Characterization of dimeric ATP synthase and cristae membrane ultrastructure from *Saccharomyces* and *Polymellora* mitochondria

Natalya V. Dudkina\(^a\), Stephanie Sunderhaus\(^b\), Hans-Peter Braun\(^b\), Egbert J. Boekema\(^a,\)*

\(^a\) Department of Biophysical Chemistry, GBB, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

\(^b\) Institute for Plant Genetics, Faculty of Natural Sciences, Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany

Received 8 March 2006; revised 20 April 2006; accepted 21 April 2006

Available online 12 May 2006

Edited by Richard Cogdell

Abstract There is increasing evidence now that F\(_{1}\)F\(_{0}\) ATP synthase is arranged in dimers in the inner mitochondrial membrane of several organisms. The dimers are also considered to be the building blocks of oligomers. It was recently found that the monomers in beef and the alga *Polymellora* ATP synthase dimer make an angle of \(\sim 40^\circ\) and \(\sim 70^\circ\), respectively. This arrangement is considered to induce a strong local bending of the membrane. To further understand the packing of dimers into oligomers we performed an electron microscopy analysis of ATP synthase dimers purified from *Saccharomyces cerevisiae*. Two types of dimers were found in which the angle between the monomers is either \(\sim 90^\circ\) or \(\sim 35^\circ\). According to our interpretation, the wide-angle dimers (70–90°) are “true-dimers” whereas the small-angle dimers (35–40°) rather are “pseudo-dimers”, which represent breakdown products of two adjacent true dimers in the oligomer. Ultrathin sectioning of intact *Polymellora* mitochondria indicates that the inner mitochondrial or cristae membrane is folded into lamellae and tubuli. Oligomers of ATP synthase can arrange in a helical fashion in tubular-shaped cristae membranes. These results strongly support the hypothesized role of ATP synthase oligomers in structural determination of the mitochondrial inner membrane.

Keywords: ATP synthase; Dimer; Electron microscopy; Mitochondria; *Saccharomyces cerevisiae; Polymellora*

1. Introduction

The proton F\(_{1}\)F\(_{0}\) ATP synthase is a ubiquitous enzyme that is found in virtually all living organisms. It is a multi-subunit complex of about 600 kDa involved in rotary catalysis. In prokaryotes the enzyme consists of an F\(_{0}\) intrinsic membrane domain with three different subunits named a, b and c and an extramembranous F\(_{1}\) domain (or headpiece), including a central stalk, with five different subunits \(\alpha\), \(\beta\), \(\gamma\), \(\delta\) and \(\epsilon\). Three \(\alpha\) and \(\beta\) subunits shape the F\(_{1}\) headpiece; the \(\gamma\) and \(\epsilon\) are present in single copies in the central stalk. Most of the F\(_{0}\) domain is formed by a multimer of 10 c subunits. The c-subunit multimer of the F\(_{0}\) domain and the \(\alpha\beta\) F\(_{1}\) headpiece are linked by the central stalk and additionally by a peripheral stalk composed of two b subunits. The peripheral stalk is connected to the top of the \(\alpha\beta\) F\(_{1}\) headpiece via the \(\delta\) subunit. During catalysis a proton membrane gradient drives the rotation of the ring of multiple copies of the c subunit [1]. This results in a clockwise rotation of the \(\gamma\) subunit of the F\(_{1}\)-ATPase and in the synthesis of ATP.

Mitochondrial F\(_{1}\)F\(_{0}\) ATP synthases contain the same eight subunits, though some have a different name such as the OSCP subunit, which is the counterpart of the prokaryotic \(\delta\) subunit. There are at least eight small subunits in addition to those of the prokaryotic enzyme [2]. In *Saccharomyces cerevisiae* there is one additional subunit located in the central stalk (the mitochondrial specific \(\varepsilon\) subunit). Most of the remaining ones are located in the F\(_{0}\) domain (d, e, f, g, h, i and k) where they are positioned close to the peripheral stalk. Atomic resolution structures have revealed the folding of the \(\alpha\), \(\beta\), \(\gamma\), \(\delta\) and \(\epsilon\) subunits of the F\(_{1}\) domain [3,4] and based on biochemical studies there is a recent lower resolution model for the arrangement of the four subunits consisting the peripheral stalk or stator in beef [5]. There is, however, no detailed structural information of the many (small) subunits of bovine or yeast ATP synthase, which form the F\(_{0}\) domain outside the subunit c multimer.

Although the proton ATP synthase is catalytically active in its monomeric form a dimeric ATP synthase supercomplex from yeast mitochondria has been characterized by BN/SDS PAGE [6] and other techniques. This supercomplex includes the above-mentioned small subunits f, i, e, g, and k, the latter three of which are thought to be involved in dimer formation. Recent data show that yeast cells deficient in the dimer-specific subunits e or g lack dimeric ATP synthase [7,8]. Some data also point to an involvement of one of the subunits of the peripheral stalk, subunit b, in dimer formation [9]. Similar dimeric ATP synthase supercomplexes were found in a wide range of organisms such as beef [10], *Arabidopsis* [11], *Chlamydomonas* [12] and *Polymellora* [13,14].

Several biochemical studies indicate in addition to the dimeric conformation a further packing of ATP synthase into oligomers. The oligomerization of the ATP synthase has been proposed to determine mitochondrial morphogenesis [7,8,14]. Yeast mutants that lack the ATP synthase subunits e or g show a different type of folding of the inner mitochondrial or cristae membrane. This membrane is heavily folded, but mutants show an onion-like packing of cristae membranes. A GTPase named Mgm1p serves as a regulator of subunit e stability, ATP synthase assembly and cristae morphology [15]. The only

\(^{*}\)Corresponding author. Fax: +33 503634800.

E-mail address: e.j.boekema@rug.nl (E.J. Boekema).
direct evidence for ATP synthase oligomers was obtained in an electron microscopy study by using rapid-frozen deep-etched mitochondria from the unicellular freshwater organism *Paramecium* [16]. One of the best ways to study subcellular structures by electron microscopy is to embed them without chemical fixation in amorphous ice and to perform a three-dimensional reconstruction by electron tomography [17,18]. But for relatively large objects like mitochondria it remains particularly difficult to obtain a resolution sufficient to see the packing of individual copies of the major protein complexes like the ATP synthases, because the attainable resolution is directly related the size of the object [19]. In the best current available reconstructions the F₁ headpieces come into focus, but they do not show how the oxidative phosphorylation complexes are precisely organized [17].

Until now a low-resolution structural characterization of the ATP synthase dimer has been carried out in parallel for two different species: beef [20] and the colorless alga *Polytomella* [21]. Mitochondria were shock-frozen using liquid nitrogen and stored at −80 °C until use. In both cases it was found that the two F₁Fₒ monomers are making an unexpected angle which was ~40° in the case of beef and ~70° for *Polytomella*. Because of this angle the membrane around the Fₒ parts of the dimer is curved. It was concluded that this kink drives the mitochondrial cristae membrane to adopt a local curvature [14,20]. A major difference between the two dimers, however, is a difference of ~30° between the two angles. This discrepancy may be explained by the fact that the two species are not closely related and have a different subunit composition. But it may also be possible that the association of monomers in the dimers is different. To get further insight into the dimer configuration we performed single particle electron microscopy analysis on a third species, the yeast *S. cerevisiae*. Since *Polytomella* ATP synthase dimers were found to be unusually stable [14], additional ultrathin sectioning of these mitochondria was performed to investigate the overall membrane packing of the oxidative phosphorylation complexes. The analysis of the yeast dimers indicates that detergent solubilization of mitochondrial membranes leads actually to two distinct types of dimers, either with an angle of about 90° between the long axes of the F₁Fₒ monomers or with an angle of 35°. Both types of dimers are considered to originate from an oligomeric organization of ATP synthases in rows. Ultrathin-sectioning and negative staining of osmotically shocked *Polytomella* mitochondria show that such oligomers are (partly) arranged in a helical fashion in tubular-shaped cristae membranes.

2. Materials and methods

2.1. Cultivation of *Polytomella* spp. and *Saccharomyces cerevisiae*
Polytomella spp. (198.80, E.G. Pringsheim) was obtained from the “Sammlung von Algenkulturen der Universität Göttingen” (Germany) and cultivated as described in Dudkina et al. [14]. *S. cerevisiae* (strain Y187) was cultivated in YPD medium. For mitochondrial isolations, cells were transferred into lactate medium (2.6 mM glucose, 7.3 mM KH₂PO₄, 18.7 mM NH₄Cl, 4.5 mM CaCl₂, 8.6 mM NaCl, 2.9 mM MgCl₂, 2.2% lactate).

2.2. Preparation of mitochondria
Mitochondria of *Polytomella* were isolated by differential centrifugation and Percoll density gradient ultracentrifugation as outlined previously [14]. Isolation of yeast mitochondria was based on differential centrifugations and sucrose gradient ultracentrifugation as described by Meissinger et al. [21]. Mitochondria were shock-frozen using liquid nitrogen and stored at −80 °C until use.

2.3. Purification of dimeric ATP synthase
The membrane-bound protein complexes of yeast and *Polytomella* were solubilized using digitonin solution (5% detergent, 30 mM HEPES, 150 mM K-aceate, 10% glycerine, pH 7.4) and separated by sucrose gradient ultracentrifugation (gradients of 0.3–1.5 M sucrose, 15 mM Tris base, pH 7.0, 20 mM KCl, 0.2% digitonin; centrifugation for 17 H at 150,000 × g/4 °C). Afterwards the gradients were fractionated and the protein complex compositions of the fractions analyzed by 1D Blue-native PAGE [22].

2.4. Electron microscopy
Selected fractions of the gradients including dimeric ATP synthase were directly used for electron microscopy and single particle analyses [23]. For ultrathin sectioning, *Polytomella* mitochondria were isolated according to [14], pelleted and double fixed with glutaraldehyde and osmium tetroxide. Fixed mitochondria were dehydrated with acetone and embedded in Epon. Ultrathin sections were made on an ultramicrotome and double stained with uranyl acetate and lead citrate. For studying the localization of the oxidative phosphorylation system in the inner membrane before detergent disruption *Polytomella* mitochondria were osmotically shocked by diluting them 10x in distilled water on electron microscopy grids and directly stained with uranyl acetate.

3. Results

3.1. Purification of yeast ATP synthase dimers
Solubilization of isolated yeast mitochondria by digitonin and analysis of the solubilized protein complexes by 2D Blue native/SDS PAGE allowed to monitor the known complexes of the respiratory chain (Fig. 1). In accordance with previous publications [6], ATP synthase is present in two forms, a monomeric complex of about 500 kDa and a dimeric complex of about 1000 kDa. In-between, supercomplexes of dimeric complex III and one or two copies of monomeric complex IV are visible. Furthermore, two forms of dimeric complex III are present below the monomeric ATP synthase complex, which represent the intact dimer and a subcomplex of the dimer lacking the Rieske FeS subunit and another 8.5 kDa subunit. Both subunits are known to easily get detached from the dimeric complex III [24]. The ratio of monomeric and dimeric ATP synthase very much depends on the detergent used for solubilization [6]. The dimer is best stabilized in the presence of low Triton X-100 concentrations. However, digitonin and dodecylmaltoside also proved to be suitable detergents for ATP synthase supercomplex stabilization [10].

In contrast, ATP synthase of *Polytomella* is exclusively visible in the dimeric form on 2D Blue native/SDS gels independently of the type of non-ionic detergent used for solubilization (Fig. 1, [13,14,25]). The extraordinary stability of the dimer most likely is due to an additional large subunit called “mitochondrial ATP synthase associated protein” (MASAP), which runs at 60 kDa on the second gel dimension (Fig. 1).

For successive EM analysis of yeast ATP synthase, Blue-native PAGE was substituted by sucrose density gradient ultracentrifugation to obtain protein complexes in solution. The gradients were fractionated and small aliquots of the fractions were analyzed by Blue-native PAGE to monitor their protein complex composition. A fraction close to the bottom of the gradients (fraction 5) included pure ATP synthase dimers. The corresponding fractions were directly used for EM and single particle analysis.
3.2. Structural analysis of yeast ATP synthase dimers by electron microscopy

Negatively stained specimens of the fractions were found to contain large numbers of dimeric ATP synthase molecules (Fig. 2). The only obvious contamination was the supercomplexes of complex III and IV, but because the latter looks quite different and because the shape of the ATP synthase dimers is very characteristic, it was possible to select a rather homogeneous data set of 20,000 single particle projections. Single particle analysis showed the presence of seven different views, representing two types of ATP synthase dimers and their apparent breakdown fragments. The main difference between the two types of dimers is in the angle between the monomers, which is either about 90° (Fig. 3(A)) or 35° (Fig. 3(E)). A smaller difference is in the total width of the F0 domains in projection, which is larger in the wide-angle dimers. Both angles are found to remain in particles missing one headpiece (Fig. 3(B), (C), (F) and (G)) and even both headpieces (Fig. 3(D)). The ratio between the two types of dimers, including their fragments, is about 1:1.

The peripheral stalk of the yeast dimer appears faint (white arrows; left headpieces in Fig. 3(A) and (B)) or is absent (all other headpieces). This is a striking difference with the previously analyzed *Polytomella* dimer (Fig. 3(H)). Another difference is at the top of the F1 headpiece because the yeast F1 headpiece is clearly seen to be blunt in all views. In the best-resolved headpiece of the particle of Fig. 3(C) there is a stain accumulation at the site of the tip (white arrowhead) at where the OSCP subunit should be present. The absence of (most of) the OSCP subunit explains the absence of the stator because the stator needs OSCP for binding to the headpiece. Despite the large number of particles analyzed the resolution was low in comparison to *Polytomella* and the best resolution of about 30 Å was obtained for one of the fragments (Fig. 3(C)). This low resolution is likely due to flexibilities in the dimer such as small angular deviations between two monomers or a movement between the F0 and F1 domains because of the absence of the stator in most monomers. A further difference with *Polytomella* is in the membrane part; in yeast dimers the width is somewhat larger (Fig. 3(A)) or smaller (Fig. 3(B)) than in of those of *Polytomella* (Fig. 3(H)).

3.3. Cristae morphology

Electron microscopy analysis of thin-sectioned *Polytomella* mitochondria shows it is a spherical organelle of approximately 3 μm in diameter (Fig. 4(A)). Two types of cristae membranes could be observed in these mitochondria. There are lamellae...
with a spacing of about 25 nm between the membranes (upper left corner, Fig. 4(B)) and tubes with a diameter of 60 nm or more. In several of the tubes that run parallel to the sectioning direction a kind periodicity in the arrangement of protein complexes is visible (red bars, Fig. 4(B–E)). Although individual complexes are not well visible it appears that this ordering of protein complexes makes an angle with the long axis of the tubules, as indicated by the red bars. Because the resolution in the sections was low we also applied negative staining with uranyl acetate on osmotically shocked mitochondria. Similar rods with a diameter of 60–90 nm are present in osmotically shocked mitochondria (Fig. 5). In some of the tubules the ATP synthase headpieces are well resolved (upper left frame, Fig. 5), but no visible ordering of proteins seems to be preserved. The fact that the observed ordering makes an angle with the long axis of the tubules from the thin sections is typical for a helical ordering of protein complexes. Since the complexes were metal stained, the stronger stained dark zones should represent ATP synthase complexes, because the ATP synthase headpieces protrude at least two times farther away from the membrane as any of the complexes I–IV. Hence, the tubules seen in the sectioned Polytomella mitochondria are interpreted as composed of helically arranged rows of ATP synthase complexes separated by zones occupied by the respiratory complexes I–IV.

4. Discussion

In this report, we present an analysis of ATP synthase dimers isolated from *S. cerevisiae* mitochondria by electron
microscopy and single particle image analysis in combination with the ultrathin sectioning and negative staining of the whole mitochondria from the alga *Polytomella*. The aim of this analysis is the detection of the way in which ATP synthase dimers/oligomers are organized in the mitochondrial inner membrane. We analyzed the projection structure of the yeast ATP synthase dimer in which complete dimers and fragments missing one or both of the F₁ parts clearly indicate that the interaction between the monomers occurs by their F₀ parts. The monomers make an angle between of either about 90° or 35°, but other angles were not observed (Fig. 3). In *Polytomella* there appears to be only one type of ATP synthase dimer (Fig. 3(H), [14]), in which the angle is about 70°. This causes the membrane-embedded F₀ parts to have a different orientation, but otherwise they look quite similar. In the case of the bovine ATP synthase there are only dimers with a small (40°) angle between the monomers [20], quite similar to the 35° angle observed in yeast particles (Fig. 3(E–G)). Both small angle dimers show the absence of stators in projection, which could mean that they are not visible because of an overlap-situation with the headpieces. But because the large angle yeast particles appear to lack most of the stators, it could well be that the same is true for the small angle dimers. The loss of stators might be caused by the low abundance of the OSCP subunit. It is possible that this subunit is partly lost during EM specimen preparation due to the high (5%) digitonin concentration or more likely a lower stability of the yeast ATP synthase dimers. However, the absence or presence of the stator and the OSCP subunit do not appear to have a major effect on the overall shape of the dimers, because even in the absence of one or two complete F₁ headpieces the angle between the F₀ parts is maintained.

The question now arises what makes the ATP synthase dimer to appear seemingly in two conformations. Until now several studies, as well as our results (see below), point to oligomerization of ATP synthases and thus dimeric supercomplexes are thought to be the building blocks of ATP synthase oligomers. According to our scheme (Fig. 6), we propose that two types of dimers appear as breakdown products of oligomers after detergent solubilization of cristae membranes. This could lead to “true-dimers” with an observed angle of 70° or 90° and to “pseudo-dimers” with angle of 35° or 40° consisting of two neighbour monomers from two broken native dimers, as depicted in the scheme. The fact that the two types of dimers appear rather than a change in the angular position of the monomers is clear from the width of the F₀ parts. The F₀ part from the true-dimers (Fig. 3(A)) is about 40% wider than in the pseudo-dimers (Fig. 3(E)). The fact that the pseudo-dimers were not observed in *Polytomella* could have to do with the fact that the intra-dimeric interaction in the ATP synthase oligomers is much stronger than the inter-dimeric interaction. It would also be worthwhile to re-examine the beef dimers to see if any type of wide-angle dimers is present at low frequency. Finally, a lower intra-dimeric interaction could correlate with the low abundance of intact stators in yeast (Fig. 3) and bovine dimers [14,20] and the high abundance in *Polytomella* [14], where the stator is very pronounced by the presence of MASAP protein in its upper part. Biochemical data also indicate that dimer specific subunits of yeast are attached to the stator close to the F₀ part [2].

Supporting evidence for the scheme of Fig. 6 is presented in a BN-PAGE analysis of mammalian mitochondria which resulted in several types of ATP synthase multimers [26]. About 30–35% of total ATP synthase was obtained as three low-mobility species with apparent molecular masses of ~1500, ~2300, and ~2900 kDa, and the remainder as monomeric ATP synthase (~750 kDa). These low-mobility species represented dimeric ATP synthase, as well as trimeric and tetrameric ATP synthase [26]. The trimeric ATP synthase fragments can now be explained as an expected breakdown product if the strength of intra- and inter-dimeric interactions are about equal. The position of the small mitochondrial ATP synthase subunits b, e, f, g, i and k around the dimer interface is not precisely known. It is not yet possible to propose their role in intra- and interspecific dimer contacts. But recently it was proposed that subunits e and g are important in interspecific interaction [7,8]. This is a further support for the interpretation of the two different types of dimers as being different breakdown products of oligomers.

Because the best current available reconstructions [17] do not show how the oxidative phosphorylation complexes are precisely organized we used classical ultrathin sectioning to get hints about the packing of proteins in the mitochondria membrane. Sectioning of *Polytomella* mitochondria indicates a helical packing of cristae membrane proteins in tubules (Fig. 4). Because these tubular membranes are full of oxidative phosphorylation complexes as shown by additional negative staining of osmotically shocked mitochondria from *Polytomella* (Fig. 5) these data clearly hint to an oligomeric organization of ATP synthases in a helical fashion. The observation of rows of ATP synthases arranged in a helical way was previously demonstrated at higher resolution for mitochondria from the unicellular freshwater organism *Paramecium* by rapid-freeze deep-etch electron microscopy [16,27]. The latter studies indicated that ATP synthase dimerization and the cristae morphology are linked to each other. Yeast mutants devoid of dimer-specific subunits were shown unable to form dimeric ATP synthase and comprise mitochondria with drastically changed morphology [7,8]. Instead of the characteristic highly folded inner membrane architecture, the cristae, the membranes consist of atypical “onion-like” structures. Similar

![Fig. 6. A model for the arrangement of ATP synthases dimers into multimers. Oligomers consist of dimeric ATP synthases. The oligomers can break down by detergent incubation into “true-dimers” or into “pseudo-dimers”. The latter actually consist of two monomers from the neighbouring dimers, symbolized by a blue and purple set of α₁β₁ subunits. Ochre and bright green densities symbolize dimer- and interdimer specific subunits, respectively.](image-url)
References

Acknowledgements: We thank Mr. Ruby Kalicharan for expert technical assistance. H.P.B. acknowledges a grant of the Deutsche Forschungsgemeinschaft (Br1829-7/1) and E.J.B. grants of the Dutch science foundation NWO-CW.