Molecular materials from 1,3,2-dithiazolyls. Solid-state structures and magnetic properties of 2,3-naphthalene and quinoxaline derivatives

Tosha M. Barclay,a A. Wallace Cordes,a Noel A. George, b Robert C. Haddon,c Richard T. Oakley, d Thomas T. Malstra, b Gregory W. Patenaude, b Robert W. Reed, b John F. Richardson b and Hongzhou Zhang b

a Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
b Department of Chemistry and Biochemistry, University of Guelph, Guelph, Canada, Ontario N1G 2W1
c Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA

d Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA

In the solid state, at room temperature, the radicals 2,3-naphthalene-1,3,2-dithiazolyl (NDTA) and quinoxaline-1,3,2-dithiazolyl (QDTA) are not dimerized; discrete molecules of NDTA are packed in a herringbone fashion, while those of QDTA adopt a slipped π-stack motif; NDTA is essentially paramagnetic at ambient temperatures, with weak antiferromagnetism developing below 190 K; QDTA is diamagnetic at low temperature, but limited paramagnetism sets in above 120 K.

While derivatives of the 1,3,2-dithiazolyl ring (DTA) have been known for over a decade,1,2 relatively little is known of their structural and transport properties. In the solid state the 4,5-dicyano derivative forms the simple cofacial dimer.3 The pyrazine-based compound (PDTA) also dimerizes cofacially,4 but the dimers adopt a stacked dimer structure similar to that observed for many dithiadiazolyls.5 Surprisingly, and despite its structural resemblance to PDTA, the benzo derivative (BDTA)6 associates in a centrosymmetric manner and does not form π stacks. The trithiatriazapentalenyl radical (TTTA) represents a sharp contrast to the previous examples, in that dimerization is effects minimal electronic reorganization. The packing pattern of the ribbons resembles the close-packed herringbone arrangement found many polycyclic aromatics,9 e.g. naphthalene10 and anthracene.11 There is no dimerization of NDTA radicals, and the closest intermolecular S···S contacts (d1–d4) are well outside the van der Waals separation of 3.6 Å.12

The crystal structure of QDTA also consists of undimerized radicals. Here too the internal bond lengths of the heterocyclic ring [mean d(S–N) = 1.645 Å, mean d(C–S) = 1.736 Å] are typical of those seen in simple dimers. As in the case of NDTA, the molecules lie in ribbon-like chains, but the packing of the QDTA (Fig. 2) takes on a slipped π-stack pattern similar to that observed for TTTA. Apart from intermolecular contacts associated with the cell repeat [3.7105(8) Å], there is only one S···S contact inside 4.0 Å (d1) linking radicals in adjacent stacks.

The structural dichotomy observed between NDTA and QDTA is intriguing. The similarity of the NDTA structure to those of simple polycyclic aromatics suggests a similar cause.9,13 Presumably, when the structure-making CH···ring interactions14 which favour the herringbone arrangement are reduced by the replacement of peripheral CH groups by N atoms, as in QDTA, the preference for close-packing is diminished, and a slipped stack structure prevails. That dimerization does not occur, as it does in the smaller molecule PDTA, is probably a manifestation of a slightly weakened dimerization enthalpy coupled with the greater tendency for the

![Fig. 1 Herringbone packing of NDTA. Intermolecular S–S contacts are shown with dashed lines; d1 = 3.869, d2 = 3.868, d3 = 3.821, d4 = 3.863, d5 = 3.602 Å.](image_url)
crystal structure to be determined by general packing forces rather than local (intermolecular S–S) interactions.

The bulk magnetic susceptibilities of both NDTA and QDTA have been measured over the temperature range 5–400 K on a SQUID magnetometer; plots of χ vs. T are shown in Fig. 3. Analysis of the susceptibility data for NDTA indicate that it is essentially paramagnetic above 200 K, with $\theta = 1.3$ K and the fraction of the Curie spins per molecule, $f = 0.80$ mol$^{-1}$. Below 200 K there is a phase transition to a more strongly antiferromagnetically coupled state with $\theta = 10.7$ K and $f = 0.53$ mol$^{-1}$. In QDTA the low-temperature susceptibility is consistent with a diamagnetic ground state, with $\theta = 0.53$ mol$^{-1}$. Above 120 K the susceptibility slowly rises and, at room temperature, $f = 0.003$ mol$^{-1}$.

Fig. 3 Magnetic susceptibility χ of NDTA (a) and QDTA (b), as a function of temperature.

We thank the NSERC, the NSF/EPSCOR program and the State of Arkansas for financial support. T. M. B. acknowledges the Department of Education for a doctoral fellowship.

Footnotes
* E-mail: oakley@chembio.ou.edu.ph.ca
† Crystal data for NDTA and QDTA: data were collected (at 293 K) on an Enraf-Nonius CAD-4 automated diffractometer with graphite-mono-

References

Received in Columbia, MO, USA, 14th January 1997; Com. 7/00310B.