Mapping of the dimer Interface of the Escherichia coli mannitol permease by cysteine cross-linking
van Montfort, B.A.; Schuurman-Wolters, G.K.; Wind, J.; Broos, J.; Robillard, G.T.; Poolman, B.
Published in:
The Journal of Biological Chemistry
DOI: 10.1074/jbc.M201533200

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Mapping of the Dimer Interface of the *Escherichia coli* Mannitol Permease by Cysteine Cross-linking*

Bart A. van Montfort, Gea K. Schuurman-Wolters, Joyce Wind, Jaap Broos, George T. Robillard, and Bert Poolman‡

From the Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

A cysteine cross-linking approach was used to identify residues at the dimer interface of the *Escherichia coli* mannitol permease. This transport protein comprises two cytoplasmic domains and one membrane-embedded C domain per monomer, of which the latter provides the dimer contacts. A series of single-cysteine His-tagged C domains present in the native membrane were subjected to Cu(II)-(1,10-phenanthroline)₃-catalyzed disulfide formation or cysteine cross-linking with dimaleimides of different length. The engineered cysteines were at the borders of the predicted membrane-spanning α-helices. Two residues were found to be located in close proximity of each other and capable of forming a disulfide, while four other locations formed cross-links with the longer dimaleimides. Solubilization of the membranes did only influence the cross-linking behavior at one position (Cys¹³⁴). Mannitol binding only affected the cross-linking of a cysteine at the border of the third transmembrane helix (Cys¹³⁴), indicating that substrate binding does not lead to large rearrangements in the helix packing or to dissociation of the dimer. Upon mannitol binding, the Cys¹³⁴ becomes more exposed but the residue is no longer capable of forming a stable disulfide in the dimeric CIC domain. In combination with the recently obtained projection structure of the IIC domain in two-dimensional crystals, a first proposal is made for α-helix packing in the mannitol permease.

In bacteria, the phosphoenolpyruvate-dependent phosphotransferase system is involved in the uptake and concomitant phosphorylation of a wide variety of carbohydrates. The system consists of two general components EI and HPr and several carbohydrate-specific enzymes II (EII). In a cascade of phosphorylation reactions, the phosphoryl group is transferred from the energy donor phosphoenolpyruvate via EI and HPr to EII, as illustrated in Fig. 1 for the mannitol-specific phosphotransferase system (reviewed in Ref. 2). All EII's have a similar architecture and consist of the cytoplasmic A and B domains and a membrane-embedded C domain. In the mannitol-specific EII (EII^{mtl}) of *Escherichia coli* the three domains are covalently linked. The C domain transports mannitol into the cell and the A and B domains transfer the phosphoryl group from HPr to mannitol. The imported mannitol is phosphorylated by B while being bound by C.

The association state of EII^{mtl} is most likely the dimer with contacts between two subunits being provided by the C domain. The evidence for this oligomeric state is manifold, but the strongest indications are from *in vitro* and *in vivo* complementation studies. The formation of heterodimers from inactive subunits with defects in different domains restores the activity of EII^{mtl} (3–5). Moreover, subunits of EII^{mtl} could be covalently cross-linked to a dimer with bifunctional sulhydryl-specific reagents, lysine-specific cross-linkers, or by oxidative disulfide bond formation (6–9). The 5 Å projection structure of the C domain in two-dimensional crystals also strongly points towards a dimeric structure (10).

Six regions with high electron density, probably representing α-helices, are observed in the projection structure of the C domain. The structural information of the C domain, however, is limited to this projection map. A topology model derived from the phoA gene fusion studies predicted 6 membrane-spanning α-helices and two large cytoplasmic loops (Fig. 2), which fits with the projection map (11). The assignment of densities to particular helices has not been made and, therefore, it is not known which helices reside at the dimer interface. Here, we demonstrate close proximity of engineered cysteines at the borders of predicted membrane-spanning α-helices, using Cu(II)-(1,10-phenanthroline)₃-induced disulfide bridge formation and cross-linking with dimaleimides of different length. This data, in combination with the electron densities of the projection map, has been used to propose the first α-helix-packing model of a phosphotransferase system transport protein.

EXPERIMENTAL PROCEDURES

Chemicals—Decyl-polyethylene glycol (dPEG) was synthesized by B. Kwant (Kwant High Vacuum Oil Recycling and Synthesis, Bedum, The Netherlands). 1,10-Phenanthroline monohydrate was obtained from Merck. The cross-linkers p-PDM and p-PDM were from Aldrich, and BMM was obtained from Pierce. N-Ethylmaleimide (NEM) was from Fluka and 14-C-NEM from NEN. All chemicals used were analytical grade.

Construction of Plasmids for Expression of the Single-cysteine Mutants—Site-directed mutagenesis was performed with the Stratagene QuickChange mutagenesis kit. A His-tagged Cys-less IIC domain (IIChis-CL) was generated by replacing Cys¹¹⁰ and Cys³²⁰ by serine in PmaMtIICHis, which carries the gene for the C domain with a C-terminal His-tag (12). The gene for IIChis-CL was subsequently used to generate the single-cysteine IIChis variants. Mutations were confirmed by DNA sequence analysis.

‡ To whom correspondence should be addressed. Tel.: 31-50-3634190; Fax: 31-50-3634165; E-mail: b.poolman@chem.rug.nl.

1 The abbreviations used are: EII^{mtl}, mannitol-specific enzyme II; IIChis, His-tagged C domain of EII^{mtl}; IIChis-CL, Cys-less IIChis; IIChis-X[¢]C, single-cysteine mutants in the IIChis-CL background; ISO, inside-out; CuPhe, Cu(II)-(1,10-phenanthroline)₃; NEM, N-ethylmaleimide; DTT, dithiothreitol; dPEG, decyl-polyethylene glycol.

Received for publication, February 14, 2002

Published, JBC Papers in Press, February 19, 2002, DOI 10.1074/jbc.M201533200

This paper is available on line at http://www.jbc.org
The Dimer Interface of a Mannitol Transport Protein

Isolation of ISO Membrane Vesicles and Membrane Solubilization—Growth of E. coli LGS322 (F* thi-1, hisG1, argG6, metB1, tonA2, supE44, rpsL104, lacY1, gatB6, gatR49, gatR50, Δ(mtlA)p, mtlDc, Δ(gatR-MDBA-recA)), carrying the various plasmids, and procedures to overexpress the mutant proteins were identical to those described for wild type EII^{mtl} (13). Inside-out (ISO) membrane vesicles containing the mutant proteins were obtained as described (14). The membrane vesicles (25 mg of protein/ml) were solubilized in 1% (w/v) of dPEG. The protein concentration was determined with the DC protein assay from Bio-Rad. The ISO membrane vesicles containing the His-tagged C domains were determined with flow dialysis in the presence or absence of 0.25% dPEG (w/v) (15) with some modifications as will be described elsewhere.

Heterodimer formation with EII^{mtl}-G196D, using 33 nM EII^{mtl} and 3.3 μM EII^{mtl}-G196D, was determined using established procedures (16) as described under “Mannitol Binding and Phosphorylation Activities” with the following modifications. To 50 μg of ISO membrane vesicles (corresponding to ~70 nM EII^{mtl}-S134C), 10 μM of purified IAAB domain, 9 μM HPR, and 0.3 μM EI were added. The assay was started by the addition of 33 μM [14C]mannitol, dPEG was omitted from the mixture.

RESULTS

Generation and Characterization of the Mutants—Cysteines were introduced in a cysteine-less His-tagged C domain, denoted here as IIChis-CI, to identify putative transmembrane α-helices that constitute the dimer interface of EII^{mtl}. Fig. 2 shows the location of the cysteines in the topology model of the C domain. The cysteines, except for position 124, are located at the borders of putative transmembrane α-helices and they are taken as indicators for interhelix proximities.

ISO membrane vesicles prepared from LGS322 cells harboring the plasmids were analyzed for mannitol binding before and after solubilization with dPEG. Their ability to complement the mannitol binding-defective EII^{mtl}-G196D was determined in an in vitro mannitol phosphorylation assay (16). Table I shows the dissociation constants (K_d) for mannitol. Most proteins exhibited binding affinities comparable with those described for the wild-type C domain generated by trypsin digestion of the complete protein (15, 19); the maximal number of binding sites (B_{max}) did not vary significantly for the various mutants (not shown). A few single-cysteine mutants displayed significantly higher affinities than IIChis. The only mutant that bound mannitol with lower affinity was S134C. Although its binding constant could not be determined accurately with flow dialysis, it was estimated to be in the low micromolar range. All mutants, including S134C, complemented EII^{mtl}-G196D in the in vitro phosphorylation assay (not shown) with an efficiency comparable with that described for the C domain.

model of the C domain of EIImtl. in the Sugiyama membrane topology
and purified IIChis-S124C (9). Four other mutants, with cys-

des not vary too much in solution. With BMH, on the other hand, the span width can vary a few Å, due to
cis-trans conversions of the spacer chain. Representative
immunoblots obtained with IIChis-T47C, IIChis-G73C, IIChis-
S134C, and IIChis-S299C are shown in Fig. 3A. Table II sum-
marizes the results of all mutants. Two mutants, with
cysteines at positions 73, 134, 187, or 270, could only form a
cross-link with p-PDM and BMH. This indicates that these
locations are in close proximity but more than 10 Å apart. From
the reaction with p-PDM and BMH, it can be concluded that the
distance is ~12 Å. The cross-link with IIChis-G73C was
formed less rapidly than those with cysteines at the other
positions and significant amounts of cross-link product were
only observed when the dimaleimide concentration was in-
creased from 0.05 to 0.5 mM. This suggests a lower accessibility
of the cysteine at position 73 or a higher pKₐ of the sulphydryl
group. IIChis, with the native cysteines 110 and 320, and
IIChis with cysteines at positions 24, 158, and 199 did not yield
cross-links, suggesting that these cysteines are not in close
proximity of the dimer interface or not accessible for the
cross-linker.

The accessibility of all single-cysteine IIC mutants was ex-
amined by labeling with ¹⁴C-NEM after pretreatment with
p-PDM for 0 up to 60 min. The experiments showed that p-
PDM protected against labeling with radioactive NEM in all
cases (results not shown), demonstrating that each of the cyste-
ings was accessible under the conditions used here. A slightly
lower rate of labeling with ¹⁴C-NEM was observed with IIChis-
G73C mutant. Except for Cys134 (see below), mannitol binding
increased from 0.05 to 0.5 mM. This suggests a lower accessibility
of the sulfhydryl —

Cysteine Cross-linking of the Single-cysteine C Domains in
Homodimeric Complexes—A disulfide bond is a so-called zero-
length cross-link, whereas the dimaleimides o-PDM, p-PDM,
and BMH allow linkage of thiol groups at distances of 9.4 ± 0.5,
11.1 ± 0.5, and 10.2 ± 2.4 Å, respectively (20). Since an aro-
matic ring couples the maleimides in o-PDM and p-PDM, the
span widths do not vary too much in solution. With BMH, on the
other hand, the span width can vary a few Å, due to
cis-trans conversions of the spacer chain. Representative
immunoblots obtained with IIChis-T47C, IIChis-G73C, IIChis-
S134C, and IIChis-S299C are shown in Fig. 3A. Table II sum-
marizes the results of all mutants. Two mutants, with
cysteines at positions 47 or 124, were able to form a disulfide
bond and cross-link with all three dimaleimides. This indicates
a high degree of flexibility for these cysteine residues since
disulfide formation necessitates close proximity, whereas BMH
and the rigid dimaleimides o-PDM and p-PDM span a larger
distance. The capacity to form a disulfide indicates that these
residues can come in very close proximity, since the length of a
disulfide bond is ~—2 Å (21, 22). Cross-linking with the cysteine
at position 124 has been observed previously with native EIImtl
and purified IIChis-S124C (9). Four other mutants, with cys-
teines at positions 73, 134, 187, or 270, could only form a
cross-link with p-PDM and BMH. This indicates that these
locations are in close proximity but more than 10 Å apart. From
the reaction with p-PDM and BMH, it can be concluded that the
distance is ~12 Å. The cross-link with IIChis-G73C was
formed less rapidly than those with cysteines at the other
positions and significant amounts of cross-link product were
only observed when the dimaleimide concentration was in-
creased from 0.05 to 0.5 mM. This suggests a lower accessibility
of the cysteine at position 73 or a higher pKₐ of the sulphydryl
group. IIChis, with the native cysteines 110 and 320, and
IIChis with cysteines at positions 24, 158, and 199 did not yield
cross-links, suggesting that these cysteines are not in close
proximity of the dimer interface or not accessible for the
cross-linker.

The accessibility of all single-cysteine IIC mutants was ex-
amined by labeling with ¹⁴C-NEM after pretreatment with
p-PDM for 0 up to 60 min. The experiments showed that p-
PDM protected against labeling with radioactive NEM in all
cases (results not shown), demonstrating that each of the cyste-
ings was accessible under the conditions used here. A slightly
lower rate of labeling with ¹⁴C-NEM was observed with IIChis-
G73C and IIChis-I270C, which supports the need for higher
concentrations of dimaleimide to obtain cross-links with the
G73C mutant. Except for Cys134 (see below), mannitol binding
did not alter the accessibility of the cysteines for the
maleimides.

The effect of dPEG on the cross-linking efficiency was exam-
ined for the homodimeric single-cysteine C domains. In most
cases, the data were comparable to those reported for the
membrane-embedded protein (Fig. 3A and Table I). Detergent-
solubilized G73C, on the other hand, formed stable cross-links
in the presence of Cu-Phe and p-PDM (Fig. 3B), whereas this
mutant only (slowly) formed cross-links with p-PDM (and
BMH) when the protein was embedded in the membrane. Most
likely, an increased flexibility in the presence of detergent
allows the Cys73 residues to come closer together and form a
stable disulfide.

Cysteine Cross-linking of the Single-cysteine C Domains in
Heterodimeric Complexes—Due to the symmetry of the puta-

The Dimer Interface of a Mannitol Transport Protein

FIG. 2. The location of the cysteines in the Sugiyama membrane topology model of the C domain of EIImtl. The
positions of the two native cysteines, Cys¹¹⁰ and Cys³²⁰, which were replaced with a serine, are shown in gray. The
locations of the residues that were replaced with a cysteine are shown in black. Double-underlined residues do form a
cross-link with CuPhe, while single-underline residues form cross-links with the longer dimaleimides.
DTT (dimaleimide cross-linking). Before they were quenched with EDTA plus NEM (CuPhe oxidation) or reactions were allowed to proceed for the indicated periods of time.

Solubilization of the membranes in the presence of 1% (w/v) dPEG. The cross-links were formed by oxidation with 0.3 mM CuPhe or reaction with 0.5 mM p-PDM after solubilization of the membranes in the presence of 167 mM Na₃PO₄. As a control a 4-fold excess of the same single-cysteine mutants was used instead of IIChis-CL. The generation of heterodimers was accomplished by mixing dPEG-solubilized ISO membrane vesicles, containing one of the six single-cysteine C domains that did form a cross-link, with a 4-fold excess of solubilized membranes containing IIChis-CL in the presence of 167 mM Na₃PO₄. As a control a 4-fold excess of the same single-cysteine mutant was used instead of IIChis-CL. Fig. 4 shows that dPEG solubilization and lowering of the cloud point did not affect the cross-linking efficiency at positions 47, 73, 187, and 270 (lanes 2 and 3). When present in a heterodimer with IIChis-CL, these cysteines no longer form significant amounts of cross-links (lane 4). In the control sample, the cross-linked dimer is still clearly visible (lane 5). This indicates that cysteines 47, 73, 187, and 270 are located at the dimer interface. The two other single-cysteine mutants, with cysteines at position 124 and 134, could not be analyzed with this procedure, since Na₃PO₄ treatment of the dPEG-solubilized proteins resulted in aggregation. The cross-linking behavior of the S124C mutant has previously been analyzed in EIImtl with cysteines at position 384 and 124 (9). When a heterodimer of this double-cysteine protein with IIChis-CL was formed, the Cys₁²₄⁻Cys₁²₄ disulfide was no longer observed. This indicates that also the cross-link formed with IIChis-S124C is intradimeric.

Mannitol-induced Conformational Changes—The cross-linking experiments were repeated in the presence of 0.01 or 40 mM mannitol; both concentrations are above the Kₘ for mannitol binding. As a control, 40 mM glucose was used, which is not a substrate of EIImtl. Representative immunoblots of the effect of mannitol on the formation of cross-links with 0.5 mM BMH are shown in Fig. 5. The addition of mannitol or glucose to IIChis-T47C did not have an effect on the cross-linking efficiency. With IIChis-S134C, on the other hand, cross-links were no longer observed in the presence of 0.01 and 40 mM mannitol, while glucose had no effect. Similar results were obtained with p-PDM as the cross-linker. The cross-linking behavior of the other mutants was not affected (not shown). If high concentrations of substrate would monomerize the dimer, as suggested previously on the basis of SDS extractions of the protein from the membrane in the presence of 40 mM mannitol (23, 24), the amount of cross-link product should also have decreased for Cys⁴⁷, Cys⁷³, Cys¹²₄, Cys¹⁸₇, and Cys²⁷⁰. Since this is not the case, it seems that the cross-linking efficiency decreases as a result of the increase in the cloud point due to the increase in concentration of mannitol. The formation of intradimeric cross-links is therefore not increased by mannitol.
case, it can be concluded that mannitol does not monomerize
the dimer under the conditions used here.

The effect of labeling of Cys 134 on the activity of the protein
was investigated by complementation of IIChis-S134C in ISO
membrane vesicles with purified IIAB protein of EII mtl. Upon
phosphorylation of IIAB in the presence of phosphoenolpyru-
vate, enzyme, and HPr, the phosphoryl group on the B domain
of IIAB can be transferred to mannitol when bound to IIChis-
S134C. In the absence of mannitol, NEM or BMH treatment
(0.5 mM) resulted in about 25% reduction of the activity after 20
min of incubation (Fig. 6). Surprisingly, in the presence of
mannitol, the inhibition by NEM or BMH was much more
severe (Fig. 6) and already maximal after 5 min (not shown).
The binding of mannitol thus results in a higher accessibility
(or reactivity) of Cys134, but also places these residues further
apart as cross-linking is no longer observed under these
conditions (Fig. 5).

DISCUSSION

The cross-linking experiments with the C domain of
the mannitol permease have been primarily performed with the
protein in ISO membrane vesicles, which is the environment in
which the protein adopts its native conformation. The lipid
bilayer environment has the additional advantage that protein
motions are restricted. This could be important as cross-links
can also be formed upon dynamic collisions, which would not
merely reflect proximity of the subunits. With a membrane-
embedded protein, the collisions can only occur within the
two-dimensional space of the membrane, which increases the
specificity of the cross-linking reactions, as was shown for the
diacylglycerol kinase (25). A CuPhe-catalyzed disulfide forma-
tion study showed that collision rates are highly dependent on
proximity (22). A comparison of cysteine cross-link formation and
distance determination by spin-spin interactions between
nitroxide-labeled pairs of cysteines in the E. coli lactose per-

FIG. 4. Heterodimer experiments with IIChis-T47C, IIChis-G73C, and IIChis-I270C to determine whether the cross-links are intra-
or interdimeric. Cross-linking with 0.5 mM p-PDM in 1% (w/v) dPEG-solubilized ISO membrane vesicles. Lanes 1, no cross-linking. Lanes 2,
cross-linking in ISO membrane vesicles. Lanes 3, cross-linking in detergent-solubilized membrane vesicles after Na3PO4 treatment. Lanes 4,
cross-linking in detergent-solubilized membrane vesicles with a 4-fold excess of IIChis-CL. Lanes 5, cross-linking in detergent-solubilized
membrane vesicles, with 4-fold excess of the same mutant. The reactions were allowed to proceed for the indicated periods of time before they were
quenched with EDTA plus NEM (CuPhe oxidation) or DTT (dimaleimide cross-linking).

FIG. 5. Effect of mannitol on cross-linking. IIChis-T47C and
IIChis-S134C were cross-linked with 0.5 mM BMH without further
additions or in the presence of 40 mM mannitol or glucose. ISO mem-
brane vesicles were used and the reaction was quenched with DTT.

TABLE II

<table>
<thead>
<tr>
<th>Mutant</th>
<th>CuPhe</th>
<th>o-PDM (9.4 ± 0.5 Å)</th>
<th>p-PDM (11.1 ± 0.5 Å)</th>
<th>BMH (11.2 ± 2.4 Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIChis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIChis CL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIChis-T24C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIChis-G73C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIChis-S134C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIChis-S158C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIChis-L187C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIChis-I270C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIChis-S299C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The span widths are taken from Ref. 20.

b These cross-links were formed with 0.5 mM dimaleimide and were only visible after 60 min of incubation.

c The disulfide was only observed after dPEG solubilization of the membranes.

d Unambiguous cross-link formation with BMH could not be obtained for the cysteine at this position.
mease also indicates that proximity is the most important parameter (26). This fits with our observations that the cross-link efficiency of mutants is similar for most of the single-cysteine mutants in the native and dPEG-solubilized membrane. For the G73C mutant, however, dPEG solubilization is required for disulfide formation, whereas cross-linking via the dimaleimides is unaffected. This suggests that the two cysteines are brought in somewhat closer proximity upon solubilization of the membrane.

The relatively low efficiencies of CuPhe-induced disulfide bond formation or dimaleimide cross-linking are not uncommon (26–28) and there are several explanations for these observations. (i) The formation of disulfide bonds under oxidative conditions is competitive with terminal oxidation of thiols to sulfonates (22). (ii) A study by Koshland and co-workers (29) showed that the inefficiency of CuPhe-catalyzed cross-linking can relate to a low stability of the disulfide bond, which is due to the less than ideal geometries and bond lengths of the engineered cysteines. Even disulfide bonds between cysteines, engineered on the basis of a high-resolution crystal structure, can be difficult to form and unstable once formed (30). (iii) Cross-linking of two cysteines with one dimaleimide is competitive with the labeling of the same two cysteines with two different dimaleimide molecules, which obviously does not lead to cross-linking. In addition, cross-linking will not be observed if one of the maleimide moieties is inactivated by hydrolysis.

The observed cross-links can be divided into two groups. The first group is composed of residues 47 and 124, which form a disulfide bond upon CuPhe-induced oxidation and cross-links with all three dimaleimides. Since hydrophathy predictions and phoA gene fusion data suggest that residue 124 is not located at the border of a membrane-spanning a-helix, it is not expected to place a particular helix at the dimer interface. Residue 47 is in a loop between helix 1 and 2 and probably located in the center of the projection map close to density B (see Fig. 7). Residues 73, 134, 187, and 270 are in the second group of cross-linking sites. These cysteines, which are on the cytoplasmic side of helices 2, 3, 4, and 5, respectively, only form cross-links with the reagents with the longer spacers in the native membranes. The cytoplasmic ends of these helices must, therefore, be reasonably close to the dimer interface. Due to the instability of IIChis-S134C in the dPEG-solubilized state in the presence of sodium phosphate, we cannot exclude the possibility that residue 134 forms an interdimeric cross-link. Given the high specificity of cross-link formation with the other cysteine pairs, we favor the suggestion that the Cys134 cross-link is also intradimeric and sensitive to mannitol binding. The observation that mannitol enhances the inactivation of IIChis-S134C by NEM and BMH, whereas the cross-linking by BMH is diminished, indicate that relatively large conformational changes take place at this site upon ligand binding. The Cys134 residues become more exposed, and react more rapidly with the maleimides. At the same time, the conformational changes places the two Cys134 residues within the homodimer further apart, as BMH-dependent cross-linking is no longer observed.

With regard to the distance information obtained from the cross-linking studies, it is important to note that the distance between the centers of two densities in the projection map might be larger than the span width of the dimaleimides. The radius of a helix is 5–6 Å and −12 Å can thus be added to the span width of the cross-linker used. The maximum distance between the centers of two densities that can be spanned by BMH is, therefore, −25 Å. In Fig. 7, a circle with this diameter is drawn in the center of the projection map. Since density E is far out of the circle, it can never represent helices 1, 2, or 5 and most likely also not helix 3. The fact that residues 47 and 73 at either end of helix 2 form a cross-link makes this helix the best candidate for density B. This leaves densities A, C, F, and probably D for helices 1, 3, 4, and 5. Due to the symmetry of the putative IIC dimer different helices of the two subunits could neighbor each other. Helix 1 of one subunit could, for instance, be adjacent to helix 3, 4, or 5 of the other subunit. Unfortunately, neither of the mutant pairs in the heterodimeric complexes yielded significant amounts of cross-links to support these possibilities.

Although integral membrane proteins do not readily form three-dimensional crystals, two-dimensional crystals, from which a projection map can be calculated, are much more easily obtained. In fact, two-dimensional crystals of several integral membrane proteins have been produced in recent years (31–34). These maps reveal the electron densities corresponding to transmembrane a-helices, but assignment of the densities to particular segments of the protein cannot be made. Such information is particularly important for oligomeric proteins, in which the subunit interface(s) are catalytically important or participate in the cooperativity of the system (35). The approach presented here allows one to generate a helix-packing model of an integral membrane protein. Specific cross-links could be generated between cysteines engineered at the ends of the transmembrane segments of the membrane domain of
EIImt. In combination with the projection map of the C domain of EIImt, we have obtained the first structural information of the dimer interface. To the best of our knowledge, the two pieces of information, i.e. the electron density map and cross-links, have not been used before to build an α-helix packing model of a membrane (transport) protein.

REFERENCES