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Abstract

Fracture of cementitious composites is analyzed numerically using the cohesive surface methodology. The presence
of aggregates in the cement matrix is explicitly accounted for. The composite is modeled in two dimensions as a three-
phase material, the third phase being the weak interfacial transition zone in between aggregates and cement matrix. The
bulk material is regarded as elastic and fracture is described with cohesive surfaces. The cohesive surface constitutive
model is motivated by experimental observations regarding the loading-rate sensitivity of cementitious composites and
analytical studies regarding fracture of planar microcracks. The model predicts the important toughening mechanism of
crack face bridging occurring in cementitious composites. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Concrete is a highly heterogeneous material. On the macroscale one typically observes large aggregates
bonded by a matrix of mortar (see Fig. 1(a)). This mortar phase itself, hereafter to be called the mesolevel,
consists of small aggregates and sand bonded by the cement paste (Fig. 1(b)). The cement paste consists of
fully and partially hydrated cement grains and possibly larger voids (Fig. 1(c)). Upon further examination
one may detect small cracks which originate for example from the shrinkage due to drying or due to
autogenous shrinkage. Zooming further into the material, Fig. 1(d) reveals that the hydrated cement itself is
a structure of cauliflower-like particles separated by voids and what remains of the needle-like structure of
the calcium-silicate-hydrate (CSH) crystals. Besides the various constituents summarized above, the dif-
ference in properties of the various constituents in cement paste and interfacial transition zone (ITZ)
further increases the heterogeneity of the mortar phase.

Fracture processes in concrete have been observed to be a continuous process of creating and linking up
of microcracks. Due to the simultaneous growth of microcracks at different locations and the mutual
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Fig. 1. Structure of concrete upon successively higher magnifications. (a) Normal concrete specimen, 7 x 7 cm?, (b) 15 x 15 mm?, (c)
1 x 0.8 mm? and (d) 0.05 x 0.04 mm?.

avoidance of microcracks, bridges form between cracks. After an initial steep softening response these
bridges result in a long tail in the load—displacement curve.

The modeling technique described in this paper attempts to describe fracture of a cementitious com-
posite without a priori assuming the location of cracks. Despite the complexity of the microstructure of a
cementitious composite, we assume that, on the mesolevel, it can be modeled as a three-phase material. The
three phases are (i) the hardened cement paste, (ii) the aggregates and (iii) the weak ITZ separating the
former two phases. The deformation of the bulk material is described by finite elements where we assume
that aggregates do not fracture. Fracture of the cement paste and ITZ is accounted for by the use of co-
hesive surfaces. A cohesive surface relates the traction transmitted over the surface, to the separation be-
tween the surfaces.

The cohesive surface methodology, also known as the cohesive crack model, has been used in previous
investigations regarding the fracture behavior of concrete [1-3]. These studies often are restricted to a
single, fixed, crack path on the macroscale. Also, the traction-separation relation used for the cohesive
crack is often fixed and has no relation with the physical mechanisms underlying the initiation and growth
of the crack. The cohesive surface methodology can be exploited further though by modeling the physical
mechanisms that give rise to the growth of cracks. Thus, the traction-separation relation of the cohesive
surfaces themselves is not fixed a priori but may be a result of the fracture processes that have been taken
into account. Using the multiple cohesive surface technique pioneered by Xu and Needleman [4], fracture of
the cementitious composite will evolve solely depending on the material model used in the cohesive surfaces
and the interaction with the intact, elastic, regions of the material.

Although it is often assumed that concrete can be modeled as a rate independent, elastic material, ex-
perimental evidence [5-10] shows that strain-rate effects cannot be neglected. Experiments indicate that
moisture plays an important role but the origin of the strain-rate sensitivity of concrete is still subject to
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debate. In this paper the constitutive response of a cohesive surface uses a local damage description in terms
of a single damage parameter w. Damage evolution in the cohesive surface model affects the ability to
transmit tractions over the cohesive surface. The rate of change of the damage parameter is taken to be
governed by the current state of stress and damage, giving rise to a strain-rate dependent response of the
cohesive surface. Note that we implicitly assume that basic creep and fracture are both a result of growth of
microcracks and both are captured in the damage evolution law for the cohesive surfaces. Complicating
factors such as the Pickett effect, i.e. that the total creep during simultaneous drying and loading exceeds the
sum of creep due to loading and shrinkage due to drying, are not accounted for. However, the separation of
bulk constitutive response from fracture events using cohesive surfaces is particularly suited to study such
more complicated, competing processes.

In Section 2 we will present the constitutive model for the cohesive surface. A combined analytical—
numerical parametric study of a model system is given in Section 3. Results of this analysis are used in
Section 4 in which results of detailed finite element calculations are given to analyze the effect of aggregate
position, aggregate size distribution and loading rate on the global peak stress and fracture energy. Con-
cluding remarks are given in Section 5.

2. Material model

Fracture of solids is a result of breaking of bonds on the molecular level. For this reason, inelastic de-
formation has often been described with the Tobolsky—Eyring relation [11]. Though originally proposed to
describe the deformation and fracture characteristics of rubber-like materials, the Tobolsky—Eyring relation
was verified by Zhurkov [12] for many other materials including metals and non-metallic crystals. It has been
shown experimentally (see Ref. [10] for a review) that the rate dependence of the strength of concrete is
similar to the rate dependence of the materials tested by Zhurkov [12]. A description of fracture of a ce-
mentitious composite in the same spirit as the Tobolsky—Eyring relation may therefore also be applicable.

Examining the microstructure of concrete, one observes that the heterogeneity on a mesolevel finds its
origin in the presence of voids, sand and aggregates, partly and fully hydrated cement grains and micro-
cracks (see Fig. 1). On a microscale one finds the needle-like structure of the CSH and calcium-hydrate
crystals. Also the ITZ separating cement paste and non-hydraulic additives has a very complex structure
(see, e.g., Ref. [13]). It can be expected that even for very small macroscopic loads, stress concentrations
occur on the microlevel that cause microcracks to initiate and grow.

In this paper, all damage is concentrated in the cohesive surfaces. The bulk of the material is assumed to
remain elastic. This is described by the well-known relation in terms of the second Piola—Kirchhoff stress
7 = 1/¢;e; and the Lagrangian strain n = n,e'e’:

i = gijklﬁkl (1)

in which #"* is the modulus tensor for an isotropic elastic material expressed fully by Young’s modulus E
and Poisson’s ratio v.

The growth of microcracks results in a deterioration of the elastic stiffness of the material. For this
reason we propose to use a cohesive surface law of the form

T=(1-w)D4 2)

in which T and 4 are the traction and separation vector of the cohesive surface and w the damage variable.
The elastic stiffnesses in normal and tangential direction, as described by D, are assumed to be equal and
uncoupled, i.e. D = kI, I being the unit matrix.

The three-dimensional interaction effects in a microcracked region of a material are rather complex
and whether shielding or amplification occurs depends on the precise position and orientation of the
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microcracks [14]. However, analytical studies regarding the interaction effects of planar microcracks on the
intensity of the stress field [15,16] show that under constant load, the intensity increases as the distance
between the microcracks becomes smaller. As we assume that the deterioration of the material can be
described by lumping all fracture events in cohesive surfaces, we follow these analytical studies and dis-
regard the possibility of shielding in a microcracked region.

Motivated by the heterogeneous nature of the microstructure of concrete and the analytical studies
regarding planar microcracks, we propose to use a Tobolsky—Eyring-like relation to describe the rate of
change of the damage variable w according to

d):(libow)nsinh (2)”’ (3)

in dependence of the traction component 7, = T - n normal to the cohesive surface. The influence of the
material parameters @y, Ty, n and m are investigated next.

3. Behavior of a model system

To understand the behavior of the present cohesive surface model we study a one-dimensional model
system consisting of a piece of elastic bulk material and a cohesive surface loaded in uniaxial tension by a
uniform displacement field # (see Fig. 2).

In this case the cohesive surface traction 7, must necessarily be equal to the vertical stress component o
in the bulk material, i.e.,

E . .
¢ =Ee=" (i 4) =T, (4)
From Eq. (2), the rate of the normal traction 7; is expressed as
Ty = (1 — w)kd, — kA, (5)

and by combining Eq. (3) with Eq. (5), one obtains the following non-linear differential equation governing
the response of the model
A T A

bulk material h

cohesive surface | \

L |

VAN JAS

7

Fig. 2. Model system used to study the combined response of the elastic continuum and the cohesive surfaces.
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which must be solved simultaneously with Eq. (3). Introducing the dimensionless traction y = T,/ T and the
dimensionless time © = wyt, the set of differential equations reads:

y’(l—i—(l—w)ICE—h) —&-(I_J}W sinh(ym):(l—w)%u' (7)
o = % sinh (™) (8)

(1-w)

in which ()’ denotes differentiation with respect to 7. The initial conditions are y =0, w = 0 at t = 0.

Note that the response of the model system is governed by the driving force ku' /T, and the ratio kh/E.
The latter involves a discussion on convergence in the cohesive surface methodology upon refining the
discretization of the continuum. It also indicates that the constitutive model of cohesive surfaces is inti-
mately linked to the length scale on which they are used. Here, we will use the cohesive surfaces on the
mesolevel in concrete. The length scale / is therefore taken be equal to 1 mm, be it rather arbitrary. The
precise value of the peak traction and fracture energy of the cohesive surface now depends on k/E. In order
to limit the elastic deformation of the cohesive surfaces, we take k/E = 2500 mm™!.

Using the explicit Euler forward integration rule, the set (7) and (8) is integrated numerically to obtain
the response of the model system for various values of n and m. Especially the variation of the peak traction
Tpeak and the fracture energy Gy with n and m are of interest. It can easily be shown that the fracture energy
can be obtained as

Arnm‘x Tmax
Gy = / T,d4, = Tou’/ ydr 9)
0 0

in which 7., 1s the dimensionless time at which full breakdown has occurred and in which we have assumed
that all elastic energy has disappeared upon full breakdown.

From Eq. (7), one observes that when final failure approaches, the rate y' is governed by sinh () /)".
For y | 0 this can be approximated by y"". We can thus conclude that there are three possible ways to
attain breakdown, i.e. (i) accelerated breakdown for m < n, (ii) breakdown at constant rate 7}, for m = n
and (iii) decelerated breakdown for m > n. The latter possibility is not relevant for quasi-brittle materials.
The values of m and n are thus subject to the restriction m < n.

To obtain values for n and m that are representative for concrete, we study the relaxation behavior of the
model system and compare this with experiments on three-point bend specimens of Bazant and Gettu [5].
To this end, we load the system until the traction reaches a value of 80% of the peak stress in the post-peak
regime and keep the displacement u constant thereafter.

Figs. 3 and 4 show the development of the traction 7},/Tpe. With time 7 for various combinations of n
and m. From Fig. 3 it is seen that if m is smaller then n, the stress continuous to drop down quickly once
relaxation has started. The experiments done by Bazant and Gettu [5] on three-point bend specimens have
shown that in the post-peak regime between 80% and 50% of the peak load, relaxation is nearly linear with
the logarithm of time. Since various fracture processes in concrete may result in the observed relaxation
behavior, one must be careful when comparing experiments with the model system. However, the predicted
load relaxation of the model system should not deviate too much from linearity. We must therefore con-
clude that the model is only applicable to concrete if m and n are nearly equal.

The model system, of course, is very limited in representing realistic complex material systems in which
the effects of e.g. moisture content and nearly strain-rate independent behavior of aggregates are important.
Perhaps even more important is that within the cohesive surface model we assume that creep in concrete is a
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Fig. 3. Development of the traction 7, with dimensionless time 7 for n = 5 and various values of m.
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Fig. 4. Development of the traction 7, with dimensionless time 7 for various values of n = m.

result of massive growth of microcracks simulated by the collective behavior of many cohesive surfaces.
This effect cannot be taken into account in the model system. The values of n and m must therefore be
calculated from the experiments in which creep plays a minor role. The experiments of Bazant and Gettu [5]
with a high crack mouth opening rate therefore give the best comparison with the model system. From their
Fig. 10 we obtain a relaxation initiation time of 5 s and a total relaxation time of 10° s, i.e. /¢, = 10°3.

From Fig. 4 we see that the model system gives a relaxation behavior with approximately #,/¢; = 10° for
n=m=4, t/t =107 for n=m =15 and t,/t; = 10° for n = m = 6. Taking into account considerable
scatter in experimental results, one may conclude that if the model system must give a reasonable strain rate
sensitivity, the values of n and m must be at least 5. Because of lack of more detailed knowledge, we here
just take n =m = 5.

Now that the rate sensitivity of the model has been determined by n and m, peak load and fracture energy
can be specified through the parameters 7 and @y. A typical value for the Young’s modulus of cement paste
is £ =20 GPa. Using k/E = 2500 mm~', the cohesive surface stiffness is specified as k = 50.0 x 10°
GPamm . The relation between Tpeu /T and ku' /Ty and between Gy /Tou' and ku' /Ty for n = m = 5 is shown
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Fig. 5. The relation between (a) peak traction and driving force and (b) fracture energy and driving force as calculated from Egs. (7)
and (8).

in Fig. 5. For the values of m and n used here, the peak load is rather insensitive to variations in loading rate.
Using these relations one finds for example that for a normalized loading rate ' = 10%® and a reference
traction 7y = 2.1 MPa one obtains a peak traction Tp,x = 5 MPa and a fracture energy Gy = 19 Nmm™".
Since it = aou/, the values of Ty« and Gy are applicable to a strain rate of ¢ = 1077 if we choose iy = 107,
Note that for higher strain rates the fracture energy increases. For example, the same parameters yield a
fracture energy of 70 Nmm~! for ¢ = 1073,

For the fracture simulations for brittle heterogeneous materials to be presented hereafter, we have used
the set of parameters given in Table 1. The parameter values in Table 1 result in the traction-separation
relations given in Fig. 6 for a loading rate of ¢ = 1077 s7!.

Note that the initial shape of the softening curve in Fig. 6 is similar to the softening curves that result
from models describing the behavior of planar microcracks [17,18], i.e., a strong initial softening followed
by a more gradual decrease of the cohesive surface traction. In our model, this is followed by breakdown of
the cohesive surface in an accelerated manner which results in a cohesive surface opening at breakdown in
the order of 0.01 mm. Although the precise values given in Table 1 are subject to debate, the ratio of the
values of strength and fracture energy for the cement paste and ITZ are representative for cementitious
composites.
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Table 1
Bulk and cohesive surface parameters used in all calculations®
Cement Aggregate Interface

E (GPa) 20 55 -
v 0.2 0.2 -
o (s71) 1073 - 1073
Ty (MPa) 2.1 - 0.9
m 5 - 5
n 5 - 5
Omax (Mpd) 5.0 — 2.1
Gy (Nm™) 19 - 3

2 Peak load o, and fracture energy Gp are for a strain rate of ¢ = 1077 s7!,

Cement paste

A, (1073 mm)

Fig. 6. Traction-separation relations for the cement paste and the ITZ for the material parameters given in Table 1 and a strain rate of
1077 71,

4. Computational modeling of fracture of a cementitious composite

On the level of observation that we are interested in here, with typical dimensions of a few millimeters,
cementitious composites are highly heterogeneous materials consisting of a mix of cement paste and ag-
gregates. In this paper we simplify this complex structure to a three phase material, i.e., aggregates em-
bedded in a cementitious matrix and a weaker interfacial region separating aggregate and cement paste. It is
important to realize that the ITZ in concrete has a finite thickness. In this work, the smallest aggregate is
assumed to have a diameter of 0.25 mm. With a typical interfacial thickness of 30 um we therefore take a
minimum separation of 60 pum between aggregates. Since the interface thickness is an order of magnitude
smaller than all other dimensions, the interfacial region can be collapsed into a cohesive surface and the
region between aggregates consists of cement paste only. This assumption implies that interfacial cracks can
only link up when a cement paste ligament between the aggregates fails. It should be noted that in concrete
it may very well be possible that aggregates are so close to each other that interfacial regions are inter-
connected and form weak planes in the material. But here this possibility is excluded a priori.

The numerical generation of an aggregate structure for volume percentages typical for concrete (60%
and higher) is difficult to achieve when randomly placing the aggregates in the material. A more realistic
approach has been developed by Stroeven and Stroeven [19]. In short, the methodology randomly places
aggregates in a computational window which is much larger than the desirable specimen size. Using ran-
dom initial velocities for all aggregates, the computational window is shrunk accounting for the dynamic
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contact interaction between aggregates until the specified volume percentage of aggregates is reached. The
advantages of this methodology are evident in that very high volume percentages can be reached. Also,
more realistic microstructures showing clustering of particles result from this approach. This clustering may
have a significant influence on the fracture properties as compared to the properties of microstructures
obtained by randomly placing aggregates.

Confining attention to brittle fracture in an elastic material, large strains are not to be expected in the
bulk. However, finite strain effects may be of importance in the neighborhood of cracks. Using a Total
Lagrangian description, incremental equilibrium is specified through the rate form of the principle of
virtual work in the following form:

v ; 124 S

Si Su i

_ /S 5, dS} (10)

in which At is the time increment, " and S, are the volume and outer surface of the body in the reference
configuration and S; is the current internal cohesive surface. The latter is the collection of all cohesive
surface elements contained in V. The finite element equations are obtained by eliminating the stress rates
using Eq. (1) and eliminating the cohesive surface traction rates using Egs. (2) and (3).

In order to prevent the linear incremental time stepping scheme from drifting from the true equilibrium
path, an equilibrium correction is taken into account. The term in Eq. (10) between square brackets rep-
resents the equilibrium correction which is zero for a state of perfect equilibrium.

In the discretization of the total cohesive surface area S;, cohesive surface elements are used over the
entire volume, as pioneered by Xu and Needleman [4]. In this way, crack initiation and propagation are
independent of criteria other than the description of the failure processes in the cohesive surfaces. However,
in this paper we are primarily interested in the simulation of multiple fracture in the cement matrix and the
influence of the location and size of the aggregates. For this reason and for limiting CPU-time, the ag-
gregates are assumed not to fracture. This limits the applicability of the results to normal strength concrete
since penetration of cracks into aggregates, as often seen in high strength concretes, is precluded.

All calculations are two-dimensional under plane strain conditions. The aggregates are taken to be
circular and we do not distinguish between volume and area percentages of aggregates. The specific fracture
behavior of concrete seems to originate partly from the three-dimensional nature of concrete structures [20].
In three dimensions there is a larger freedom for crack bridges to form which inevitably leads to larger
fracture energies and a higher ductility compared to the two-dimensional case. However, because of limited
computational resources, such calculations must necessarily be postponed.

4.1. Development of fracture processes in a cementitious composite

The boundary value problem is illustrated in Fig. 7(a). A square block of cement paste having a width of
6 mm, containing 32 aggregates of diameter 0.25 mm, 16 aggregates of diameter 0.5 mm, 8 aggregates of
diameter 1 mm and 4 aggregates of diameter 2 mm is loaded by a constant vertical displacement rate at the
top face while restricting the bottom face in vertical direction. The specimen is free to contract horizontally.
A typical finite element mesh is shown in Fig. 7(b). Continuum elements are given the properties of either
the cement paste or aggregates according to the material parameters given in Table 1. Likewise, cohesive
surfaces are given properties of cement paste unless they are located in between an aggregate and cement
paste. In the latter case they are given properties of the interfacial transition zone (see Fig. 8).

Upon application of the vertical displacement at the top face of the specimen, damage develops in the
cohesive surfaces as specified by the evolution Eq. (3). Due to the assumption that there is no initial damage
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D
(a) (b)

Fig. 7. (a) Illustration of the boundary value problem of Section 4 and (b) finite element discretization.

cement paste (with cohesive surfaces)

ITZ (cohesive surface)

aggregate (no cohesive surfaces)

Fig. 8. Representative part of a finite element mesh with embedded cohesive surfaces. The continuum elements have been shrunk for
illustration purposes.

in the specimen, the rate at which damage evolves is very low at first, which results in a nearly linear elastic
pre-peak response shown in Fig. 9. As the stresses become higher, more and more material in the specimen
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25 075

Fig. 9. Development of average stress at the top face of the specimen shown in Fig. 7. The onset of non-linearity, Fig. 10(a), local-
ization of deformation, Fig. 10(b) and the start of resistance solely due to bridging, Fig. 10(c) are indicated.

becomes damaged. Since the ITZ is specified to be weaker then its surroundings and due to the stress
concentrating effect of the stiffer aggregates, damage evolves faster on the poles of the aggregates. As shown
in Fig. 10(a) and (b), before the peak stress is reached damage development is diffuse. This results in a
noticeable deviation from linearity in the pre-peak regime, which for this specific microstructure starts at
approximately 60% of the peak load.

Fig. 10(b) shows the distribution of damage at the onset of localization of deformation. At this point, the
interfacial regions at the poles of all aggregates have failed almost completely. The hydrostatic stress
distribution reveals that the aggregates have relaxed to a large extent and contribute less effectively to the
load carrying capacity of the composite. The global fracture energy E; (calculated as the total energy
dissipation due to microcracking divided by the cross-section of the specimen) expanded in the fracture
process up till peak load, i.e., the energy dissipated due to distributed microcracking, is 0.7 Nmm~2. For the
present case this amounts to roughly 5% of the total fracture energy (see Fig. 11). Once the peak is reached
and the deformation starts to localize, the fracture energy increases to roughly 60% of its final value (from
0.7 to 8.0 Nmm~™2). At this point, nearly all cohesive surfaces spanning the crack have failed completely,
i.e., the damage variable w equals unity. We can thus conclude that all further resistance to loading has its
origin in the bridges that form between the cracks (see Fig. 10(c)). From Fig. 11 it is clear that upon further
loading, the fracture energy increases further up to a final value of 13.7 Nmm™2.

The development of fracture in a cementitious composite is to a large extent dictated by the presence of
the weak ITZ in between aggregates and cement matrix. Van Mier [20] has emphasized the occurrence of
discontinuous crack growth, or bridging, in a cementitious composite. Since this implies a strong tendency
for cracks to curve in order to link up, bridging strongly increases the fracture energy. The calculations
show that discontinuous crack growth has its origin in the simultaneous degradation of material integrity at
different locations. One or more of such damaged regions may eventually become dominant which results in
multiple, disconnected cracks. The calculation for this specific microstructure furthermore shows that after
localization of deformation, resistance due to bridging of the crack faces is responsible for a further increase
in fracture energy of roughly 40%.

4.2. Effects of aggregate positioning

Crack deflection and meandering due to aggregates blocking the path of a crack may significantly in-
crease the total fracture energy. To study the effect of aggregate positioning, 10 concrete mixes are created
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(c)

Fig. 10. Distribution of damage and hydrostatic stress oy, (a) at the point of deviation from linearity in the pre-peak regime, (b) at the
onset of localization and (c) at the point where all resistance against further loading comes from crack bridging. Displacements are
magnified by a factor of 10.

all with the same aggregate diameters and number of aggregates as in Section 4.1. The volume fraction of
aggregates is 66% for all mixes.

Two typical results are depicted in Fig. 12 at the point when the average vertical stress has decreased to
0.5 MPa. In Fig. 12(a) the specific distribution of aggregates results in a rather smooth fracture path be-
cause the dominant interfacial cracks are more or less aligned. This favors linking up of the cracks.
However, in Fig. 12(b) one observes that the localization of deformation occurs in three larger cracks which
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Fig. 11. Development of fracture energy per unit width of the specimen shown in Fig. 7. The onset of non-linearity, Fig. 10(a), lo-
calization of deformation, Fig. 10(b) and the start of resistance solely due to bridging, Fig. 10(c) are indicated.
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Fig. 12. Damage distribution and hydrostatic stress o}, for two different arrangements of aggregates. Displacements are magnified by a
factor of 10.

are not aligned and therefore linking up of the cracks is difficult. Large bridges of intact cement paste
including smaller aggregates are formed which extend the lifetime of the specimen.

The relation between average vertical traction and strain for all 10 cases are given in Fig. 13. The peak
tractions obtained with the various aggregate distributions range from 2.43 to 2.60 MPa, with a mean value
of 2.54 MPa and a standard deviation of 0.06 MPa. Hence the differences between the various cases due to
different aggregate arrangements are not significant during loading up to peak load. However, due to crack
bridging, the fracture energies can differ significantly as shown in Fig. 14. Although final failure is hard to
reach for certain arrangements due to numerical difficulties with the cohesive surface methodology, ! it can
be estimated from Fig. 14 that differences in fracture energy of up to 40% can occur.

! Since all continuum elements are separated from each other by cohesive surfaces, at some point during the simulation single
elements or groups of elements may separate from the rest of the specimen. Under quasi-static conditions equilibrium can no longer be
maintained and the calculation stops. This can be prevented by detecting such (groups of) elements before numerical problems arise, as
done by Lingen and Tijssens [21] or by incorporating inertia effects.
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Fig. 13. Average stress vs. strain for the mortar mixes of Section 4.2.
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Fig. 14. Development of fracture energy as a function of strain for the various mortar mixes of Section 4.2.

4.3. Effect of loading rate

From experiments it is known that concrete shows a strong loading rate sensitivity. Experiments done by
Bazant and Gettu [5] have clearly shown that for low loading rates the influence of creep on the defor-
mation characteristics of concrete can be significant. Bazant et al. [6] have shown that the softening of
concrete can be reversed to hardening if the loading rate is increased by a factor 1000.

To study the effects of the loading rate, a specimen with an aggregate volume fraction of 66% and a size
distribution d = 2:1:0.5:0.25 mm of 1:8:28:32 is loaded by a strain rate of 10~* s~!. In the post-peak regime,
the loading rate is changed by a factor ranging from 1073 to 103. The stress—strain relations for these cases
are shown in Fig. 15. For comparison purposes, the stress—strain curves for the same microstructure but for
a constant strain rate of 10~7 and 107! s~! are also shown.

The experiments by Bazant et al. [6] showed that upon a reduction of the loading rate by a factor 0.1 in
the post-peak regime, the softening suddenly becomes much steeper for a short time. After this, the more
gradual softening shown in the stress—strain relation before the decrease in loading rate is recovered. Bazant
et al. [6] also showed that upon an increase in loading rate by a factor 1000 in the post-peak regime, a
hardening response and a second peak are observed.
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Fig. 15. Effect of change of strain rate on stress—strain relation. Strain rate is changed by factors of 1073-10° starting from ¢ = 10~* 57!
For comparison, the stress—strain relations for ¢ = 10~7 and 10~! s~! are also shown.

The numerical results shown in Fig. 15 are consistent with both experimental observations at least in a
qualitative sense. The relaxation of the bulk due to growth of damage is determined by the stress state.
Upon a decrease in loading rate the increase in elastic stresses suddenly becomes smaller whereas the initial
relaxation progresses at the same rate. This causes the global stress level to decrease which in turn results in
a lower relaxation rate because of a lower rate of increase of damage. As is evident from the curves for
¢ =10"7 s7!, the global stress level relaxes to a level that coincides with the level that would have been
obtained for a constant loading rate. The same applies for an increase in loading rate.

It must be noted that the change in loading rate in the present calculations was initiated in the post-peak
regime, i.e. after localization of deformation. Since also no inertia effects are included, the fracture path
does not change upon a change in loading rate. Including inertia effects may become important for example
in the case where the loading rate was increased by a factor of 10° up to a strain rate of ¢ = 107! s~!. At such
high strain rates, other complicating effects such as aggregate failure and the influence of moisture content
and moisture diffusion may have an important influence on the outcome of the analysis.

4.4. Effect of relative contribution of aggregates

Taking the aggregate size distribution of Section 4.1 as a reference, we now substitute larger aggregates
with smaller aggregates to investigate the effects of size distribution. Since the fracture processes of concrete
are determined by the weaker interfacial zones, the microstructures are modified such that the interfacial
area (approximately 100 mm?) remains constant. Also, a constant aggregate volume fraction (66%) is used.
This implies that the size of the specimen changes slightly. Within these constraints, one or more aggregates
of diameter 2 mm are replaced by aggregates of diameter 0.25 or 0.5 mm. The evolution of the fracture
energy as a function of global strain is given in Fig. 16(a), where the aggregates of diameter 2 mm are
replaced by aggregates of diameter 0.25 mm and in Fig. 16(b) where this is done using aggregates of dia-
meter 0.5 mm.

Comparing the curves in Fig. 16(a) with each other one observes that, upon replacing the larger ag-
gregates by smaller aggregates, the fracture energy first increases and then decreases. In Fig. 16(b) one
observes the opposite trend, i.e., the fracture energy first decreases and then increases. Hence from these
results clear trends regarding the influence of smaller aggregates on the fracture energy as compared to
larger aggregates cannot be deduced.
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Fig. 16. Development of fracture energy as a function of strain for the mortar mix discussed in Section 4.4 in which aggregates of
diameter 2 mm are replaced by aggregates of diameter (a) d = 0.25 and (b) d = 0.5 mm. The numbers equal the number of aggregates
of size d = 2:1:0.5:0.25 mm.

The dominant role of crack bridging becomes apparent again in Fig. 17 in which the final crack patterns
are given for four cases of Fig. 16. The large crack bridges shown in Fig. 17(c) and (d) contain a significant
number of aggregates. Clearly the bridging mechanism dominates the global stress—strain behavior. Large
scale computations are needed to investigate the influence of size distribution of aggregates on a larger scale
of observation.

5. Concluding remarks

Cementitious composites fracture in a discontinuous way. Here, only microcracking due to external
mechanical loading is considered, but in reality other effects such as drying—shrinkage cracking may occur
as well. This will influence the location where fracture occurs and could possibly be taken into account
through an initial damage distribution. Even apart from such complicating factors, cementitious com-
posites are prone to develop multiple fractures at various sites in the material thus naturally generating
crack bridges. These crack bridges are responsible for a significant increase in fracture energy. The cal-
culations presented here reproduce numerically what was observed experimentally by Van Mier [20]. It
should be noted, however, that the present results are applicable to a piece of material of only a few square
millimeters. The maximum aggregate size assumed in the calculations is 2 mm and the calculations
therefore represent fracture of mortar.
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Fig. 17. Final fracture pattern and hydrostatic stress o, for the aggregate size distribution (d = 2:1:0.5:0.25 mm) (a) 2:8:16:48, (b)
0:8:16:64, (c) 2:8:24:32 and (d) 0:8:32:32. Also see Fig. 16. Displacements are magnified by a factor of 10.

The cohesive surface model presented in this paper is based on a traditional damage formulation and
therefore does not directly link the micromechanical fracture events to the traction-separation relation of
the cohesive surfaces. Nevertheless, the basic idea that planar microcracks evolve on a microscale and tend
to grow in an accelerated manner seems to capture not only a reasonable softening relation for the cohesive
surfaces but also results in realistic fracture path predictions on a mesoscale. Due to the extremely complex
nature of the microstructure of cementitious composites, micromechanically based constitutive models for
the mesolevel fracture behavior of concrete are not available yet and such models are necessary to make
quantitatively correct predictions.

The results show that the fracture events in cementitious composites can be separated in three regimes,
i.e., (i) the creation of many microcracks, mainly concentrated in the weaker interfacial transition regions,
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(i1) the localization of deformation into multiple mesocracks and finally, (iii) the further growth of a true
macrocrack, it being hindered by the bridging of intact pieces of mortar. The precise fracture characteristics
are to a large extent dictated by the location of the aggregates.

Although experimental results suggest that concrete is a rate-dependent material and numerical simu-
lations have been performed with viscoelastic constitutive models, the physical source of the rate depen-
dence of the deformation of concrete is not clear. The rate dependence of the breaking of bonds is often said
to be the source for the rate dependence of the constitutive response of concrete. However, experiments
suggest that the moisture content also has a large influence on the observed rate dependence [9].

The effects of a change in loading rate qualitatively agree with what is observed in experiments. A steeper
softening response is observed when the loading rate is decreased and a less steep softening or even re-
hardening occurs when the loading rate is increased. However, in the present study, the aggregates are
assumed not to fracture. Also, the fracture path did not change because the change in loading rate was
initiated in the post-peak regime. A forthcoming paper will study the effect of loading rate in which ag-
gregates can fracture. Since aggregates like limestone show hardly any strain rate dependence, the com-
petition between fracture in the cement binder and the aggregates may have a significant influence on the
final fracture path.

Comparable numerical simulations for fracture of concrete have been made with lattice models [22,23].
Such models qualitatively give the same results as obtained in our analysis, i.e. discontinuous crack growth
due to crack growth initiation at multiple sites in the material. Although lattice models have clearly shown
that discontinuous crack growth is a result of the disordered microstructure, the response obtained from
crack growth simulations with lattice models is often too brittle. This can be attributed to the perfectly
brittle fracture behavior which is often used in the lattice simulations. On the length scale on which lattice
models are commonly used the assumption of brittle fracture may not be correct.

The cohesive surface methodology thus offers an alternative approach to study fracture events in
heterogeneous materials. The effects of mesh alignment sensitivity, pointed out by Tijssens et al. [24] do not
seem to dominate the solution in these kind of calculations due to the dominating effect of the stress field
and the rather random creation of multiple discontinuous fractures.
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