordt er voorgeschreven in de aangrenzende regio in Noordwest-Duitsland. Dit zijn allen mensen die uiteindelijk in het UMCG terechtkomen. De studie laat zien dat er grote verschillen zijn tussen Nederland en Duitsland. Met name het gebruik van oraal gegeven tweede generatie cefalosporines, een middel dat idealiter zo min mogelijk gebruikt wordt, ligt in Duitsland veel hoger. En dat terwijl we vergelijkbare buurlanden zijn.

Als je weet wat voor patiënten in de regio van je ziekenhuis wonen, kun je beleid en behandeling aanpassen op deze mensen. Hiervoor is het ook van belang dat het hele proces van behandelen goed beschreven is: het doen van de juiste diagnostiek, het toepassen van de juiste therapie en het hebben van goede infectiepreventie. Het UMCG noemt dit het AID Stewardship Model: Antimicrobial Stewardship, Infection Prevention Stewardship en Diagnostic Stewardship. Dit is gebaseerd op het principe van Antimicrobial Stewardship wat inmiddels wereldwijd op verschillende manieren wordt geïmplementeerd in zorginstellingen. Het doel hiervan is het geven van correcte antimicrobiële therapie. Wij betogen dat alleen dit niet genoeg is, maar dat correcte diagnostiek en infectiepreventie ook van essentieel belang is. Zonder diagnostiek is het onmogelijk om correcte therapie te geven en zonder infectiepreventie vindt er ongebreidelde verspreiding van micro-organismen plaats. De thesis volgt verder vanaf hier ook dit model, waarbij evaluaties van elke van deze drie onderdelen afzonderlijk behandeld worden.

Een Antimicrobial Stewardship Program (ASP) gaat uit van stimulatie tot het geven van de meest optimale antimicrobiële therapie. Dit kan op allerlei verschillende manieren en is afhankelijk van het land, de instelling, de patiënt etc. Omdat er verschillende interventies zijn, die je op verschillende manieren kunt evalueren, is het belangrijk daar eerst over na te denken. Je moet vaststellen wat voor interventie er wordt geïmplementeerd, wat de uitkomstmaten zijn er en hoe je deze meet. En ook belangrijk, wat is er al beschreven in de literatuur. Financiële evaluaties zijn vaak van een matige kwaliteit en dit maakt vergelijkingen erg lastig. Dat in ogenschouw nemend, is het ASP van het UMCG geëvalueerd. Een programma waarbij op dag twee van antimicrobiële therapie, deze therapie geëvalueerd wordt om te kijken of deze
wellicht aangepast kan worden op basis van gedane diagnostiek. Dit is geïmplementeerd op de urologie afdeling en na een jaar tijd zijn deze patiënten vergeleken met patiënten die op dezelfde afdeling lagen voordat het ASP geïmplementeerd werd. Dit is zowel op een klinisch niveau als een financieel niveau geëvalueerd. De resultaten waren heel positief. Patiënten gebruikten minder antibiotica, met name minder antibiotica die intraveneus wordt gegeven en de minder complexe patiënten konden daardoor eerder naar huis toe. De financiële opbrengsten van deze interventie waren zes keer groter dan de kosten van het ASP.

Een Infection Prevention Stewardship Program (ISP) richt zich op het voorkómen van infecties door verspreiding in het ziekenhuis. Daarnaast is het belangrijk om, in het geval van verspreiding (zoals bijvoorbeeld een uitbraak), te zorgen dat dit zo snel mogelijk tot controle wordt gebracht. Maar als er nou een uitbraak is, wat kost dit het ziekenhuis dan? Dit is onderzocht en de conclusie is dat het per positieve patiënt €519 per dag kost. Een aanzienlijk bedrag dus. Wat laat zien dat niet alleen de klinische consequenties van een uitbraak groot zijn, maar ook de financiële. Dit maakt, dat het waarschijnlijk financieel ook loont om kosten te maken om zo uitbraken te voorkomen. In het tweede ISP onderzoek laten we dat zien. Gedurende acht jaren is er veel extra geld geïnvesteerd in het UMCG aan infectiepreventie, bijvoorbeeld aan extra wegwerpkleding, desinfectie alcohol en meer surveillance kweken. Maar, ondanks dat er in het UMCG steeds meer patiënten binnenkomen met bacteriën die uitbraken kunnen veroorzaken, zien we geen stijging in het aantal uitbraakpatiënten. Het lijkt er dus op, dat de extra kosten gemaakt voor infectiepreventie zich uit betalen in minder uitbraakpatiënten (en de geassocieerde kosten van deze patiënten).

Tenslotte, het Diagnostic Stewardship Program (DSP). Hier hebben we gekeken naar een van de meest uitgevoerde diagnostische testen binnen de microbiologie: de bloedkweek. Deze kweek wordt voorgeschreven voor bijna iedereen die antibiotica krijgt en de uitslag kan worden gebruikt in het stroomlijnen van de therapie. Voor een groep van bijna 3000 patiënten die antibiotica kregen bij de start bij hun opname, is er gekeken of er ook gelijkvloei bloedkweken zijn afgenomen. Dit was maar in 48% van de gevallen gedaan. Schrikbarend laag, maar helaas overeenkomstig met andere studies in Europa. Daarna is er gekeken wat voor factoren associëren met het afnemen van bloedkweken en nog interessanter, welke factoren associëren met de ligduur van beide groepen patiënten. Het blijkt dat het doen van bloedkweken een associatie vertoont met andere diagnostiek (zoals CRP) wat suggereert dat er een bundel van diagnostiek wordt gedaan. De groep met kweken lag significant korter in het ziekenhuis en het doen van bloedkweken veroorzaakte een positivie associatie. Dit soort onderzoek biedt perspectief voor nieuwe grotere studies waar nog preciezer wordt gekeken naar de effecten van microbiologische diagnostiek.
De conclusie is dan ook dat de afdeling Medische Microbiologie in het UMCG een zeer positieve financiële impact heeft. Interventies die gedaan worden in het kader van therapie verbeteren, infectiepreventie en diagnostiek zorgen elk voor betere behandeling van patiënten, grotere patiëntveiligheid en uiteindelijk voor lagere kosten en/of potentie tot hogere efficiëntie en omzet. Het advies voortvloeiend uit dit onderzoek is dan ook om de kosten van een afdeling als Medische Microbiologie al dan niet inclusief Infectiepreventie goed in te bedden en dit zeker niet te zien als makkelijke korte termijn bezuinigingspost. Een oplossing voor betere inbedding zou kunnen zijn dat kosten en opbrengsten van infectiepreventie ziekenhuis breed worden verdeeld via een verzekeringsmodel. Zo’n model moet een financiële prikkel geven om correct om te gaan met infectiemanagement en tegelijkertijd de onduidelijke geldstromen van tegenwoordig verhelderen voor alle stakeholders. Uiteindelijk geldt dat preventie de sleutel is tot lagere kosten in de toekomst en dat verbeterde kwaliteit van zorg dankzij optimale, procesgeoriënteerde aanpak waarschijnlijk zeer kosteneffectief is.
Appendix IV: Publication lists
Publications included in this thesis

Other publications

Oral presentations

Poster presentations

Appendix V: Acknowledgements / Dankwoord
All good things come to an end, also PhD projects. And when the time is there, I have to acknowledge all the fantastic people that made this project possible. First and foremost that has to be my first promoter, prof. dr. Friedrich. Dear Alex, we first met in October 2012. I graduated in the summer of that year and was looking for a job. Someone suggested talking to you. Even though you started working in Groningen just 1 year earlier, you were already famous for your network. After listening to my talk, instead of suggesting which biomedical company might be interesting, you offered me a PhD position. Something I did not expect at all. Although I was not specifically looking for a research position, your hugely inspirational talk about antimicrobial resistance, differences between Germany and the Netherlands and the financial consequences quickly convinced me I should grasp this opportunity with both hands. During my whole PhD you remained this visionary and inspirational leader. Sometimes more on the background, sometimes more in the forefront, but always present. I cannot thank you enough for the opportunity you gave me.

Secondly, prof. dr. dr. Sinha, my clinical microbiological conscience and second promoter. Dear Bhanu, during my project, the focus shifted more and more towards antimicrobial stewardship and the implementation of the A-Teams. As UMCG we are on the forefront in the Netherlands when it came to A-Teams, not just the implementation but also the evaluation. It seemed only natural that you should become my second promoter of my project and during the years you became my direct supervisor. Whenever I needed some explanation of the clinical processes, I could always go to you, and you where more than willing to explain everything in detail. Although I had to plan such questions carefully, because it might just cost me the rest of the afternoon. Over the years we gave dozens of presentations all over the world advocating the UMCG A-Team and ASP. Being chosen as a best-practice by the Dutch government was fantastic recognition of the work.

Due to the broad scope of the project, I am blessed (and sometimes cursed) with another two extra (co-)promoters. As this was a financial project as well, I had the pleasure of having prof. dr. Postma as my last promoter. Dear Maarten, I saw you perhaps less frequent as my other (co-)promoters, being in another department and another field of research. However, you were always available when I needed help in the financial evaluations. It quickly became clear that you had the same enthusiasm about the project as Alex had, which made it a joy to discuss our work. Furthermore, you arranged perfect substitution for all the times you were unavailable, in the form of Pepijn Vemer.

Finally, besides a clinical microbiological promoter from the UMCG, I also had one co-promoter from Certe Laboratories, dr. Hendrix. Dear Ron, as close collaborator and friend of Alex you were right there from the beginning of my project. Especially the financial focus is something that can spark you interest and enthusiasm, especially when it deals with your pet-project of stewardship and A-Teams. I think it is safe to say I had to get used to your direct but also lighthearted way of communicating. Eventually that worked out more than fine, and I always thoroughly enjoyed our talks and meetings. It also gave me to opportunity to ‘escape’
the UMCG once in a while and cycle to the other side of Groningen, to get some much needed fresh air and exercise.

Off course I have to thank my defense committee for their willingness to read, comment and question my thesis. Prof. dr. Degener, prof. dr. Kluytmans and prof. dr. Voss. As well as the extended committee, prof. dr. Von Eiff, dr. ir. Goettsch, prof. dr. Kern, prof. dr. De Smet, and prof. dr. Werker.

Dear Jerome, even though I already had plenty of (co-)promoters, the more daily supervision was often your task. When all of them were once again abroad or buried in other tasks, I could always depend on you (and your Nespresso machine). Thank you so much for all the help, but even more for all the coffee breaks and discussions on cars, cloths and other non-related work stuff. Besides that, you were also always available for questions and arranging contacts in the UMCG, which made my work so much easier.

My paranimfs, Corien and Anne. Thank you so much of the support during these last couple of months as paranimf. Corien, we have known each other already 20 odd years and during those years we had fantastic times travelling together throughout Europe (and even Africa), cooking, drinking or just meeting up. Off course you had to be part of this project in one way or another. Anne, when you and Peter got together, I was more or less included as friend and roommate. Luckily for us, that worked out more than fine, especially considering the fact that the three of us ended up living together when all other roommates moved out. When I started my PhD, you were working in the UMCG as well doing your research internship, which meant lots of coffee meetings. You then left to finish your MD, but in my final year, you came back to the UMCG. Now as fellow PhD student which meant we could continue our coffee meetings just as before. Thank you both!

All the people from the department of Medical Microbiology, thank you so much for all the help and support I got during my project. In non-particular order (and with the danger of forgetting someone), thank you: Piet and Johan, Randy, Anne, Kasper, Jan, Rik, John, Hajo and Corinna, Erik, Greetje, Bert, Jet, Dirk, Mariëtte, Jan, Lenny, Adriana, Ineke, Martijn, Jan-Maarten, Hermie, Anke, all the AIOS’s and many more. We work closely together with the Pharmacy department and of the people there I need to thank at least Prashant Nannan Panday, the best pharmacist an A-Team could wish for. I changed rooms three times and that means many roommates to thank as well: Henna, Matty, René, Henk, Anja, Mehdi, Mariano, Tjibbe, Kai, Silvia, Mithilla, Linda, Sigrid, Jelte, and Ruud. The fantastic secretary staff of our
department: Ank, Marchiene, Carolien, Jolanda, Judith, and Bianca. And finally all my students: Tessa, Marlon, Anja, Ties, Rizki and although not really a student, Ariane, thank you all for participating in my project.

This whole project relied largely on huge datasets. It was therefore impossible to do all this work without the support and fantastic help of Tjibbe and Igor who performed dozens of queries for me to collect all the data from the UMCG data warehouse and who were always willing to provide advice.

As department we have a close collaboration with the University of Twente. We were both EurSafety Health-net partners and also in Enschede PhD projects were done within the EurSafety project. Thank you Lisette, Jobke, Nienke, Maarten and Noreen for the enjoyable collaboration.

With nine publications, comes a long list of co-authors. Most of them are mentioned above. There are however more to thank: dr. Annemarie Leliveld, dr. Sander van Assen, Jos Luttjeboer, Bert Bijker, prof. dr. Job van der Palen for his enthusiastic help with the statistics, and all the German collaborators in Bremen and Oldenbrug, prof. dr. Glaeske, prof. dr. Hoffmann, prof. dr. Freitag, and prof. dr. Köck.

Erik, besides being a great friend, thanks for the fantastic design of the cover!

Lieve familie, Pap en Mam, Jasper en Berber, dank voor het altijd klaarstaan voor mij, zonder jullie had ik het niet gekund. En uiteindelijk, last but not least, lieve Chris, de eerste week van januari 2013 was een bijzondere week. Niet alleen begon ik aan dit avontuur, maar ik leerde twee dagen nadat ik was begonnen jou kennen. De afgelopen 3,5 jaar heb je talloze keren mijn gezeur en gedweep moeten aphanoren over dit ‘boekje’, over stomme tijdschriften die mij niet begrepen en elke keer maar weer dezelfde grafieken, posters, presentaties en tekstjes. En nog steeds weet je niet precies wat ik nou heb gedaan. Maar ook nu geldt, zonder jou had dit boekje er heel anders uitgezien. Jij stimuleert mij het beste in mijzelf naar boven te halen en staat altijd voor mij klaar. Voor dat en nog veel meer, duizendmaal dank!

“Het was unaniem een belachelijk groot succes!”

Groningen, 15 september 2016.
Jan-Willem Hendrik Dik was born on November the 14th, 1986 in Groningen, the Netherlands. After graduating secondary school at the Dr. Nassau College in Assen in 2005, he took a gap-year and spent six months teaching underprivileged children in Accra, Ghana for the NGO Glona. In September 2006 he started his bachelor study Biology at the University of Groningen majoring in Biomedical Sciences. He continued in this direction for his masters, also at the University of Groningen. During his masters he did his first research internship under the supervision of dr. Ben Giepmans on the EpCAM protein at the department of Cell Biology and the UMCG Microscopy and Imaging Center. The second phase of his masters focused on bridging science and society within the so-called M-variant. This led to a second research internship done at IMENz Bioengineering, where he performed a feasibility study on novel food antimicrobials. He obtained his master’s degree in Biomedical Sciences in 2012.

From January 1st 2013, Jan-Willem started working at the Department of Medical Microbiology at the University Medical Center Groningen on his PhD project on the clinical and financial impact of Medical Microbiology. This project was part of the EurSafety Health-net project, funded by the European Commission and Dutch and German provinces. The PhD project was under the supervision of prof. Alex Friedrich and prof. Bhanu Sinha, together with dr. Ron Hendrix from Certe Laboratory for Infectious Diseases and prof. Maarten Postma from the University of Groningen and finished in June 2016, with a defence on November 7th. Since May 2016 he is working at the National Health Care Institute (Zorginstituut Nederland) as Business Intelligence Officer, as well as keeping a post-doc position at the Department of Medical Microbiology of the UMCG.