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MICROMECHANICS SIMULATIONS OF FRACTURE

E. Van der Giessen
Department of Applied Physics, University of Groningen, Nijenborgh 4, Groningen 9747,
The Netherlands; e-mail: giessen@phys.rug.nl

A. Needleman
Division of Engineering, Brown University, Providence, Rhode Island 02912

Key Words dislocation plasticity, crack, fatigue, plastic zone

■ Abstract A fracture mechanics framework has been developed for predicting
crack initiation and growth in full-scale components and structures from test specimen
data. Much knowledge has also been gained about the mechanisms by which fracture
occurs in a variety of materials. However, the development of quantitative connections
between models of the physical processes of fracture and macroscale measures of
fracture resistance is still at an early stage. A key difficulty is that fracture spans several
length scales from the atomistic to the macroscopic scale. In this paper, some analyses
are reviewed that use micromechanical modeling to predict fracture toughness from
the physics of separation and plastic flow processes. Attention is confined to fracture
by cleavage in metal crystals, under both monotonic and cyclic loading conditions.
The role of models at the dislocation size scale in bridging the gap between atomistic
and continuum descriptions is highlighted.

INTRODUCTION

Fracture is the process of separating a solid object into two or more pieces. Usually,
but not always, this involves the nucleation and propagation of crack-like defects.
Thus the key questions are, when will a crack nucleate and under what circum-
stances will the crack extend? As in most fields, growth is much better understood
than nucleation, so that the focus in fracture studies has been on growth initiation
and propagation of pre-existing cracks.

Fracture has been studied from two directions. In the engineering fracture me-
chanics community, where interest is in fracture-resistant design of structures and
components, approaches have been developed that use experimentally measurable
phenomenological parameters to characterize crack initiation and growth. In the
materials science fracture mechanics community, where interest is in the develop-
ment of fracture-resistant materials, the emphasis has been on the description of the
physical processes of material separation. In the past two decades, much research
has been focused on forging a link between these approaches in order to predict
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fracture response from the physics of the processes involved. This effort constitutes
the micromechanics of fracture, and numerical simulations play a key role.

The micromechanics of fracture is material dependent and, in general, involves a
broad range of length and time scales. In this article, we review some recent work
on modeling fracture in crystalline metals at room temperature, where disloca-
tion glide is the dominant mechanism of plastic dissipation during crack growth.
In these circumstances, there are two limiting behaviors. One is when few dis-
locations are generated and a cleavage crack propagates in a brittle manner. The
other is when extensive dislocation activity precedes fracture, with the dislocations
strongly relaxing the stresses near the crack tip, leading to continued blunting with
cleavage fracture precluded. Although fracture ultimately does occur when the load
increases, it then usually occurs by a mechanism involving the nucleation, growth,
and coalescence of voids originating at second-phase particles or inclusions.

We focus here on an intermediate situation where cleavage fracture takes place
in the presence of plastic flow. We first outline the various scales that are involved
in the competition between crack growth by cleavage and plastic flow-induced
crack blunting. For many of the length scales involved, continuum descriptions
are appropriate, and we discuss descriptions of the state of stress and deformation
near crack tips at decreasing length scales. This discussion points out that from
the point of view of continuum mechanics, cleavage in the presence of plastic
flow is somewhat paradoxical because continuum plasticity predicts stress levels
at a blunted crack tip that are of the order of the flow strength—a stress level
of the order of the theoretical strength, which is needed for cleavage, should not
be attainable. The resolution of this paradox, we believe, lies in the dual role
played by dislocations. On the one hand, dislocation motion shields the crack tip
and increases the energy dissipation accompanying fracture. When averaging over
many dislocations, this picture coincides with an appropriate continuum plasticity
view. On the other hand, the local stress concentration associated with discrete
dislocations in the vicinity of the crack tip can lead to stress levels of the magnitude
of the cohesive strength, causing the crack to propagate. In conclusion, we discuss
how the same duality can describe fatigue crack growth. We show that, without any
additional modifications, models at this scale are able to predict fatigue thresholds
as well as fatigue crack growth that is consistent with behavior commonly described
by the Paris law (1).

GENERAL OVERVIEW OF FRACTURE MODELING

Scales in Fracture

The micromechanics of fracture attempts to link the macroscopic fracture resis-
tance to the underlying physical mechanisms of irreversible deformation and ma-
terial separation. In all cases, the actual separation process takes place by breaking
atomic bonds.
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Figure 1 The various relevant scales that may determine the response of a crack in
a macroscopic component. (a) The component scale; (b) the plastic zone governed
by macroscopic continuum plastic flow; (c) the grain scale in a polycrystalline metal;
(d ) the scale of discrete slip planes and of individual dislocations; and (e) the atomic
scale.

Figure 1 is an idealized illustration of the important length scales involved for
cleavage crack growth in a relatively ductile polycrystalline metal. The relevant
length scales range from that of the macroscale object to the atomic scale, including
the various microstructural length scales in between that are associated with, for
example, particles, grains, and defect structures.

The challenge lies in the fact that all scales are connected and all may contribute
to the total fracture energy. It is worth noting that, although the atomistics of the
separation of surfaces may contribute only a small fraction of the total energy
release rate, it can still be controlling. This is because dissipative mechanisms can
operate only if fracture is delayed sufficiently to allow them to come into play.
Indeed, as pointed out by Rice & Wang (2), the surface energy can play a valve-
like role. Surface energies are typically of the order of 1 J/m2, whereas fracture
energies for ductile crystalline metals can be on the order of 100 J/m2 or greater.
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The difference between the fracture energy and the surface energy is the plastic
dissipation in the vicinity of the crack tip. The valve-like role of the surface energy
emerges because relatively small increases in surface energy can delay fracture
sufficiently to result in large increases in plastic dissipation.

At a sufficiently large scale, crack tip stress and deformation fields can be de-
scribed in terms of a macroscopic, and often isotropic, continuum. Both elastic
and (strain-hardening) plastic solids predict stress and strain fields at a tensile
crack that share several key characteristics: (a) The stresses are singular (when
the crack is modeled as being mathematically sharp), but the singularity depends
on the strain-hardening characteristics of the material; (b) the stress distribution
near the crack tip depends on the material properties but is independent of the
loading conditions and the geometry; and (c) there is a single parameter charac-
terizing the amplitude of the singularity that embodies the effects of geometry and
loading.

At a smaller scale, the anisotropic nature of individual grains comes into play.
This gives rise to stress and strain fluctuations with wavelengths equal to the grain
size (Figure 1c). These fluctuations can be described using crystal plasticity mod-
els, which are conventional continuum constitutive relations but account for the
discrete nature of the slip systems along which plastic flow occurs. As a conse-
quence, the stress field near the crack tip is very different from the stress field for
an isotropic solid.

Closer to the crack tip, the individual dislocations that mediate plastic flow
come into play (Figure 1d). At this scale, energy dissipation is associated with
the motion of large numbers of dislocations moving through the lattice. Each
dislocation induces a localized stress concentration, which gives rise to large local
stress fluctuations that vary as dislocations move and are generated from the crack
tip itself or from nearby sources. In addition, dislocation structures can develop
that have relatively long-range length stress fields, and these can increase the stress
level in the vicinity of the crack tip.

The actual separation process takes place at the atomic scale (Figure 1e) in a
region contained inside the dislocation plasticity zone. The stress field from the
next higher-up scale induces local bonds between atoms to be stretched and broken
when the stresses at this scale reach values on the order of the bond strength. This
process may be assisted by other atoms that have diffused to the crack tip from the
environment.

Many details are left out in the above discussion, but it emphasizes the fact that
fracture, i.e., the creation of new surface, is highly localized at the atomic scale but
is driven by the macroscopic applied load communicated to the atomic scale via
stress fields on smaller and smaller length scales. It is the precise communication
down these scales that determines whether crack growth occurs and how much
energy is dissipated, see e.g., Hutchinson & Evans (3). The success of predictions
of macroscopic fracture properties on the basis of atomic properties relies entirely
on the accuracy with which the intermediate scales can be bridged. In transferring
information between models at different size scales, there are subtle issues of
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capturing the behavior at the smaller size scale in some appropriate average sense,
particularly when defect structures are involved.

Continuum Modeling

All scales above the atomistic scale are analyzed within the framework of conti-
nuum mechanics. The way in which the continuum concept is used, however,
differs from scale to scale. On the discrete dislocation scale, the continuum consti-
tutive relation characterizes the elastic response of the material; plastic flow arises
from the motion of discrete dislocations, modeled as continuum singular solutions
to the field equations of linear elasticity. At the next higher scale, the discreteness
of dislocations is ignored and plasticity is described by a continuum constitutive
relation.

Because we only consider scales above the atomic scale, some of the basic
concepts and equations used in the continuum modeling of fracture are briefly
outlined. Attention is restricted to small strains and small rotations and to circum-
stances where material inertia plays a negligible role. Cartesian tensor notation is
employed, with repeated lower case Latin subscripts implying a summation from
1 to 3. No summation is implied for Greek indices.

The position of a material point in the reference configuration, relative to a
fixed Cartesian frame, is denoted byxi. In the current configuration, at timet, this
material point is at̄xi , so that the Cartesian components of the displacement field are
ui (xj , t)= x̄i (xj , t)− xi . The displacements induce a strain tensorεi j according to

εi j = 1

2

(
∂ui

∂xj
+ ∂u j

∂xi

)
. 1.

The work associated with the motion of a material point is governed by the
traction vector, the force per unit area, acting on a surface. If this surface normal
is ni , the traction vector is related to the stress state in the material byTi = σi j nj ,
whereσi j are the components of the stress tensor. Equilibrium, or the balance of
linear momentum, requires that

∂σi j

∂xj
= 0. 2.

The stress tensor is symmetric,σi j = σ j i , as a consequence of the balance of angular
momentum.

The above equations apply irrespective of what the continuum is supposed to
represent. They need to be supplemented with constitutive equations that describe
the material behavior. The simplest example is Hooke’s law for elastic materials,
where

σi j = Li jkl εkl , 3.

with Li jkl the tensor of elastic moduli (e.g.,C11, C12, C44 for a cubic material and
E, ν for an isotropic material).
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As is pointed out below, the discrete dislocation framework is based on an elastic
continuum, for which the above equations form the set of governing equations.
Plastic deformation then is the consequence of the motion of dislocations, and
the path dependence of plastic flow emerges as a consequence of irreversibility in
the evolution of the dislocation structure. In a conventional continuum description
of plastic flow, the path dependence is directly incorporated into the stress-strain
relation. Hence, the stress cannot be written as a direct function of strain. Instead,
the plastic constitutive relation relates the stress rate to the strain rate, given the
current state of the material. For the formulation of such a constitutive law, the
strain rate is written, at each instant of time, as the sum of an elastic part and a
plastic part,

ε̇ i j = ε̇e
i j + ε̇ p

i j 4.

(here, and subsequently, a superposed dot denotes differentiation with respect to
time). The elastic and plastic parts of the strain rate represent different mechanisms
of deformation. Elastic deformation results from distortion of the crystal lattice,
whereas plastic deformation by crystallographic slip, to a first approximation,
leaves the lattice undisturbed. The elastic part of the strain rate is given by the time
derivative of (3).

For application at the macroscopic scale (see, e.g., Figure 1b), where plastic flow
is averaged over many grains, a widely used model is that of isotropic plasticity.
The constitutive relation for the plastic part of the strain rate is

ε̇
p
i j =

3

2

ε̇p

σ̄

[
σi j − 1

3
σkkδi j

]
, 5.

where ˙εp is the Mises effective plastic strain rate, ¯σ is the Mises effective stress,
and the term in brackets defines the stress deviator.

At the smaller scale of individual grains (see, e.g., Figure 1c), plastic flow is
anisotropic and takes place by simple shear on a specified set of slip planes. For
single-crystal plasticity, the plastic strain rate is written as [see Asaro (4), Cuiti˜no
& Ortiz (5), Bassani (6)]

ε̇
p
i j =

∑
α

γ̇ (α) 1

2

(
s(α)
i m(α)

j + s(α)
j m(α)

i

)
, 6.

wheres(α)
i specifies the slip direction for slip systemα, andm(α)

i the slip plane
normal. A constitutive assumption that is often a reasonable approximation at
ordinary temperatures, strain rates, and pressures is that the shear rate ˙γ (α) depends
on the stress only through the Schmidt resolved shear stressτ (α)= s(α)

i σi j m(α)
j . For

a rate-independent response, plastic flow occurs whenτ (α)= g(α), whereg(α) is the
current slip system hardness, which leads to a stress rate–strain rate relation of the
form

σ̇i j = Ci jkl ε̇kl , 7.
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where the tensor of moduliCi jkl depends on which slip systems are active, i.e.,
those for which ˙γ (α) is non-zero. If none of them is active,Ci jkl reduces to the
Li jkl in (1). An isotropic plastic solid also has a stress rate–strain rate relation of
the form (7) but with only two branches, one corresponding to plastic loading and
the other to elastic unloading.

With constitutive equations as discussed above, boundary value problems can
be solved. An important issue concerns the circumstances under which the solution
is unique. For a strain-hardening Mises solid, the crack tip stress and strain fields
are unique. On the other hand, as is discussed subsequently, the solutions for crack
tip fields are not unique for nonhardening single crystals.

To model crack growth, we make use of cohesive surface theory [Needleman
(7, 8)]. In a cohesive surface formulation, two constitutive relations are employed;
one is a volumetric constitutive law that relates stress and strain, as discussed above,
whereas the other is a traction versus displacement-jump relation across a specified
set of surfaces. The cohesive surface constitutive relation embodies separation and
deformation processes that occur on a size scale smaller than modeled by the
volumetric constitutive relation.

CRACKS AND CONTINUUM PLASTICITY

Even though the focus here is on the role of plasticity near a crack tip, it is useful
to recall the solution of the equations of linear elasticity in the vicinity of the tip
of a stationary crack subject to tensile loading [see, e.g., Suresh (9) for a concise
summary of continuum crack mechanics]. Sufficiently close to the crack tip

σi j = KI√
2πr

6i j (θ ), 8.

whereKI is the tensile (mode I) stress intensity factor. Similar expressions are
obtained for the stresses when the crack is subject to in-plane (mode II) or out-
of-plane (mode III) shear loading. At the edge of an arbitrarily shaped crack in a
three-dimensional solid, the stress state at each point is given by a superposition of
the mode I, mode II, and mode III singular fields. However, we confine attention
to planar cracks under mode I loading.

A key point is that the form of Equation 8 is independent of the remote loading.
The effect of the remote loading and the geometry of the solid only enters through
the amplitudeKI. The presumption underlying linear elastic fracture mechanics
is that Equation 8 describes the stress and deformation field over a region that
is larger than the region over which plastic flow and the physical processes of
separation affect the stress state. When all nonlinear effects are confined to a region
within which the stress state is described by Equation 8, small-scale yielding is said
to occur. Under small-scale yielding conditions, the amplitude of the stress intensity
factor KI describes the loading conditions imposed on the region where plastic
flow and separation are occurring. Hence,KI serves as a characterizing parameter.
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The applicability ofKI as a characterizing parameter in no way requires Equation 8
to describe the stress state near the crack tip where separation is taking place.

The elastic energy released per unit crack advance,G, is proportional toK 2
I ,

so that the characterizing parameter can be taken as eitherKI or G. There are
several advantages to usingG rather thanKI as the characterizing parameter. As
is discussed below,G also serves, in certain circumstances, as a characterizing
parameter for plastic crack tip fields. In addition,G can be used as a characterizing
parameter under mixed-mode conditions. For example, for interface cracks, the
mismatch in elastic properties leads to mixed mode I–mode II loading conditions
at the crack tip even if the remote loading is tensile.

WhenG serves as a characterizing parameter in the presence of plasticity, crack
growth can be characterized in terms of a Griffith-Irwin type relation:

G = 0(1a), 9.

where1a is the increase in crack length. Because, for metals, the value of0 is
typically one to two orders of magnitude higher than the actual surface energy
owing to plastic dissipation, there is a fundamental relation between a material’s
plastic properties and its crack growth resistance0(1a).

If plastic flow occurs over many grains in a polycrystal so that isotropic plasticity
is a reasonable approximation [i.e., the near crack tip stresses are given by the HRR
field, Hutchinson (10), Rice & Rosengren (11)],

σi j =
(

J

cr

)1/(n+1)

6i j (θ ; n). 10.

Here, it is assumed that the uniaxial stress-strain relation has the power law form
ε ∝ σ n; J is the value of Rice’s (12)J-integral, which is equal to the energy release
rateG; andc is composed of a combination of numerical and material parameters.
As for the elastic crack tip field (8), the function6i j (θ ; n) is independent of the
remote loading conditions, provided the material exhibits strain hardening, i.e.,
n<∞. In the absence of strain hardening, the near crack tip fields do not possess
this autonomous character.

The characterization of crack tip fields by the HRR field, withJ=G as the
characterizing parameter, enables the determination of the function0 from small
fracture specimens where plastic flow is not confined to the crack tip region. In
small-scale yielding,J∝ K 2

I , relating the amplitudes of the outer elastic and inner
plastic stress fields. The use ofJ as characterizing parameter is not generally valid
for crack growth or under cyclic loading conditions.

For a single crystal or for a grain in a polycrystal, the assumption of isotropy
on which Equation 10 is based no longer holds and the near crack tip stress state
is greatly affected by the discreteness of slip systems. For a nonhardening crys-
tal, Rice (13) showed that a solution for the crack tip fields in a nonhardening
crystal consists of angular sectors with constant Cartesian stress components.
These results were extended to account for hardening by Saeedvafa & Rice (14),
which gives rise to much more complicated stress fields, but the sector structure
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remains. Uniqueness is not guaranteed for nonhardening crystals, and Drugan (15)
has shown that alternative solutions are possible. In fact, the discrete dislocation
results discussed in the next section were instrumental in guiding these solutions. A
noteworthy feature of the nonhardening solutions is that stresses remain bounded
at the crack tip and are on the order of the yield strength, although strain rates are
singular.

The classical continuum crack tip fields set conditions on the region where frac-
ture processes are taking place. They also can provide the appropriate parameters
to define a material’s fracture resistance but cannot predict it. Aims of the microme-
chanics of fracture include (a) calculating the dependence of a material’s fracture
toughness,0(1a), on its microstructure; (b) ascertaining the limits of applicability
of the various characterizing parameters; and (c) providing a means of assessing
a material’s resistance to crack initiation and growth when the classical fracture
mechanics characterization does not hold. Here, we focus on circumstances where
the separation mechanism is cleavage and the mechanism of plastic flow is dis-
location glide. We presume that small-scale yielding conditions hold so that the
fracture toughness is characterized by0(1a).

To calculate the crack growth resistance, we use cohesive surface theory
[Needleman (7, 8)]. The cohesive constitutive relation is formulated to represent
separation by cleavage, and it contains two key parameters. One is the specific
energy for cleavage, which is only one, usually small, contribution to the crack
growth resistance. The largest contribution to the material’s fracture toughness is
generally the energy dissipated in the plastic zone, as described by the volumet-
ric constitutive relation. The second key parameter is the cohesive strength. For
cleavage, atomistic analyses indicate that the opening stress at a crack tip needs to
reach the theoretical strength, which is of the order of 1/10 of an elastic modulus.
When classical continuum plasticity (whether isotropic or single crystal) is used
to characterize the material behavior, such stresses are unattainable. Indeed, max-
imum attainable stress levels are an order of magnitude or more smaller than this
[see e.g., Tvergaard & Hutchinson (16)].

Characterization of plastic flow in terms of discrete dislocation dynamics re-
duces the gap (Figure 1d). In the following, the focus is on the near-tip stress and
deformation fields predicted by discrete dislocation plasticity and their implica-
tions for fracture behavior under both monotonic and cyclic loading.

DISLOCATION PLASTICITY AND CRACKS

At the length scale illustrated in Figure 1d, where individual dislocations can
be distinguished, stress fields based on conventional continuum constitutive rela-
tions do not describe conditions near the crack tip because the dislocations carry
a wildly fluctuating stress field. The dislocation stress fields are singular at the
dislocation core and decay with the reciprocal distance from it, see e.g., Hirth &
Lothe (17). In this section, we explore the extent to which these fluctuating fields
average out to the continuum plasticity stress fields discussed above and consider
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Figure 2 Small-scale yielding analysis under mode I conditions with discrete dislo-
cations moving inside a process window. Because of symmetry, only half the problem
needs to be analyzed. The cohesive surface ahead of the initial crack is used to describe
crack growth.

the effect of the discrete dislocation–induced stress field fluctuations on the crack
growth process. The discussion is based on the discrete dislocation analyses by
Cleveringa et al. (18) and Van der Giessen et al. (19) for mode I loading conditions.

The calculations are carried out for small-scale yielding, and for computational
reasons, plasticity is confined to a window around the initial crack tip. As illustrated
in Figure 2, we define a set of two or three slip systems inside this window at an
angle ofφ(α) with respect to the crack plane. Two slip systems are necessary to allow
for any mode of plastic deformation, while three slip systems mimic the excess
of available slip systems in a real three-dimensional fcc crystal. Edge dislocations
with Burgers vectorb(k) (k = 1, . . . , N) lie on these slip planes and can glide, be
annihilated, be generated from Frank-Read sources, or be pinned at obstacles. All of
these processes are governed by the Peach-Koehler forcef (k) on the dislocation.
In the analyses presented below, a linear drag relation is assumed for the glide
velocityv(k) of the dislocation,

f (k) = Bv(k), 11.

but more complicated relations are available and have been used in the literature
(20). The sources in our two-dimensional analyses mimic Frank-Read sources
and generate a dislocation dipole when the magnitude of the Peach-Koehler force
exceeds a critical value ofbτ nuc during a period of timetnuc. The obstacles, which
could be small precipitates or forest dislocations, pin dislocations and release them
once the Peach-Koehler force attains the obstacle strengthbτ obs. Annihilation of
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two dislocations with opposite Burgers vector occurs when they approach each
other within a critical annihilation distanceLe= 6b.

The crack is initially sharp, and a cohesive surface is laid out in front of it. At the
scale of interest here, the cohesive surface is taken to mimic atomic debonding.
Therefore, the constitutive response of the cohesive surface is taken from the
universal binding law, Rose et al. (21), and is specified by the following relation
between the traction normal to the cohesive surface,Tn, and the separation1n:

Tn(1n) = σmax
1n

δn
exp

(
1− 1n

δn

)
. 12.

As the cohesive surface separates, the magnitude of the traction increases, reaches
a maximum, and then approaches zero to represent the formation of a traction-
free crack. The strengthσmaxand the corresponding separationδn characterize the
fracture process and are taken to have valuesσmax= 0.6 GPa andδn= 4b, giving a
work of separation,φn = exp(1)σmax δn of 1.63 J/m2. This value of the cohesive
strength is about a factor of four smaller than the expected theoretical strength
of aluminum and is used for numerical reasons because (a) the length scale over
which large gradients occur is inversely proportional to the cohesive strength,
so that a finer mesh is required for higher values of the cohesive strength; and
(b) the number of dislocations increases with increasing cohesive strength, so that
more dislocation interactions have to be computed and a larger process window is
needed.

The boundary conditions for the problem sketched in Figure 2 are (a) the crack
faces remain traction free,TI = 0; (b) the displacements on the remote boundary
are specified according to the well-known elastic singular field; and (c) for the
symmetric mode I loading cases discussed here, Equation 12 is satisfied together
with Tt= 0 on the crack plane ahead of the initial crack tip. The load level is thus
characterized by the remote stress intensity factorKI.

The analysis is carried out incrementally in time, with the loading prescribed
to increase at a constant rateK̇I . With the dislocations treated as singularities in
an elastic solid, the mathematical problem solved to determine the state of stress
and deformation at each instant is nonlinear because of the cohesive surface and
because of dislocation nucleation, annihilation, and interaction with obstacles. In
addition, the highly fluctuating fields owing to the individual dislocations need to
be resolved. The stress and deformation fields for individual edge dislocations in
an infinite solid or in a half space are known analytically. The discrete dislocation
stress and displacement fields, denoted by (˜), are the superposition of the fields of
the individual dislocations. The idea proposed by Van der Giessen & Needleman
(22) is to make use of these solutions and to decompose the actual fields into a
part (˜) and a part (ˆ) that corrects for the actual boundary conditions. Details of the
procedure for the incremental problem have been described by Cleveringa et al.
(18) and are not repeated here. It is emphasized that the plastic flow characteristics
near the crack tip, including the yield strength and hardening, and the crack growth
behavior, including initiation and the growth rate, are outcomes of the analysis.
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CRACKS AND DISLOCATIONS UNDER
MONOTONIC LOADING

Fields Around Stationary Cracks

Stationary cracks are considered by Van der Giessen et al. (19) by using a very
large value for the cohesive strength in Equation 12 so thatTn does not reachσmax.
The computations are aimed at modeling metal single crystals with a high density
of initial defects, which are modeled by a random distribution of point sources and
obstacles in the process window. These represent Frank-Read segments and forest
dislocations on slip planes with a normal out-of-the-plane of deformation. The two
or three slip systems that are active in the analysis, however, are taken to be initially
dislocation free. The calculations do not aim at modeling a specific material, but
properties representative of aluminum are used. The elastic properties are taken
to be isotropic, with Young’s modulusE = 70 GPa and Poisson ratioν= 0.33. A
representative value for the drag coefficient in Equation 11 isB = 10−4 Pa s [Kubin
et al. (23)], but measured values for nominally identical materials can differ by
up to two orders of magnitude (24). The strength of the dislocation sources is
randomly chosen from a Gaussian distribution with mean strength ¯τnuc= 50 MPa
and standard deviation 0.2τ̄nuc. The nucleation time for all sources is taken as
tnuc= 10 ns. All obstacles are taken to have the same strengthτ obs= 150 MPa.

Figure 3 shows the stress distribution for a crystal in which there are three
slip systems oriented at±60◦ and 0◦ with respect to the crack plane. All three
stress distributions exhibit large fluctuations, which are due to the singularities of
the individual dislocations. In fact, the fluctuations shown are damped because of
the way the contours are plotted on the finite element mesh that was used for the
computation (80 by 80 elements in the process window).

It is remarkable, however, that three sectors appear around the crack tip in which
the stresses, on average, look different from one another. This stress distribution is
reminiscent of the analytical near-tip stress field obtained by Rice (13) on the basis
of a continuum plasticity theory for nonhardening crystals. When his analysis for
the true fcc crystal geometry is modified to account for the set of slip systems
used by Van der Giessen et al. (19), four uniform stress sectors are obtained. The
boundaries between these sectors are predicted to be 60◦, 90◦, and 120◦, the first
and last of which are consistent with the fields in Figure 3. Van der Giessen et al.
(19) carried out a quantitative comparison by actually averaging the stresses inside
the four mentioned sectors, and it was found that these average stresses agreed
quite well with Rice’s (13) continuum solution.

However, the discrete dislocation solution did not appear to agree with another
element of Rice’s (13) solution, namely that slip activity on the 0◦-slip planes
would concentrate in a kink band at 90◦. The discrete dislocation results showed
no evidence of this, as illustrated by the dislocation distribution shown in Figure 4.
Subsequently, Drugan (15) carried out an analysis similar to Rice’s (13), but with-
out requiring a kink band. He found several solution families, including a family of
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Figure 4 Dislocation distribution in the same
crystal and at the same load level as in Figure 3.
From Van der Giessen et al. (19).

solutions that involve only a slip band atθ = 60◦, consistent with our discrete dis-
location simulations. The solution that is closest to the discrete dislocation results
is one where there are three sectors with boundaries at 60◦ and 105◦. This solution
is illustrated in Figure 5. Even though the 105◦ sector boundary is not obvious
from Figure 3, averaging of the stress fields over these sectors showed very good
agreement with this continuum prediction. Small differences in the exact average
stress values are attributed to the fact that the continuum solution assumes no hard-
ening, whereas some degree of hardening may occur in the discrete dislocation
results. Even though real crystals will always show some degree of hardening, the

Figure 5 Opening stress states (σ 22 normalized by the critical resolved shear
stressτ ) in the three sectors of Drugan’s (15) solution.
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main features of Drugan’s (15) solutions have been seen in experiments by Crone
& Shield (25).

Similar comparisons were carried out for another orientation of the crystal, Van
der Giessen et al. (19), and for a crystal bonded to a rigid substrate, A. Nakatani,
W. Drugan, A. Needleman & E. Van der Giessen (in preparation). In the cases ana-
lyzed, the continuum description allows for multiple solutions [Rice (13), Drugan
(15)]. The discrete dislocation results help to identify one of the solutions. One pos-
sible explanation for the absence of kink bands in the discrete dislocation solutions
of Van der Giessen et al. (19) is that lattice rotations are neglected; numerical con-
tinuum plasticity results by Cuiti˜no & Ortiz (5) suggest that this assumption may
suppress the formation of kink bands. Another possibility is that kink bands would
emerge for other discrete dislocation parameter ranges. Indeed, Kysar & Briant (27)
used electron backscatter diffraction to observe rotation fields in pure aluminum
crystals, and their observations are consistent with the kink band solution of Rice
(13). They make the intriguing suggestion that kink band formation is associated
with a very low density of obstacles, allowing dislocation glide over large distances.

Crack Growth

When averaging the discrete dislocation results over sectors to compare with the
continuum plasticity predictions (19), the very near-tip region with a radius of
0.5µm was excluded. The reason is that the stresses in this region are much higher
than the sector averages (see Figure 3). In fact, the results of Cleveringa et al.
(18) suggest that the stresses in this region can become high enough for crack
advance by cleavage (although, for numerical reasons, the cohesive strengths in
the calculations are smaller than representative of actual metal cohesive strengths).
This is illustrated in Figure 6 for a case with two slip systems (±60◦) and with a
cohesive surface characterized by the valuesσmax= 0.6 GPa andδn= 4b. For these
parameter values, the stationary crack tip blunts because of dislocation activity
(Figure 6a). The sector-average stresses at this instant are quite low, but the opening
stressσ 22 in a small region ahead of the crack reaches the cohesive strength. The
crack then propagates until the crack tip arrives at a location where the near-
tip opening stress is below the cohesive strength. Then, more dislocations are
generated near the current tip, until the opening stress again reaches the strength
(Figure 6b), and the crack jumps forward again. This process of blunting and
crack jumping continues as the load increases, giving rise to a distinctR-curve
behavior.

It is worth emphasizing that in the calculations by Cleveringa et al. (18) there is
no emission of dislocations from the crack tip. This is in contrast to simulations,
e.g., by Hirsch & Roberts (28) and by Nitzsche & Hsia (29), where it is assumed
that dislocations can be emitted only by the crack tip. The same assumption has
been made in the analyses of mode III cracks by Zacharopoulos et al. (30). This
class of calculations aim at initially dislocation-free materials, such as silicon,
where crack-tip emission is the key parameter in the transition from brittle fracture
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(no dislocations) to ductile fracture accompanied by dislocation motion [see also
Gumbsch et al. (20)]. However, the model considered here is intended to mimic a
metal in which there is an initial distribution of dislocations that act as Frank-Read
sources or as forest dislocation obstacles. The results shown in Figure 6 do depend
sensitively on the initial density of sources and obstacles. If there are insufficient
sources, the crack tip is not shielded and the crack advances in a brittle manner. In
the absence of obstacles, on the other hand, the dislocations that are generated near
the crack tip glide away from the tip, giving rise to continued crack tip blunting and
no crack growth (18). It is because of the obstacles near the tip that dislocations
cannot move far away from the crack tip. Some of these dislocations do not act to
shield the crack, but rather aid in building up a high-stress region near the tip that
drives the crack advance.

Not only do the results depend on the source and obstacle density, they also
depend, in a restricted sense, on the source and obstacle distribution. It is evident
that the precise stress distribution, as shown in Figure 6, depends on the positions
of sources and obstacles. What is less evident, but was borne out by numerical
simulations by Deshpande et al. (31), is that dislocation dynamics is chaotic.
Perturbations in the source positions as small as 10−3b give significant changes in
the dislocation structure around the crack tip, and because the resulting stress state
governs fracture, the fracture resistance can vary significantly.

A conclusion from the studies of Cleveringa et al. (18) is that dislocations play
a dual role in fracture. On the one hand, dislocations are the vehicle for plastic
deformation, and this reduces, on average, the stresses near the crack and provides a
way to dissipate the energy flowing to the crack. On the other hand, dislocations can
arrange themselves in structures, which lead to locally enhanced stress levels that
can trigger crack growth. This stress enhancement is not modeled by conventional
continuum plasticity. Which, if any, of the recently proposed nonlocal continuum
crystal plasticity theories, e.g., by Shu & Fleck (32) or by Gurtin (33), provides
an accurate description of the stress increase due to such dislocation structures
remains to be determined.

FATIGUE CRACK GROWTH

The essence of fatigue crack growth, when the remote stress intensity cycles be-
tweenKmin andKmax, is that it occurs even when the driving force for crack growth
is much smaller than what is needed for the same crack to grow under monotonic
loading conditions. Typically, there is a threshold value of1KI=Kmax−Kmin be-
low which cracks do not grow at a detectable rate. Above this threshold value, in
the regime where the amount of crack growth per cycle,da/dN, is on the order of a
few lattice spacings, there is a steep increase inda/dNwith1KI. For larger values
of 1KI, the increase inda/dN becomes less steep and the Paris law regime (1) is
entered whereda/dN∝ (1KI)m. Experimentally, the value of the Paris exponentm
ranges widely; values of 2–4 are typically reported for ductile metals [e.g., Suresh
(9), Ritchie et al. (34)], whereas values varying from 4.5 to as high as 40 have been
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seen for intermetallics and nickel-based superalloy single crystals [Chan et al. (35),
Mercer et al. (36)].

Fatigue requires irreversibility. Fatigue cannot occur in an elastic system be-
cause the state of the system then depends only on the current value of the loading
parameter and not on its history. As a consequence, crack growth in an elastic sys-
tem either occurs in the first cycle or does not occur at all. In addition, if the state
of the system does not change during the unloading-reloading part of the cycle,
fatigue crack growth is also precluded because the response then depends only
on the peak value and not on how (or when) it is attained. Thus, the dissipation
process during the unloading-reloading part of the cycle is key for fatigue.

The mechanism of fatigue crack growth in ductile solids is generally envisioned
in terms of a deformation-driven blunting and sharpening mechanism proposed by
Laird & Smith (37) and Neumann (38). For ductile metals, it involves nucleation
of dislocations from the crack tip (or near the crack tip) leading to localized
slip that is consistent with the typically observed fatigue striations, which are
ripples seen on the fatigue fracture surface. Discrete dislocation models of fatigue
crack growth have been developed, e.g., by Pippan and co-workers (39, 40) and
by Wilkinson et al. (41), to represent this deformation-controlled fatigue crack
growth mechanism. In these models, dislocations nucleate at or near the crack tip
and then glide on specified slip planes. These models incorporate the crack growth
mechanism as an ingredient of the model rather than have it emerge as a prediction
of the analysis.

Continuum theories have tended to focus on the Paris law regime. Geometrical
models presume that the crack growth rate is proportional to the cyclic crack
opening displacement, which varies as (1KI)2, giving a Paris exponentm= 2.
Damage accumulation models, such as those of McClintock (42), Weertman (43),
and Rice (44), give rise to a Paris exponentm = 4. Nguyen et al. (45) have
carried out numerical calculations of fatigue crack growth in which the material
was characterized by a conventional continuum plasticity model, and the fracture
properties were embedded in a cohesive law that progressively softens and has
loading-reloading hysteresis. They predicted Paris-like behavior withm≈3. These
continuum models do not account for the wide range of Paris exponents observed
experimentally. Furthermore, these models are restricted to the Paris law regime
and do not predict the change in the dependence on1KI that occurs near the fatigue
threshold.

In the following, we discuss predictions for fatigue crack growth of Deshpande
et al. (46, 47), which are based on the discrete dislocation formulation presented
previously. The only difference in the fatigue calculations is that the remote stress
intensity factor is taken to be a cyclic function of time. Crack growth along metal-
ceramic interfaces was considered as well as in single crystals, but the discussion
here focuses on the single-crystal results.

The calculations use both reversible and irreversible cohesive constitutive rela-
tions to account for cyclic loading in a vacuum and in an oxidizing environment,
respectively. With a reversible cohesive constitutive relation, the only source of
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irreversibility available to drive fatigue is that arising from dislocation motion. To
model conditions as could occur in a perfect vacuum where there is no oxidation of
the newly formed surface, the relation (12) is taken to be followed in a reversible
manner. The other limiting case of complete oxidation of the newly formed sur-
faces, which is expected under normal atmospheric conditions, is modeled by
linear unloading from and reloading to the monotonic cohesive law (12).

The Fatigue Threshold

Results from Deshpande et al. (46) are plotted in Figure 7b using the axes1Kth

andKmax. The figure suggests that crack growth can occur under cyclic loading if
and only if (a) the cyclic amplitude1KI exceeds a critical value1K ∗th and (b) the
maximum stress intensityKmax exceeds a critical valueK ∗max.

The existence of these two parameters can be rationalized as follows:

1. For sufficiently lowKmax, no dislocations are generated and the system is
elastic. Therefore, for fatigue to occur with a reversible cohesive law,Kmax

must be at least large enough to nucleate dislocations in the surrounding field
(this value depends on the source distribution). Effectively, there must be
some minimum amount of plastic dissipation. Consequently, fatigue cannot
occur below a minimumKmax denoted byK ∗max.

2. ForKmaxÀ K ∗max, interactions within the now dense dislocation structure act
to retard dislocation motion. Accordingly, a minimum cyclic stress intensity
factor range1KI is needed to induce dislocation motion during unloading
and reloading. Thus, in this regime,1KI below a critical threshold value
1K ∗th precludes crack growth.

Surface contact owing to the formation of oxide layers on the newly created
surfaces strongly affects the behavior with the irreversible cohesive law in Figure 7.
When the crack faces are in contact, the stresses in the vicinity of the crack tip
are much reduced, inhibiting dislocation nucleation and glide as well as lessening
the driving force for separation. As a consequence, crack propagation takes place
only during the fraction of the fatigue loading cycle in which the crack faces at the
tip are separated. The effective stress intensity range1Keff responsible for crack
growth is

1K eff =
{

Kmax− Kop for Kmin < Kop

1KI for Kmin ≥ Kop.
13.

Curves of1K eff
th are plotted in Figure 7c as a function ofR=Kmin/Kmax. The

absence of any load ratio effect for the irreversible cohesive law (compared with
that seen in Figure 7a) suggests that the increase in1Kth with decreasingRis in fact
a closure phenomenon; the fatigue threshold with the irreversible cohesive law is at
a constant effective threshold stress intensity factor range1K ∗th. An approximate
bilinear fit to the results of the computations is also shown in Figure 7. It should be
emphasized that althoughKmax≥ K0, which is a measure of the energy required to
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Figure 7 (a) Variation of1Kth with load ratioR=Kmin/Kmax. (b) 1Kth as a func-
tion of the appliedKmax. (c) Load ratio dependence of the effective fatigue threshold
1K eff

th , which is defined by Equation 13. The bars represent bounds on the appropriate
quantities because1Kth was estimated by reducing the applied1KI in discrete steps
of 0.05K0. From Deshpande et al. (46).

create the new crack surface, crack growth occurs under cyclic loading withKmax

much less than theKI value needed for the same crack to grow under monotonic
loading conditions.

The calculations modeling both perfect vacuum and oxidizing environmental
conditions exhibit a dependence of the fatigue threshold onR. With a reversible
cohesive law, this is an outcome of insufficient plasticity at lowRvalues, whereas
with an irreversible cohesive law, theRdependence is an outcome of crack closure
at low values ofR. For both cohesive laws, the fatigue threshold is insensitive to
R for larger values ofR.
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Figure 8 The cyclic crack growth rateda/dN versus1KI/K0 and1K eff
I /K0 for the

mode I cyclic loading of a single crystal. For comparison purposes, a curve for an
interface crack is also shown. The slopes of the curves marked correspond to the Paris
law exponents for the curves fit through the numerical results. From Deshpande et al.
(47).

The Approach to Paris Law Behavior

Curves ofda/dNversus1KI for a single crystal, taken from Deshpande et al. (47),
are shown in Figure 8. Theda/dN values plotted are averages over the number
of cycles computed. This was generally 20 and 10 for low and high values of
1KI, respectively. There are two distinct regimes of behavior: a steeply rising
log(da/dN) versus log(1KI/K0) curve in the threshold regime followed by a more
gradual slope in the Paris regime. The Paris exponentm in this case is ≈4.4.
The cyclic crack growth rateda/dN is also plotted in Figure 8 as a function of
1K eff

I , with 1K eff
I calculated using Equation 13. The effect of crack closure is

more pronounced at the lower values of1KI so that1K eff
th is much less than1Kth.

Crack closure also results in an exponentm≈ 2.8 for the modified Paris relation

da

dN
∝ (1K eff

I

)m
. 14.

A fit da/dN versus1K eff
I /K0 curve for an interface crack is also plotted in

Figure 8. The interface calculations were performed for the configuration shown
in Figure 2, modified by removing the symmetry and by replacing the cohesive
relation (12) with one that allows for shear as well as normal decohesion. The
effect of the mode mixity at the interface is to increase the fatigue threshold of the
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interface crack but to reduce its resistance to cyclic crack growth at higher values
of applied1KI. This behavior is expected to be dependent on the degree of mode
mixity and hence affected by the cohesive properties and the applied loading.

The form of the log(da/dN) versus log(1KI) curve seen experimentally, with
a threshold and a Paris law regime, is captured in Figure 8. In the near-threshold
regime, the log(da/dN) versus log(1KI) curve is steeply increasing as a significant
proportion of the driving energy is going into the work of separation with only
small amounts of plastic dissipation in the bulk material. With increasing1KI,
the plastic zone size increases, which results in increased plastic dissipation. This
gives rise to the knee in the log(da/dN) versus log(1KI) curve, with the Paris
law exponentm decreasing as the ratio of the plastic dissipation to the work of
separation increases. This indicates a possible rationale for the high value of the
Paris law exponent in intermetallics and superalloys and for the much lower value
seen for ductile metals.

In the calculations of Deshpande et al. (47), rather uniformly spaced slip traces
emerge in the wake of the propagating fatigue crack. Figure 9 shows contours of
accumulated slip for a fatigue crack along a metal-ceramic interface. The deforma-
tion field is similar to that in the experiments of Laird & Smith (37) and Neumann
(38) for cyclic crack growth in metals. In the calculations, as in the experiments,
striations emerge as traces of concentrated slip on the newly created free metal

Figure 9 Contours of total slip showing the localized deformation pattern in the crack
tip vicinity. All distances are in micrometers. The crack opening profile (displacements
magnified by a factor of 20) is plotted below thex1-axis. From Deshpande et al. (47).
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surfaces. The striation spacing is of the order of the amount of crack growth per
cycle in the Paris law regime and greater than the amount of crack growth per cycle
in the near-threshold regime. The striations in Figure 9 most closely resemble type
B striations according to the classification scheme of Forsyth (48).

Based on the experimental work of Laird & Smith (37) and Neumann (38), fa-
tigue crack growth in ductile metals is often presumed to occur by an alternating slip
mechanism, which is a deformation-controlled phenomenon that does not require
high stresses. By contrast, in the framework of Deshpande et al. (46, 47), fracture is
both a deformation and stress-governed phenomenon and takes place by a mecha-
nism that is possible under both monotonic and cyclic-loading conditions. Further-
more, it is worth noting that striation formation is observed in fatigue crack growth
at metal-ceramic interfaces (49), even though the kinematics of crack growth by an
alternating slip mechanism is not clear for a crack growing along such an interface.

The calculations in Deshpande et al. (46, 47) give rise to crack growth under
cyclic-loading conditions when the driving force is smaller than what is needed for
the crack to grow under monotonic-loading conditions and hence exhibit fatigue.
The origin of continued crack growth under cyclic loading lies in the irreversibility
of dislocation motion. Under cyclic-loading conditions, as under monotonic-
loading conditions, the locally high stress concentration ahead of the crack, medi-
ated by the clustering of dislocations near the tip, plays a key role in the process
of crack initiation and growth.
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Figure 3 Stress distributions, normalized by the nucleation strengthτ nuc in a crystal
with three slip systems, as indicated in the inset atKI= 0.6 MPa

√
m. From Van der

Giessen et al. (18).
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Figure 6 Distribution of dislocations and the opening stressσ 22 in the immediate
neighborhood (2µm× 2 µm) of the crack tip for the case withρnuc= 49/µm2 and
ρobs= 98/µm2 at four different stages of loading. The corresponding crack opening
profiles (displacements magnified by a factor of 10) are plotted below thex1-axis. From
Cleveringa et al. (17).
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