Cysteine cross-linking defines part of the dimer and B/C domain interface of the Escherichia coli mannitol permease
van Montfort, B.A.; Schuurman-Wolters, G.K.; Duurkens, R.H.T.; Mensen, R.; Poolman, B.; Robillard, G.T.

Published in:
The Journal of Biological Chemistry

DOI:
10.1074/jbc.M010728200

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Part of the dimer and B/C domain interface of the *Escherichia coli* mannitol permease (EIImtl) has been identified by the generation of disulfide bridges in a single-cysteine EIImtl, with only the activity linked Cys124 in the B domain, and in a double-cysteine EIImtl with cysteines at positions 384 and 124 in the first cytoplasmic loop of the C domain. The disulfide bridges were formed in the enzyme in inside-out membrane vesicles and in the purified enzyme by oxidation with Cu(II)-(1,10-phenanthroline)₃, and they were visualized by SDS-polyacrylamide gel electrophoresis. Discrimination between possible disulfide bridges in the dimeric double-cysteine EIImtl was done by partial digestion of the protein and the formation of heterodimers, in which the cysteines were located either on different subunits or on one subunit. The disulfide bridges that were identified are an intersubunit Cys₁₂₄-Cys₁₂₄, an intersubunit Cys₁₂₄-Cys₃₈₄, and an intrasubunit Cys₁₂₄-Cys₃₈₄. The disulfide bridges between the B and C domain were observed with purified enzyme and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mannitol did not influence the formation of the disulfide between Cys₃₈₄ and Cys₁₂₄. The close proximity of the two cysteines 124 was further confirmed with a separate C domain by oxidation with Cu(II)-(1,10-phenanthroline)₃ or by reactions with dimaleimides of different length. The data in combination with other work show that the first cytoplasmic loop around residue 124 is located at the dimer interface and involved in the interaction between the B and C domain.

The uptake and concomitant phosphorylation of a wide variety of carbohydrates into bacterial cells is, in many cases, accomplished by the phosphoenolpyruvate-dependent phosphotransferase system (PTS) (1). In a cascade of phosphorylation reactions (Fig. 1), the phosphoryl group is transferred from the energy donor phosphoenolpyruvate (PEP)¹ via the two general energy coupling mechanisms to the phosphoenolpyruvate-dependent transport protein of the PTS; EIImtl, wild-type mannitol-specific EI of *E. coli* containing all four cysteines; SSCS, N-terminal His-tagged EIImtl with Cys₁₅₀, Cys₂₅₀, and Cys₇₇₁ replaced with a serine; SSCS-S₁₂₄-C, SSCS with Ser₁₂₄ in the C domain replaced with a cysteine; IChis-CL, C-terminal His-tagged cysteine-less C domain with Cys₁₅₀ and Cys₂₅₀ replaced with serine; IChis-S₁₂₄-C, IChis-CL in which Ser₇₇₁ is replaced with a cysteine. Numbering of residues, even in the His-tagged mutants, is always according to the numbering in the original sequence of EIImtl.

¹ The nomenclature of the enzymes is: EI, carbohydrate-specific transport protein of the PTS; EIImtl, wild-type mannitol-specific EI of *E. coli* containing all four cysteines; SSCS, N-terminal His-tagged EIImtl with Cys₁₅₀, Cys₂₅₀, and Cys₇₇₁ replaced with a serine; SSCS-S₁₂₄-C, SSCS with Ser₁₂₄ in the C domain replaced with a cysteine; IChis-CL, C-terminal His-tagged cysteine-less C domain with Cys₁₅₀ and Cys₂₅₀ replaced with serine; IChis-S₁₂₄-C, IChis-CL in which Ser₇₇₁ is replaced with a cysteine. Numbering of residues, even in the His-tagged mutants, is always according to the numbering in the original sequence of EIImtl.

² O. Amster-Choder, personal communication.
Identifying the B/C Domain and Dimer Interface

EXPERIMENTAL PROCEDURES

Chemicals—Decyl-polyethylene glycol (dPEG) was synthesized by B. Kwant (Kwant High Vacuum Oil Recycling and Synthesis, Bedum, The Netherlands). Bovine pancreas trypsin, 1-tosylamide-2-phenylthyl chloromethyl ketone-treated trypsin was from Sigma and endoproteinase Glu-C of Staphylococcus aureus V8 was from Fluka. The bismaleimides o-PDM and p-PDM were from Aldrich and BMH was obtained from Boehringer. HPr and HPr were purified as described previously (18, 19). All chemicals used were analytical grade.

Construction of Plasmids for Expression of SSCTS, SSCTS-S124C, and IIChis-S124C—Site-directed mutagenesis was performed with the Strategene Quickchange mutagenesis kit. His-tagged EIImtl with cysteines at positions 110, 320, and 571 replaced by serine (SSCTS) was constructed in pMalHisMtlAPr, which carries the gene for the N-terminal His-tagged EIImtl.5 Subsequently, SSCTS-S124C was generated by replacing Ser124 with a cysteine. IIChis-CL was generated by replacing Cys110 and Cys320 by serine in pMaMtlIICHis, which carries the gene for the B domain.6 Here we describe the generation of disulfide bridges of cysteines within and between B and C domains. This work demonstrates that the first cytoplasmic loop of the C domain is in close proximity to the B domain active site and near the dimer interface.

Growth of E. coli, J. Broos, and B. Poolman, unpublished data.

Experimental Procedures

Disulfide Cross-linking—A solution of ~6 μM enzyme in ISO vesicles or 1 μM purified protein was brought to a final concentration of 5 mM DTT and 20 mM EDTA from stocks of 0.1 and 0.5 mM, respectively. If appropriate, 90 nM EI was added. After 15 min of incubation at 30 °C, DTT and EDTA were removed on a Bio Micro-spin 6 column (Bio-Rad), equilibrated with 50 mM NaF, pH 7.5, 0.1 mM EDTA, with (purified enzyme) or without (ISO vesicles) 0.25% dPEG. The buffer was deaerated with helium before addition of the detergent. Subsequently, HPr, MgCl₂, dPEG, and PEP were added to phosphorylate the purified enzyme, provided EI was present; these additions increased the final volume by 50%. The same mixture without PEP was used to represent conditions in which the enzyme was not phosphorylated. The final concentrations of the components were 2 mM HPr, 5 mM PEP, and 5 mM MgCl₂. After 5 min at 30 °C, disulfide bridge formation was initiated by oxidation with 0.1 volume of 3 mM Cu(II)-(1,10-phenanthroline)₃ (CuPhe), followed by incubation at 30 °C for 30 min. The reaction was quenched by the addition of 65 mM EDTA from a stock of 0.5 mM NaEDTA, pH 8.

Partial Digestion and Reduction—The protein was partially digested with 20 μg of trypsin or 100 μg of endoproteinase Glu-C/ml of reaction mixture for 1 h at room temperature. The digestion of the vesicles with endoproteinase Glu-C was done in the presence or absence of 0.4% dPEG. The digestion was stopped by the addition of SDS-PAGE denaturant buffer without β-mercaptoethanol. If appropriate, reduction was accomplished by the addition of the disulfide cross-linking procedure except that EI, HPr, MgCl₂, and PEP were omitted from the mixture.

Heterodimer Formation—Heterodimers between 3 mM SSCTS and 1 μM IIChis-S124C or 0.2 μM SSCTS-S124C and 3 μM IIChis-CL were formed by mixing purified proteins, followed by an incubation at 30 °C for 30 min. To promote heterodimer formation between SSCTS-S124C and IIChis-CL, 170 mM Na₃PO₄ was added from a 1 M stock solution in pH 7.6. This lowers the cloudpoint of the detergent (dPEG), in which the protein is solubilized. This treatment results in dissociation of the initially homodimeric enzymes and thereby facilitates the mixing of the species (26). Subsequently, the heterodimers were treated as described above for the disulfide cross-linking procedure except that EI, HPr, MgCl₂, and PEP were removed on Bio Micro-spin 6 column (Bio-Rad), equilibrated with 50 mM NaF, pH 7.5, 0.1 mM EDTA, plus 0.25% dPEG, 5 mM MgCl₂, and PEP, or BMH from a 10 times concentrated stock solution in pH 7.6. The reaction was stopped with 10 mM DTT after incubation at 30 °C for 30 min.

SDS-PAGE Analysis and Immunoblotting—SDS-polyacrylamide gel electrophoresis was done with 10% acrylamide gels as described (27). A denaturant buffer without β-mercaptoethanol was used. The samples were not boiled in denaturation buffer, because this leads to aggregation of the proteins. The proteins were visualized either by silver staining (28) or by immunodetection after the proteins were transferred to polyvinylidene fluoride membranes by semi-dry electrophoretic blotting. Detection, using the Western Light™ chemiluminescence detection kit with CSP-D™ as the substrate, was performed as recommended by the manufacturer (Tropix Inc.). The first antibody was an anti-His antibody from Amersham Pharmacia Biotech or Roche Molecular Biochemicals, and the second antibody was an anti-mouse IgG alkaline phosphatase conjugate (Sigma). MALDI-TOF Mass Spectrometry—a Coomassie-stained band containing the C domain, generated by tryptic digestion, was excised from an SDS-polyacrylamide gel and completely destained with 50 mM NH₄HCO₃ in 40% ethanol. Subsequently, the gel piece was washed three times with 200 μl of 25 mM NH₄HCO₃ and cut into pieces of ~1 mm². A 200-μl volume of 50 mM β-mercaptoethanol in 25 mM NH₄HCO₃ was added and, after 2 h of mixing at room temperature, the gel pieces were extracted with two 200 μl of 60% acetonitrile, 0.1% trifluoroacetic acid by 5 min of sonication in a bath sonicator. The β-mercaptoethanol solution and the extracts were pooled and dried in a Speed-Vac. The last traces of ammonium bicarbonate were removed by adding

5 E. Vos, personal communication.
6 E. Vos, J. Broos, and B. Poolman, unpublished data.
10 μl of 1% trifluoroacetic acid and subsequent drying in the SpeedVac. The dried samples were dissolved in 5 μl of 50% acetonitrile, 0.1% trifluoroacetic acid and sonicated for 5 min. Aliquots of 0.75 μl were applied onto the MALDI target and allowed to air dry. Subsequently, 0.75 μl of 10 mg/ml α-cyano-4-hydroxyquinamidic acid in 50% acetonitrile, 0.1% (v/v) trifluoroacetic acid was applied to the dried samples, which was then allowed to dry again. MALDI mass spectra were recorded with a Micromass Tofspec E MALDI time-of-flight mass spectrometer operated in reflectron mode. Spectra were calibrated externally.

RESULTS

Generation and Characterization of SSCS, SSCS-S124C, IIChis-CL, and IIChis-S124C—Two His-tagged EIIwt mutants were constructed. SSCS is a single cysteine enzyme with only Cys384 in the B domain. SSCS-S124C contains Cys124 in the C domain in addition to Cys384. The phenotype of E. coli LGS322 expressing these mutants was analyzed on Macconkey agar plates with 1% mannitol. Both strains formed purple-red colonies, indicating that the mutants transport and ferment mannitol. Inside-out (ISO) membrane vesicles from LGS322 cells expressing both mutants were solubilized with 0.25% dPEG and analyzed for mannitol binding and phosphorylation activities. The dissociation constants for mannitol were 25 and 45 mM and the turnover values for phosphorylation of mannitol of these mutants were 5200 and 4900 min⁻¹ for SSCS and SSCS-S124C, respectively. The turnover values for mannitol phosphorylation of purified SSCS and SSCS-S124C were 3200 and 2700 per min, respectively. These activities are similar to that of wild-type EIIwt (22, 29). ISO membrane vesicles bearing IIChis-CL or IIChis-S124C, solubilized with 0.25% dPEG, and analyzed for mannitol binding, displayed dissociation constants for mannitol of 32 and 70 mM, respectively. These dissociation constants are similar to previously determined values of the wild-type C domain generated by tryptic digestion of the complete protein (22) or of the separately expressed IIC (8). In addition, IIChis-CL and IIChis-S124C could both complement the mannitol-binding defective EIIwt-G196D for phosphorylation activity in an in vitro assay, a result similar to that described for IIC (8). Overall, these kinetic data clearly indicate that SSCS and SSCS-S124C are fully functional enzymes and that both mutant C domains can bind mannitol and form functional heterodimers with EIIwt.

Disulfide Bridge Formation in ISO Vesicles and Purified Enzyme—Fig. 2A shows the results of CuPhe-induced oxidation of SSCS and SSCS-S124C in ISO membrane vesicles, as visualized by immunoblotting with an antibody raised against the N-terminal His-tag. The untreated proteins migrated as a major band at ~60 kDa and are indicated as EII. The band at 36 kDa is a degradation product, whereas the one at 116 kDa (band 1) is most likely the dimer. This dimer has been observed previously upon extraction of the enzyme from the membrane (3) and is most likely not held together by a disulfide bond, since it is resistant to reduction with DTT. The amount of this band 1 is the same in all lanes. The oxidation by CuPhe of both mutants resulted in the appearance of a higher molecular weight band (band 2). The molecular mass was ~200 kDa but varied depending on the concentration of acrylamide that was used (not shown). The formation of this band was almost completely reversed by reduction of the sample with DTT, suggesting that it is stabilized by a disulfide bridge. The reduction with DTT is not complete in the particular sample in lane 5. However, in lane 11 of Fig. 2A, lane 1 of Fig. 2B, and in duplicate experiments complete reduction was observed. Both high molecular weight bands (1 and 2) have been observed previously and both were denoted as dimeric species (4, 5, 30). Also in this paper we refer to band 2 as a dimeric species, but we cannot fully exclude the possibility that it represents another oligomeric state as will be discussed below. Since Cys384 is the only candidate for disulfide formation in SSCS, the enzyme is thus capable of forming a disulfide between the two Cys384 residues. This is an important observation, because the dimer contacts are between the C domains (8).

Partial digestion of EIIwt with endoproteinase Glu-C generated a band at 33 kDa, which corresponds to the C domain without the A and B domains. Endoproteinase Glu-C instead of trypsin was used, because it did not cleave off the N-terminal His-tag within the 1-h incubation period. The cleavage pattern of digested SSCS was the same irrespective of whether the disulfide was formed or not. In addition, the cleavage pattern was unchanged upon reduction. This shows that the disulfide bridge resides in the domains that were degraded, which is consistent with the location of Cys384 in the B domain. However, if the same oxidation and digestion procedure was followed with oxidized SSCS-S124C, a new band at 50 kDa appeared (Fig. 2A, indicated by the arrow), irrespective of whether the digestion was done in the presence or absence of the detergent dPEG. This band disappeared upon reduction of the sample with DTT. This excludes the possibility that the protein was only partially cleaved under the oxidizing conditions. Based on its size, this band is probably the result of a disulfide bridge between Cys124 of both monomers, indicating that residue 124 is at the dimer interface. Very vaguely, some other products, which could include a disulfide bridge between Cys384 and Cys124 (see below) might be visible as well.

To further examine the nature of the Cys124-Cys124 disulfide bridge, the CuPhe-induced oxidation was repeated with purified SSCS-S124C. Fig. 2B shows the result of this experiment, visualized by immunoblotting. The same observations were made when the gel was silver-stained (not shown). The oxidation of purified SSCS-S124C also yields the reducible dimer band 2. Almost no band 1 was observed after purification, which probably indicates that the affinity between two monomers is decreased. Upon endoproteinase Glu-C digestion, the 50-kDa fragment was not observed. Instead, a His-tagged fragment of 42 kDa was visible in addition to the 33-kDa C domain band. This 42-kDa band disappeared upon reduction of the sample with DTT (compare lanes 3 and 4). Endoproteinase Glu-C digestion of the B domain will generate a 7.9-kDa fragment containing Cys384. The size of the 42-kDa band thus suggests that a disulfide bond is formed between the 33-kDa C domain harboring Cys124 and the 7.9-kDa B domain fragment with Cys384. In conclusion, the data in Fig. 2, A and B, point to the formation of two different disulfides, one intersubunit Cys124-Cys124 and one interdomain Cys124-Cys384. Further evidence for both disulfides will be supplied in the following sections.

Requirements for B/C Domain Disulfide Bridge Formation—To elucidate the composition of the disulfide bridges, the CuPhe-induced oxidation was performed with purified SSCS-S124C and SSCS (Fig. 3). The two higher molecular weight bands (1 and 2) were observed again with both proteins (lanes 2 and 14). These bands were not present upon reduction with DTT and were much less intense or absent upon phosphorylation of the protein at His554 and Cys384 confirming that these bands, at least in SSCS, arise from a disulfide bridge between the two Cys384 residues in the dimeric complex. Instead of endoproteinase Glu-C, trypsin was used to define the cross-links. Trypsin first cleaves in the linker between the C and B domain and, subsequently, digests the A and B domain completely but leaves the C domain intact except for the N-terminal His-tag (22, 31). The proteolytically generated C domain can be observed on SDS-PAGE at 30 kDa, which is somewhat smaller than the endoproteinase Glu-C-generated C domain.
This is consistent with the removal of the His-tag and a different cleavage site in the linker between the B and C domain. The tryptic B domain fragment with Cys384 has a calculated mass of ~1.9 kDa. Tryptic digestion of CuPhe-oxidized SSCS-S124C also showed a ~30-kDa band, which was significantly broadened upwards when the sample was not treated with DTT (compare lanes 6 and 7). This suggests that the broadened 30 kDa comprises the C domain plus the 1.9-kDa fragment of the B domain, analogous with the 42-kDa band in Fig. 2B. Consistent with this conclusion are the following observations: (i) the broadening is not observed with SSCS (Fig. 3; compare lanes 17 and 18); (ii) phosphorylation prior to oxidation prevented the occurrence of the broadening (compare lanes 6 and 8); and (iii) the broadening was not observed in wild-type EIImut or in mutants of SSCS with cysteines at positions 158 or 199 (not shown). A tryptic-generated C domain of SSCS-S124C, not treated with CuPhe, also led to some broadening, which is probably due to spontaneous oxidation (compare lanes 5 and 6). Another point to note is that the addition of 100 μM mannitol did not have an effect on the occurrence of the broadening (lane 9). Finally, dimeric C domain was not observed in the tryptic digest of oxidized SSCS-S124C.

Taken together, the broadening must be the result of a disulfide bridge between Cys384 and Cys124. To exclude the possibility that this disulfide bridge is an aspecific reaction between two accessible cysteines, another control experiment was performed (Fig. 3, lanes 11 and 12). With the sample in lane 11, oxidation was carried out after trypsin treatment, whereas in lane 12 it was carried out before trypsinolysis. Clearly, the broadening of the C domain band is no longer observed when the trypsin digestion preceded the oxidation. Thus, Cys124 is not capable of reacting with just any cysteine-

Fig. 2. Immunoblot analysis of CuPhe-induced disulfide bridge formation in SSCS and SSCS-S124C in inside-out membrane vesicles (A) and in purified SSCS-S124C (B). A, after oxidation, the samples were left untreated, digested with 100 μg/ml endoproteinase Glu-C, reduced with 10 mM DTT, or digested and subsequently reduced as described under “Experimental Procedures.” The conditions are depicted in the figure. The left panel (lanes 1–6) depicts the data with SSCS and the right panel (lanes 7–12) that of SSCS-S124C. The arrow indicates the location of the 50-kDa band, which was formed in SSCS-S124C only. The bands denoted 1 and 2 represent different conformers of EII (see text). Not shown are both mutants with added DTT but not oxidized, because these samples were identical to those that were DTT-reduced after CuPhe oxidation. B, approximately 1 μM SSCS-S124C was oxidized with CuPhe and, subsequently reduced with DTT (lane 1), left untreated (lane 2), endoproteinase Glu-C digested and, subsequently reduced with DTT (lane 3) or endoproteinase Glu-C digested (lane 4). The arrow indicates the 42-kDa band. Approximately 0.5 μg (A) or 0.08 μg (B) of EIImut was loaded per lane.
containing peptide, present at the same concentration.

MALDI-TOF Mass Analysis—To demonstrate that the fragment, which caused the broadening of the tryptic-generated C domain, originated from the B domain, the protein was excised from the SDS-polyacrylamide gel, reduced with β-mercaptoethanol to cleave the disulfide bond between the C domain and the B domain peptide, the peptides were extracted with organic solvents, and the extract was analyzed with MALDI-TOF MS. Fig. 4 shows the mass spectrum of the extracted peptides. The spectrum only contained 4 peaks, all of which could be assigned to tryptic B domain fragments that contain Cys384. The peak at m/z 1879.05 is the fully cleaved peptide with residues 380–399 (expected m/z 1878.92), and the peak at m/z 2007.05 represents the partially cleaved fragments of residues 379–399 and/or 380–400 (expected m/z 2007.02). This partial cleavage is due to the presence of the RK and RKK sequences at the N and C terminus of these peptides, respectively, that cannot be fully cleaved by trypsin. The peaks at m/z 1954.79 and 2083.05 represent the same peptides but with a β-mercaptoethanol adduct, which gives a mass increase of 76 Da. If the same procedure was applied to the C domain band that was reduced prior to SDS-PAGE and excised from the gel following the same procedure no peptides were observed.

The B/C Disulfide Bridge Can Cross the Dimer Interface—To this point, we have provided evidence for a B/C interdomain cross-link between Cys384 and Cys124 in purified SSCS-S124C, and a cross-link between the Cys 124 of both monomers in the enzyme in ISO membrane vesicles. In addition, the data on SSCS provide unequivocal evidence for a disulfide across the dimer interface between the Cys384 residues on each B domain. To establish whether the disulfide between Cys384 in the B domain and Cys124 in the C domain could be formed between different subunits, heterodimers consisting of IIChis-S124C and SSCS were subjected to CuPhe-induced oxidation. Each subunit in a heterodimer provides only one of the cysteines that participate in the disulfide bridge. Fig. 5A (lane 2) shows that when a 3:1 mixture of SSCS and IIChis-S124C was oxidized, the same homodimer as observed with purified SSCS alone (Fig. 5A, lane 4, and Figs. 2 and 3) was formed. In addition, a new band at ~90 kDa appeared, whereas the IIChis-S124C band became less intense (lane 2). This 90-kDa band can only be the heterodimer between SSCS and IIChis-S124C. After reduction, both the SSCS dimer and the heterodimer disappeared. This shows that the B/C domain disulfide bridge can cross the dimer interface.

The B/C Disulfide Bridge Can Be Formed Intramolecularly—Next, we addressed the question whether or not the disulfide bridge between Cys384 and Cys124 can also be formed within one monomer. For this purpose, heterodimers of SSCS-S124C and a cysteine-less IIChis (IIChis-CL) were formed. It is crucial for this experiment that all the SSCS-S124C monomers are forming a heterodimer with a IIChis-CL monomer, such that only the intrasubunit disulfide bridge is possible. Therefore, an ~15-fold excess IIChis-CL was added and the het-
erodimer formation was facilitated by the addition of 170 mM Na₃PO₄, pH 7.6, which lowered the cloud point of the solution (see “Experimental Procedures”). Na₃PO₄ alone did not have an influence on the cross-linking behavior of SSCS-S124C (not shown). As can be seen in Fig. 5B, homodimers were no longer present upon oxidation with CuPhe, which is indicative of complete heterodimer formation (compare Fig. 2B, lane 2, and Fig. 5B, lane 2). Endoproteinase Glu-C digestion of the oxidized sample generated the 33-kDa C domain and the additional 42-kDa band (arrow in lane 4 of Fig. 5B); the latter is absent upon reduction of the sample with DTT. This experiment, therefore, proves that the B/C disulfide bridge can also be formed within one subunit.

Residue 124 Is Located Near the Dimer Interface—The CuPhe-induced cross-linking of SSCS-S124C in ISO membrane vesicles corresponds most likely to a disulfide bridge between Cys¹²⁴ of both monomers. The CuPhe-induced oxidation was repeated with purified IIChis-S124C (Fig. 6). IIChis-S124C migrates as a monomer with an apparent molecular mass of 28 kDa in the presence of DTT. Upon oxidation, a dimeric IIChis-S124C with an apparent molecular mass of 50 kDa was observed. To confirm the close proximity of both Cys¹²⁴ residues in one dimer, reduced IIChis-S124C was subjected to cross-linking with dimaleimides of different lengths, ranging from 7.7 to 15.1 Å. Fig. 6 shows that all three dimaleimides also yielded the formation of the 50-kDa dimer. These data indicate that the residue at position 124 is located at the dimer interface in purified IIChis-S124C.

DISCUSSION

In this article we describe the generation of several disulfide bridges, indicative for close proximity, between two cysteines in the dimeric EII₉¹¹. In the enzyme in ISO membrane vesicles, intersubunit disulfide bridges between both Cys³⁸⁴ residues and between both Cys¹²⁴ residues are formed. Upon purification in the detergent dPEG, the intersubunit disulfide between both Cys³⁸⁴ residues is still formed. In addition, an interdo-

![Image](image1)

Fig. 5. Heterodimer experiments to determine whether the Cys³⁸⁴-Cys¹²⁴ disulfide can be formed intra- and intermolecularly. A, immunoblot of CuPhe-induced oxidation of homo- and heterodimers of purified SSCS (3 μM) and IIChis-S124C (1 μM). After CuPhe-induced oxidation, the samples were split and either reduced with 10 mM DTT or left untreated. Due to a poor blotting efficiency of the C domain alone, the apparent concentrations on the PVDF of EII₉¹¹ and the C domain differ. B, immunoblot of CuPhe-induced oxidation of heterodimers formed between purified SSCS-S124C (0.2 μM) and IIChis-CL (3 μM) in the presence of 170 mM Na₄PO₄, pH 7.6. After CuPhe-induced oxidation, the samples were reduced with DTT (lane 1), left untreated (lane 2), endoproteinase Glu-C digested and, subsequently, reduced with DTT (lane 3), or endoproteinase Glu-C digested (lane 4). The arrow indicates the 42-kDa band. Approximately 0.15 μg (A) and 0.075 μg (B) of EII₉¹¹ was loaded per lane.

![Image](image2)

Fig. 6. Immunoblot of cross-linking experiments with purified IIChis-S124C. IIChis-S124C (1 μM) was reduced and subjected to cross-linking by oxidation with CuPhe (lanes 1 and 2) or with γ-PDM, p-PDM, and BMH, which can span 7.7, 12.0, and 15.1 Å, respectively. Lane 1 represents the sample in which DTT after CuPhe oxidation. Approximately 0.1 μg of IIChis-S124C was loaded per lane.

main cross-link between Cys³⁸⁴ and Cys¹²⁴ is observed, which either can be formed as an intrasubunit or an intersubunit disulfide. The intersubunit disulfide between both Cys¹²⁴ residues is not formed in purified EII, but it is formed in purified C domain harboring Cys¹²⁴. It is important to stress that both the detergent-solubilized EII and IIC retain full binding capacity, and the soluble EII retains full mannitol phosphorylation activity. The observations made with the detergent-solubilized enzymes thus reveal structural information of functionally relevant conformations of the protein.

To form a disulfide bond, the Cₛ atoms of the cysteines have to come within 3.8–4.5 Å of each other (32). The two Cys³⁸⁴ and two Cys¹²⁴ residues are thus in very close proximity both at the
B/C domain interface and the dimer interface of EIImtl. The multiplicity of possible disulfides is easy to understand in the light of the interdomain dynamics that are essential for the entire phosphorylation and transport cycle. The architecture and functioning of EIImtl necessitates an interdomain flexibility in which the B domain interacts with various domains at different stages in the catalytic cycle. (i) The active sites of the A and B domains, each of which are proteins of ~15 kDa, must approach one another to transfer the phosphoryl group from His554 on the A domain to Cys384 on the B domain, then (ii) this same region of the B domain, containing a phosphorylated Cys384, must interact with the C domain to effect the conformational energy coupling which enables the translocation and subsequent phosphorylation of mannitol. (iii) The phosphoryl group can cross the dimer interface from the A domain of one monomer to the B domain of the other monomer (illustrated in Fig. 1) (33, 34) or from the B domain of one monomer to the mannitol bound by the C domain of another monomer (25, 35). It is, therefore, logical that the active site Cys384 in the B domain is in close proximity with different regions of the enzyme at different steps in the catalytic cycle and that, during the cross-linking process, these various domain interactions transiently occur and lead to the cross-links observed. Upon purification in detergent, a different pattern of the disulfide bridges is observed, which is additional evidence for this dynamic situation.

The observation of different higher aggregated forms of EIImtl, all denoted as dimeric forms, is not new. Band 1 was observed upon extraction of the enzyme from the membrane, whereas band 2 appeared upon cross-linking via disulfides, dimaleimides, or lysine-specific cross-linkers (3–5, 30). Band 1 is insensitive to reduction suggesting that it is stabilized by disulfide bridges is observed, which is additional evidence for this dynamic situation.

In conclusion, the data presented here suggests that residues 124 and 384 of both subunits can come within 5 Å of each other and are located at the B/C domain and dimer interface. An intriguing question is what happens at the B/C domain interface upon phosphorylation. Phosphorescence data of single tryptophan mutants in the C domain show that a conformational change takes place upon phosphorylation of Cys384, different from that upon mannitol binding (14). With the current pairs of cysteines, however, it is not possible to figure out what is happening precisely, because phosphorylation prevents Cys384 from forming a disulfide. In the future, we will screen several cysteine mutants in these regions of the protein to determine the exact borders of the B/C domain and dimer interface and changes therein upon mannitol binding and/or B domain phosphorylation. Eventually this will lead to a more detailed understanding of the energy coupling mechanism at the B/C domain interface in EIImtl.

Acknowledgment—Jaap Broos is acknowledged for critical reading of the manuscript and useful discussions.

REFERENCES

