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Abstract

A possible mechanism for cross-tie fibril generation in crazes of amorphous polymers is proposed. Detailed finite element calculations are
performed on an axisymmetric model of a single fibril inside the craze. These calculations suggest that the hydrostatic stress inside the fibril is
large enough to cause cavitation and subsequent growth of initial imperfections inside the fibril. The calculations demonstrate that these
cavities will then grow by local plastic flow around them, leading to a continuous network of main fibrils interconnected by cross-tie fibrils.

© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The failure mechanisms in amorphous polymers can be
roughly divided into shear yielding and crazing. The initia-
tion of crazing is primarily controlled by the hydrostatic
stress, whereas shear yielding is a result of large shear stres-
ses. Shear yielding alone does not lead to fracture immedi-
ately but intersecting shear bands may assist in triggering
crazing by locally enhancing the hydrostatic stress [1,2].

Based on microscopic observations, the internal structure
of crazes is now generally assumed to be a structure of long
‘main’ fibrils, running from one craze—bulk interface to the
opposite one, interconnected by cross-tie fibrils. The main
fibrils are responsible for the extended load carrying
capacity of crazes perpendicular to the orientation of the
craze, whereas the cross-tie fibrils lend the craze some
tangential load carrying capacity [3].

Although the breakdown of crazes can be triggered by the
presence of dust inclusions [4], the cross-tie fibrils have
recently been identified as playing an important role as
well. Modeling the craze as an anisotropic continuum,
Brown [3] showed that cross-tie fibrils are responsible for
an increase in stress in the main fibrils large enough to cause
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failure of the backbone of the polymer molecules. Further
detailed studies, with explicit modeling of the craze internal
structure, were performed by Hui et al. [5] and Sha et al. [6].
These studies showed that the cross-tie fibrils are responsi-
ble for a further increase in stress in the main fibrils of
roughly 20% as compared to Brown’s model.

The importance of the cross-tie fibrils naturally leads to
the question where they originate from. The propagation of
the craze front is commonly considered (see e.g. Ref. [4]) as
resulting either from a continuous generation of voids in
front of a crack tip (for stress levels higher than, say, 0.4—
0.5 times the yield stress) or from a meniscus instability
mechanism. Argon and Salama [7] argued that through the
meniscus instability mechanism, a craze structure evolves
through which fluids can be freely transmitted, i.e. an ‘open-
cell’ structure. They further argued that the repeated void
nucleation process on the other hand results in a closed-cell
structure. After the craze front has passed, the material
inside the premature craze is stretched further and the
polymer network eventually locks. Upon further widening,
new polymer material is subsequently drawn into the craze
[4], a process commonly called surface drawing. The voids
generated by either the repeated void nucleation or menis-
cus instability mechanism are thus deformed to become
highly prolate and the adjacent columns of material become
the main fibrils. There seems to be no immediate mechan-
ism by which cross-tie fibrils are generated that would
interconnect these main fibrils.

To better understand the origin of cross-tie fibrils, we turn
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attention to a plane of isolated premature fibrils in the wake
of a passing craze front which may either be the result of a
repeated void nucleation process or a meniscus instability
mechanism. In this configuration, we seek for a possible
mechanism by which cross-tie fibrils may form. Our search
is assisted by a finite element model that incorporates the
growth of voids and fibrils by means of localized plastic
flow. The complicated deformation history involving
expansion of the void, interaction of shear bands, softening
and re-hardening of the polymer material are accounted for
in a material model that is described in Section 2. The
numerical calculations discussed in Section 3 then hint at
a possible, new mechanism of cross-tie fibril formation from
cavitation inside primary fibrils.

2. Model of growing craze

We consider the widening of a craze, starting from
premature fibrils in the wake of a passing craze front. We
analyze how the fibrils grow and are in particular interested
in the stress states inside the fibrils during growth. The
objective is to suggest a novel possible mechanism for
cross-tie fibril generation. For this, quantitative accuracy
is not needed at this stage and therefore, we will make a

am 6‘.‘1

number of simplifying assumptions that will render the
analysis tractable. First of all, despite the fact that fibril
diameters in amorphous polymers are typically on the
order of tens of nanometers, we will be using a continuum
description. Next, we approximate the distribution of
premature fibrils by a hexagonal array of fibrils (Fig. 1a).
The behavior of each fibril can then be represented with
good accuracy by an axisymmetric cell containing a single
fibril, see Fig. 1c. We further assume that the craze is
symmetric with respect to the mid-plane of the craze.
Such a craze fibril model is similar in spirit to those of
Kramer and Berger [4] and of Leonov and Brown [§].

Taking advantage of the symmetry of the craze, widening
is simulated by fixing the mid-plane and displacing the bulk
material at some distance above the voids at a constant
velocity &,,. The stress or deformation state in the plane of
the craze is generally unknown. We simply assume that the
in-plane displacements are much smaller than those due to
fibril growth, which means that the circumference of the cell
cannot move in horizontal direction. Using the material
model to be outlined below, the analysis of this problem
is done by means of a finite element method that captures
the very large strains that develop inside the fibril. The finite
element mesh is shown in Fig. lc.

We focus on amorphous polymers and assume that

“HH

Fig. 1. (a) Idealized distribution of premature fibrils surrounded by toroidal voids in the wake of the craze front represented by (b) an axisymmetric cell

containing a single fibril. Dimensions and finite element mesh are shown in (c).
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around individual fibrils, the same deformation mechanisms
are operating as during shear yielding of the glassy material
at the macroscopic level. Thus, we can adopt the constitu-
tive equations for large strain plastic flow based on original
ideas by Boyce et al. [9] but with some modifications intro-
duced later by Wu and Van der Giessen [10]. The actual
form adopted here, along with a convenient numerical inte-
gration scheme, is given in Ref. [11]. For further details, one
is referred to these references and the review in Ref. [12].

The material model has been explicitly developed for
amorphous polymers and accounts for rate-dependent
yielding, intrinsic softening and subsequent re-hardening.
The rate of deformation is decomposed in an elastic and a
plastic part. The elastic response is taken to be isotropic with
Young’s modulus E and Poisson’s ratio v.

Plastic flow is controlled by the driving stress 7 (i,j €
1,2, 3) which is the difference of the actual stress oy and a
back stress b;. The back stress describes the hardening
during continued plastic straining due to stretching of the
polymer network. Its constitutive behavior is borrowed from
the elasticity of rubber networks. Based on the work in Ref.
[10], the principal components of the back stress, b;, depend
on the plastic stretches A; through a linear combination of
the classical three-chain network description and the eight-
chain network description given in Ref. [13]. The principal
back stresses become unbounded when the plastic stretches
A; approach the limit stretch A,,,, = +/N where N is a statis-
tical network parameter. When this occurs, the network
locks and further plastic flow is prevented. The second
material parameter is the initial hardening modulus C*.

Plastic flow by shear yielding is controlled by the equiva-
lent shear stress 7=+ (1/2)6”U6"U (sum on repeated
indices). Here, 6",7 = &, — 0,90; is the deviatoric part of
the driving stress, with o,,, = (1/3)J, being the hydrostatic
stress (8; is the Kronecker delta). The magnitude of the
plastic part of the rate of deformation is taken to be given
by the expression for the plastic shear rate y° in terms of the
equivalent driving stress 7 as given by Argon [14]:

5/6
v‘sz'oexp[—A—;"(l—(l) )] (M
So

where 7y, and A are material parameters and T is absolute
temperature. In order to account for pressure dependence,
the athermal shear strength s is taken as a linear combina-
tion of the hydrostatic stress o, and the shear strength s,
sg = § — ao,,. Softening upon yield is incorporated by
letting s evolve during plastic flow at a rate depending on
the softening parameter 4 until it saturates at a value s;.
The plastic dissipation rate (per unit volume) during plas-
tic flow is D = 7yP. The associated temperature rise can
only be neglected if the generated heat quickly diffuses
away from the fibril. From a one-dimensional argument,
the importance of conductivity in a particular situation can
be assessed by the non-dimensional parameter « defined as
= ktg @)

= 5
pOCvLO

where k is the thermal conductivity, p, is the density, c, is
the heat capacity, f, is a characteristic time scale and L, a
characteristic length scale associated with the problem. For
k> 1, isothermal conditions prevail, while k<1
corresponds to adiabatic conditions. For polycarbonate,
the values are k= 0.2 W/mK, p,= 1200 kg/ms, cy =
1200 J/kg K. The radius of the initial void Ry is taken as
the characteristic length Ly and equals 10 nm. The drawing
rate &, that is used in the calculations results in a time scale
of the process of roughly 1s. The value of k therefore
equals approximately 10°, showing that fibril drawing is
an isothermal process and temperature changes do not
need to be accounted for.

3. Numerical analysis of fibril drawing process

The initial condition is that of an isolated premature fibril
surrounded by a toroidal hole. In the first calculations, we
will completely ignore the local deformations that led to this
stage and assume that all material is in its virgin state. The
material parameters mentioned in Section 2 are taken
to be representative for polycarbonate, i.e. E = 910 MPa,
v=0.3, sp = 97 MPa, s, = 77 MPa, y, = 2.0x 10" 57!,
h =500 MPa, a = 0.08, A =240 K/MPa, N = 12, C® =
4 MPa. The temperature is taken to be 7 = 294 K. We
assume that the craze widens at a rate of 6, = 10 nm/s;
changing this rate by a factor of ten changes the resulting
stresses only by a few percent. Because of the absence of
material length scales in this type of analysis, the geometry
enters the results only through the ratio ay/R,, where a; is
half the fibril spacing; a value of ay/R, = 2 seems realistic.
The results will be presented in normalized form, e.g. the
normalized stresses o7/sy will depend only on the dimen-
sionless parameters y /(6 ,/Ry), Elso, v, S/so, hlsg, o, Asy/T,
N and C%/s,.

The three snapshots in Fig. 2 demonstrate how a prema-
ture fibril grows from its initial state to an elongated fibril
(the hydrostatic stress distributions will be discussed
shortly). Early in the growth process, the intrinsic softening
of the material after yield gives rise to shear bands emanat-
ing from the outside of the fibril along the center plane,
Fig. 3. These strongly localized shear bands propagate
through the premature fibril and hit the centerline of the
axisymmetric cell. At that moment, the fibril begins to
contract and the overall craze normal stress continues to
decrease strongly, see Fig. 4. Upon further widening, the
shear bands propagate towards the bulk side of the material
(see the deformed shapes in Fig. 2) due to the re-hardening
of the material. Extension of the fibril thus is due to the shear
band propagation, which in the last stage shown in Fig. 2
transports material from almost above the original void into
the fibril. Inside the fibril, the material is highly stretched in
the loading direction, and is in fact locked to prevent further
flow.

Fig. 5 shows the radial stress component (i.e. in the plane
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Fig. 2. Hydrostatic stress distribution for a single, axisymmetric fibril without imperfections for increasing applied vertical displacement at the top of the fibril

(also see Fig. 4).

of the craze) along the ligament between neighboring fibrils
at the same moment as in Fig. 2c. A tensile stress has gradu-
ally developed above the dome between fibrils. The peak
value of approximately 20 MPa at this stage will grow even
larger upon further growth, and will enhance disentangle-
ment and may eventually become large enough to cause
scission of molecules. Disentanglement and chain scission
may cause failure in this region to accommodate further
widening of the craze [4]. It is interesting to note that Fig.
5 also shows that this radial stress along the centerline of the
fibril can attain even higher values locally. The location of
the stress peak roughly coincides with the location where
the current shear band hits the centerline.

Of more interest for the present purpose is the distribution
of hydrostatic stress o, inside the fibril, which is shown in
Fig. 2. From this figure, it is seen that the hydrostatic stress
attains a local maximum over the regime in which the shear
is currently most active. The distribution along the center of
the fibril, shown in Fig. 6, more clearly reveals that not only
there is a clear peak but that its magnitude increases as the
drawing process continues. The values found in this analysis
are on the order of o,/s) = 0.6-1.0. According to the
analysis given by Steenbrink and Van der Giessen [15], a

9 (1)

cavitation instability can occur in polymers with the same
constitutive behavior as considered here, for hydrostatic
stresses as low as o,/s) = 0.7. Strictly speaking, such a
cavitation instability is the spontaneous nucleation of a
void inside an otherwise homogeneous material; an alterna-
tive but practically equivalent view is that of the unstable
growth of a void from a pre-existing flaw or even inhomo-
geneity. It is fully similar to the concept of cavitation in
rubbers as explored by Gent [16], but now occurs in a
plastically flowing material. Leaving aside the details, the
important observation is that the hydrostatic stresses inside a
fibril can become high enough for a cavitation instability to
occur.

4. From cavitation to cross-tie fibrils

The analysis in Ref. [15] applies to the material in the
undeformed, hence isotropic state and subjected to pure
hydrostatic expansion. Neither one of these presumptions
strictly applies to the material inside the fibril. In this
section, we present the results of similar calculations but
assume the presence of an imperfection in the form of a

P/ (ba/ Ro)
0.034

0.0

Fig. 3. Contours of the normalized plastic shear rate yP just before global localization of deformation occurs (also see Fig. 4).
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Fig. 4. Stress—strain curve for the perfect fibril in which the points (a)—(c)
and (1)—(2) correspond to the instants shown in Figs. 2 and 3, respectively.

very small, spherical void along the centerline (initial radius
ro = 0.01R,, i.e. on the order of 0.1 nm). The calculation
will then show if this void grows substantially (as the
cavitation instability analysis would suggest) or that it
does not.

We first choose a rather arbitrary position for the imper-
fection of y/R, = 0.7. At this position, the previous analysis
predicts a hydrostatic stress peak of around 0.85s, when §,
is around 1.6R,. The evolution of the cross-sectional area
(as a convenient measure of size, illustrated in Fig. 7) of the
tiny void at this position with increasing craze opening
6,/Ry is shown in Fig. 8. First, the void size increases
slightly due to elastic deformation which is followed by a
sudden rapid increase favored by very local shear bands
around the imperfection. The growth comes to a rest once
the fibril starts to neck down and the toroidal hole expands.
However, for increasing deformation, we see that the rate at
which the imperfection grows, increases again and increases
to do so. This unstable growth happens clearly at a much
earlier stage, 6,/Ry = 0.5, than expected from the previous
analysis. This indicates that the hydrostatic stress in this
case does not even have to reach values of 0.85s, for an
initial, very small void to expand rapidly. At the end of
the calculation shown in Fig. 8, where the area increase is
roughly a factor of 5, the volume has increased by a factor of
about 5%% =~ 11.

o F--

80 60 40 20
o (MPa)

Fig. 5. Radial stress component on the edges of the cell at §,/R, = 1.8.

3.0
2.5
20

y/Ro
15}

1.0f

05

Om/s0

Fig. 6. Hydrostatic stress along the centerline of the fibril.

The calculation shown in Fig. 8 was stopped because of
excessive distortion of the finite element mesh around the
small void. We do expect however that the void will actually
continue to grow further. Now, if this void has grown to a
size equal to a sphere of radius R, we have to remember that
there is another, similar void in the neighboring fibrils. In
the cross-sectional view of Fig. 9, this suggests that the
ligament in between these two voids serves as another fibril
that grows while these voids expand. As this proceeds, one
can imagine that new voids nucleate by cavitation instabil-
ity. As this process continues, a network of fibrils and voids
develops. The cross-tie fibrils in this picture thus evolve due
to repeated void nucleation and growth in existing fibrils, as
illustrated in Fig. 9. Evidently, we have taken here a two-
dimensional view. In three dimensions, a void inside a fibril
does not lead to two fibrils as in the two-dimensional
picture. However, the void will not nucleate exactly in the
center, and the symmetry is broken. What will happen
subsequently is not clear, but it is not ruled out that the
nucleated void coalesces with the toroidal hole and that
an interconnected network of fibrils evolves. The key
element of this mechanism remains the nucleation of

- imperfection

Fig. 7. Illustration of the cross-sectional area A, of the imperfection used as
a convenient measure of size.
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Fig. 8. Evolution of the area of the imperfection with increasing load. First,
the imperfection grows rapidly, but this stops due to expansion of the
toroidal hole. Later, the imperfection continues to grow.

voids inside the propagating shear bands that draw the
existing fibrils.

5. Refinements

The foregoing calculations are idealized in several ways,
including the assumptions that the imperfections are
spherical voids and that the material is in its virgin state.
In addition, we have assumed an imperfection at an arbitrary
location. To explore the consequences of these assumptions,
we examine two situations, one in which the imperfections

|

(@ (®)
o~ NG )
© @

Fig. 9. Hllustration of the proposed mechanism: (a) the premature craze is
loaded, widens, and (b) a cavitation instability occurs inside the fibrils. (c)
The voids grow and another cavitation instability develops in between
them. The mechanism repeats itself (d) resulting in a cross-tie fibrillar
network.

are elongated and the material is virgin initially, and another
one in which the imperfections are spherical initially, but
the material is rejuvenated. In each of these, we ask if there
is a critical position of the imperfection for which cavitation
is most easy.

5.1. Elongated imperfections and virgin material

As mentioned before, the material inside the fibril in our
starting configuration will have undergone deformation
already during the nucleation of the craze, mostly stretching
in the fibril direction. As a consequence, any defect in the
material that is, say, spherical before crazing will have been
stretched already when it is in our starting configuration.
Here, we examine the effect of elongation of imperfections.
We roughly estimate the stretch of the material in the fibril
and use this to modify the shape of the imperfection.

The stretch of the material inside the fibril is calculated
from the assumption that there is no volume change when
the material in the fibril contracts horizontally as the fibril is
nucleated. As illustrated in Fig. 10, this means that the initial
volume 17(2R0)2dy0 of an element is equal to that after the
formation of the fibril, wr’(y)dy, with r(y) = 2R, —

VR3 — y*. This results in

5 1 -1
iy =| 3 = RS ~ 1~ iRy | )

which equals the vertical stretch A. This formula yields a
stretch of A = 4 for y = 0 and no elongation (A = 1) for
y = Ry. The assumption of no volume change implies that
the circumferential stretch equals +/1/A. However, since the
imperfections are already of molecular size, we will not
account for this reduction of size in circumferential size.
Hence, the stretch according to Eq. (3) is taken to effect
only the vertical dimension of the imperfection.

The results for the growth of the imperfection for increas-
ing vertical offset from the horizontal symmetry plane are
given in Fig. 11. The growth curve for each case is
essentially similar to that in Fig. 8, thus indicating that the
initial void shape is not very important. Also from these
analyses, and others that we have performed with material
parameters for virgin material, it is clear that the imperfec-
tion that is closest to the horizontal symmetry plane will

‘i:‘ ap = 2R0’ ‘-L r(y)

Fig. 10. Tllustration of how the stretch in the material of the fibril is
estimated from the assumption of zero volume change.
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Fig. 11. Evolution of the area of elongated imperfections with increasing
load. The vertical position y/R, of the imperfection is indicated in the figure.

grow first. Apparently, the hydrostatic stress is already high
enough there for the void to expand, even though according
to Fig. 6, higher stress peaks occur (at later stages) further
away from the symmetry plane.

5.2. Rejuvenated material

In the second set of calculations, we assume that during
the nucleation of the craze, all material situated in 0 <y <
Ry has yielded. This is motivated by the calculations for the
perfect fibril, where we have seen that expansion of the
toroidal hole takes place by shear bands propagating
upwards and stretching the material inside the fibril, see
e.g. in Fig. 3. We imagine a similar process to occur during
the formation of the fibril and the toroidal hole. As a conse-
quence, it is likely that the material inside the premature
fibril will not exhibit any intrinsic softening anymore once
the craze front has passed: the material is rejuvenated. For
simplicity, we take all material for 0 <y < R, in the fibril
to behave as elastoplastic without softening, as illustrated in
Fig. 12. The imperfections assumed inside the fibril are
taken to be spherical initially, based on the results in Section
5.1.

The results for the growth of the imperfections is given in
Fig. 13. We see that if the imperfection is located further

stretched material

On

virgin material

€

Fig. 12. Schematic of the uniaxial stress-strain behavior of the stretched
material relative to the virgin material.
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Fig. 13. Evolution of the area of spherical imperfections in which the lower
part of the fibril material consists of elastoplastic material without intrinsic
softening. The vertical position y/R, of the imperfection is indicated in the
figure.

away from the horizontal symmetry plane, the void tends to
grow later, but it also tends to expand further. Contrary to
the virgin material, the rejuvenated material does not
display a strongly localized shear band. The stresses inside
the fibril are more evenly distributed as it contracts. Now
that the entire fibril is an area of less intense deformation,
the imperfections that are close to the symmetry plane do
expand, but the expansion quickly comes to a rest as the
deformation continues to travel upwards along the fibril. It
was shown in Fig. 6 that the hydrostatic stress near the
center of the fibril reaches a peak value which increases
with increasing distance from the symmetry plane. This
makes imperfections further away from the horizontal
symmetry plane a more likely candidate for continued
expansion.

6. Conclusion

A possible mechanism for cross-tie fibril generation
inside crazes in amorphous polymers is proposed. Finite
element calculations based on an axisymmetric representa-
tion of the premature fibril structure behind the craze front
are used to motivate that cross-tie fibrils are generated inside
the fibrils by initiation and growth of voids. A network of
cross-tie fibrils results when this mechanism is repeated
upon further drawing of the polymer material.

There are a number of limitations and objections that can
be raised, among which are the limitations of the continuum
material model and the simplification to an axisymmetric
analysis. To further analyze the possibility of the proposed
mechanism, one should extend the material model to
include disentanglement and scission of the polymer
network [4]. However, the incorporation of these into the
material model is not clear at this stage. The axisymmetry
excludes the actual formation of a three-dimensional
network of fibrils, as discussed in Section 4. Fully three-
dimensional analyses would be necessary to examine this
in detail.
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